
De Vink and Wiklicky (Eds.): QAPL 2017

EPTCS 250, 2017, pp. 39–74, doi:10.4204/EPTCS.250.4

c© Valentina Castiglioni & Simone Tini

This work is licensed under the

Creative Commons Attribution License.

Logical Characterization of Trace Metrics

Valentina Castiglioni

University of Insubria (IT)

v.castiglioni2@uninsubria.it

Simone Tini

University of Insubria (IT)

simone.tini@uninsubria.it

In this paper we continue our research line on logical characterizations of behavioral metrics obtained

from the definition of a metric over the set of logical properties of interest. This time we provide a

characterization of both strong and weak trace metric on nondeterministic probabilistic processes,

based on a minimal boolean logic L which we prove to be powerful enough to characterize strong

and weak probabilistic trace equivalence. Moreover, we also prove that our characterization approach

can be restated in terms of a more classic probabilistic L-model checking problem.

1 Introduction

Behavioral equivalences and modal logics have been successfully employed for the specification and ver-

ification of communicating concurrent systems, henceforth processes. The former ones provide a simple

and elegant tool for comparing the observable behavior of processes. The latter ones allow for an imme-

diate expression of the desired properties of processes. Since the work of [20] on the Hennessy-Milner

logic (HML), these two approaches are connected by means of logical characterizations of behavioral

equivalences: two processes are behaviorally equivalent if and only if they satisfy the same formulae in

the logic. Hence, the characterization of an equivalence subsumes both the fact that the logic is as ex-

pressive as the equivalence and the fact that the equivalence preserves the logical properties of processes.

It is common agreement that when also quantitative properties of processes are taken into account a

metric semantics is favored over behavioral equivalences, since the latter ones are too sensible to small

variations in the probabilistic properties of processes. Therefore, the interest in logical characterizations

of the so called behavioral metrics [1,2,8,12,14,15,18,24,25,29], namely the quantitative analogues of

equivalences that quantify how far the behavior of two processes is apart, is constantly growing.

In this paper we propose a logical characterization of the strong and weak variants of the trace

metric [29] for nondeterministic probabilistic processes (PTSs [28]). To this aim we follow the approach

of [9] in which a logical characterization of the bisimilarity metric is provided. We introduce two boolean

logics L and Lw, providing a probabilistic choice operator capturing the probability weights that a process

assigns to arbitrary traces, which we prove to characterize resp. the strong and weak probabilistic trace

equivalences of [27]. Such a characterization is obtained by introducing the novel notion of mimicking

formulae of resolutions, i.e. formulae capturing, for each possible resolution of nondeterminism for a

process, all the executable traces as well as the probability weights assigned to them. Then we introduce

the notions of distance between formulae in L and Lw which are 1-bounded (pseudo)metrics assigning to

each pair of formulae a suitable quantitative analogue of their syntactic disparities. These lift to metrics

over processes, called resp. L-distance and Lw-distance, corresponding to the Hausdorff lifting of the

distance between formulae to the sets of formulae satisfied by the two processes. We prove that our

L-distance and Lw-distance correspond resp. to the strong and weak trace metric.

An important feature of our characterization method is that, although it is firmly based on the mimick-

ing formulae of resolutions, it does not actually depend on how these resolutions of nondeterminism are
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obtained from processes. For instance, in this paper we consider resolutions obtained via a deterministic

scheduler [4,27], but our approach would not be different when applied to randomized resolutions [4,27].

Our approach differs from the ones proposed in the literature in that in general logics equipped with

a real-valued semantics are used for the characterization, which is then expressed as

d(s, t) = sup
ϕ∈L

|[ϕ ](s)− [ϕ ](t)| (1)

where d is the behavioral metric of interest, L is the considered logic and [ϕ ](s) denotes the value of

the formula ϕ at process s accordingly to the real-valued semantics [1, 2, 14–16]. In [3] it is proved that

the trace metric on Markov Chains (MCs) can be characterized in terms of the probabilistic LTL-model

checking problem. Roughly speaking, a characterization as in (1) is obtained from the boolean logic LTL

by assigning a real-valued semantics to it, defined by exploiting the probabilistic properties of the MC:

the value of a formula ϕ ∈ LTL at state s is given by the probability of s to execute a run satisfying ϕ .

In this paper we show that we can obtain a similar result by means of our distance between formulae.

More precisely, we provide an alternative characterization of the trace metric on PTSs dT in terms of the

probabilistic L-model checking problem. In detail, we define a real-valued semantics for L by assigning

to each formula Ψ ∈ L at process s the value [Ψ](s) corresponding to the minimal distance between Ψ

and any formula satisfied by s. Thus we could use this real-valued semantics to verify whether process s

behaves within an allowed tolerance wrt. to the specification given by the formula Ψ. Then, by exploiting

some properties of the Hausdorff metric, we will be able to conclude that dT (s, t) = sup
Ψ∈L

| [Ψ](s)− [Ψ](t) |

thus giving that the verification of any L-formula in s cannot differ from its verification in t for more than

dT (s, t) which, in turn, constitutes the maximal observable error in the approximation of s with t.

We can summarize our contributions as follows:

1. Logical characterization of both strong and weak trace metric: we define a distance on the class

of formulae L (resp. Lw) and we prove that the strong (resp. weak) trace metric between two

processes equals the syntactic distance between the sets of formulae satisfied by them.

2. Logical characterization of strong trace metric in terms of a probabilistic L-model checking prob-

lem: by means of the distance between formulae we equip L with a real-valued semantics and we

use it to establish a characterization of the trace metric as in (1).

3. Logical characterization of both strong and weak probabilistic trace equivalence: by exploiting the

notion of mimicking formula, we prove that two processes are strong (resp. weak) trace equivalent

if and only if they satisfy the same (resp. syntactically equivalent) formulae in L (resp. Lw).

2 Background

2.1 Nondeterministic probabilistic transition systems

Nondeterministic probabilistic transition systems [28] combine LTSs [23] and discrete time Markov

chains [19, 30], allowing us to model reactive behavior, nondeterminism and probability.

As state space we take a set S, whose elements are called processes. We let s, t, . . . range over S.

Probability distributions over S are mappings π : S → [0,1] with ∑s∈S π(s) = 1 that assign to each s ∈ S

its probability π(s). By ∆(S) we denote the set of all distributions over S. We let π,π ′, . . . range over

∆(S). For π ∈ ∆(S), we denote by supp(π) the support of π , namely supp(π) = {s ∈ S | π(s) > 0}. We

consider only distributions with finite support. For s ∈ S we denote by δs the Dirac distribution defined
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by δs(s) = 1 and δs(t) = 0 for s 6= t. The convex combination ∑i∈I piπi of a family {πi}i∈I of distributions

πi ∈ ∆(S) with pi ∈ (0,1] and ∑i∈I pi = 1 is defined by (∑i∈I piπi)(s) = ∑i∈I(piπi(s)) for all s ∈ S.

Definition 1 (PTS, [28]). A nondeterministic probabilistic labeled transition system (PTS) is a triple

(S,A ,−→), where: (i) S is a countable set of processes, (ii) A is a countable set of actions, and (iii) −→⊆
S×A ×∆(S) is a transition relation.

We call (s,a,π) ∈−→ a transition, and we write s
a
−→ π for (s,a,π) ∈−→. We write s

a
−→ if there is a

distribution π ∈ ∆(S) with s
a
−→ π , and s

a
−→6 otherwise. Let init(s) = {a ∈ A | s

a
−→} denote the set of the

actions that can be performed by s. Let der(s,a) = {π ∈ ∆(S) | s
a
−→ π} denote the set of the distributions

reachable from s through action a. We say that a process s ∈ S is image-finite if for all actions a ∈ init(s)
the set der(s,a) is finite [21]. In this paper we consider only processes that are image-finite.

Throughout the paper we will introduce some equivalence relations on traces and on modal formulae.

To deal with the equivalence of probability distributions over these elements, we need to introduce the

notion of lifting of a relation.

Definition 2. Let X be any set. Consider a relation R ⊆ X ×X . Then the lifting of R is the relation

R† ⊆ ∆(X)×∆(X) with π R† π ′ if whenever π = ∑i∈I piδxi
then π ′ = ∑i∈I, ji∈Ji

p ji δy ji
with ∑ ji∈Ji

p ji = pi

and xi R y ji for all ji ∈ Ji.

Moreover, we can lift relations to relations over sets. Given a relation R ⊆ X ×Y , we say that two

subsets X ′ ⊆ X ,Y ′ ⊆ Y are in relation R , notation X ′RY ′, iff (i) for each x ∈ X ′ there is an y ∈ Y ′ with

xR y, and (ii) for each y ∈ Y ′ there is an x ∈ X ′ with xR y.

2.2 Strong probabilistic trace equivalence

A probabilistic trace equivalence is a relation over S that equates processes s, t ∈ S if for all resolutions

of nondeterminism they can mimic each other’s sequences of transitions with the same probability.

Definition 3 (Computation, [4]). Let P = (S,A ,−→) be a PTS and s,s′ ∈ S. We say that c := s0

a1

։

s1

a2

։ s2 . . . sn−1

an

։ sn is a computation of P of length n from s = s0 to s′ = sn iff for all i = 1, . . . ,n there

exists a transition si−1
ai−→ πi in P such that si ∈ supp(πi), with πi(si) being the execution probability of

step si−1

ai

։ si conditioned on the selection of transition si−1
ai−→ πi of P at si−1. We denote by Pr(c) =

∏n
i=1 πi(si) the product of the execution probabilities of the steps in c.

Let s,s′,s′′ ∈ S. Given any computation c′ = s′
a1

։ s1

a2

։ . . .
an

։ s′′ from s′ to s′′, we write c = s
a
։ c′

if c = s
a
։ s′

a1

։ . . .
an

։ s′′ is a computation from s to s′′. We say that c is a computation from s if c is a

computation from s to some process s′. Then, c is maximal if it is not a proper prefix of any other compu-

tation from s. We denote by C (s) (resp. Cmax(s)) the set of computations (resp. maximal computations)

from s. Given any C ⊆ C (s), we define Pr(C ) = ∑c∈C Pr(c) whenever none of the computations in C is

a proper prefix of any of the others.

We denote by A ⋆ the set of finite sequences of actions in A and we call trace any element α ∈ A ⋆.

The special symbol e 6∈ A denotes the empty trace. We say that a computation is compatible with the

trace α ∈ A ⋆ iff the sequence of actions labeling the computation steps is equal to α . We denote by

C (s,α) ⊆ C (s) the set of computations of s which are compatible with α , and by Cmax(s,α) the set

Cmax(s,α) = Cmax(s)∩C (s,α).

Definition 4. Let s ∈ S and consider any c ∈ C (s). We denote by Tr(c) ∈ A ⋆ the trace to which c is

compatible. We extend this notion to sets by letting Tr(C ′) = {Tr(c) | c ∈ C ′} for any C ′ ⊆ C (s). We

say that Tr(C (s)) is the set of traces of s and Tr(Cmax(s)) is the set of maximal traces of s.
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Figure 1: An example of three distinct resolutions for process s. Black circles stand for the probability

distribution δnil, with nil process that cannot execute any action.

To establish trace equivalence we need first to deal with nondeterministic choices of processes. To

this aim, we consider all possible resolutions of nondeterminism one by one. Using the notation of [4],

our resolutions correspond to the resolutions obtained via a deterministic scheduler (see Fig. 1 for an

example).

Definition 5 (Resolution, [4]). Let P = (S,A ,−→) be a PTS and s ∈ S. We say that a PTS Z =
(Z,A ,−→Z ) is a resolution for s iff there exists a state correspondence function corrZ : Z → S such

that s = corrZ (zs) for some zs ∈ Z, called the initial state of Z , and moreover it holds that:

• zs 6∈ supp(π) for any π ∈
⋃

z∈Z,a∈A der(z,a).

• Each z ∈ Z \{zs} is such that z ∈ supp(π) for some π ∈
⋃

z′∈Z\{z},a∈A der(z′,a).

• Whenever z
a
−→Z π , then corrZ (z)

a
−→ π ′ with π(z′) = π ′(corrZ (z′)) for all z′ ∈ Z.

• Whenever z
a1−→Z π1 and z

a2−→Z π2 then a1 = a2 and π1 = π2.

We let Res(s) be the set of resolutions for s and Res(S) =
⋃

s∈S Res(s) be the set of all resolutions on S.

Strong probabilistic trace equivalence equates two processes if their resolutions can be matched so

that they assign the same probability to all traces.

Definition 6 (Strong probabilistic trace equivalence, [4, 27]). Let P = (S,A ,−→) be a PTS. We say that

s, t ∈ S are strong probabilistic trace equivalent, notation s ≈st t, iff it holds that:

• For each resolution Zs ∈ Res(s) of s there is a resolution Zt ∈ Res(t) of t such that for all traces

α ∈ A ⋆ we have Pr(C (zs,α)) = Pr(C (zt ,α)).

• For each resolution Zt ∈ Res(t) of t there is a resolution Zs ∈ Res(s) of s such that for all traces

α ∈ A ⋆ we have Pr(C (zt ,α)) = Pr(C (zs,α)).

Example 1. Consider process s in Fig. 1 and process t in Fig. 2. We have that s ≈st t. Briefly, it is

immediate to check that the three resolutions Zs,Z
′

s ,Z
′′

s ∈ Res(s) in Fig. 1 are matched resp. by the

three resolutions Zt ,Z
′

t ,Z
′′

t ∈ Res(t) in Fig. 2. Moreover, for all other resolutions, we notice that

accordingly to the chosen resolutions for processes t1 and t2, process s can always match their traces and

related probabilities by selecting the proper a-branch. In particular, resolution Z ′′′
t ∈ Res(t) in Fig. 2 is

matched by the resolution for s corresponding to the rightmost a-branch.
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Figure 2: Process t is strong trace equivalent to process s in Fig. 1

2.3 Weak probabilistic trace equivalence

We extend the set of actions A to the set Aτ containing also the silent action τ . We let a range over Aτ .

Usually, traces are not distinguished by any occurrence of τ in them [29]. Hence, we introduce the

notion of equivalence of traces.

Definition 7 (Equivalence of traces). The relation of equivalence of traces ≡w⊆A ⋆
τ ×A ⋆

τ is the smallest

equivalence relation satisfying 1. ε ≡w ε and 2. given α = a1α ′, β = a2β ′ we have α ≡w β iff

• either a1 = τ and α ′ ≡w β ,

• or a2 = τ and α ≡w β ′

• or a1 = a2 and α ′ ≡w β ′.

For each trace α ∈ A ⋆
τ , we denote by [α ]w the equivalence class of α with respect to ≡w, namely

[α ]w = {β ∈ A ⋆
τ | β ≡w α}. Moreover, for each computation c, we let Trw(c) = [Tr(c)]w.

Given any process s ∈ S and any trace α ∈A ⋆
τ , we say that a computation c ∈ C (s) is in C w(s,α) iff

Tr(c) ≡w α and c is not a proper prefix of any other computation in C w(s,α). This is to avoid to count

multiple times the same execution probabilities in the evaluation of Pr(C w(s,α)).

Definition 8 (Weak probabilistic trace equivalence). Let P = (S,A ,−→) be a PTS. We say that s, t ∈ S

are weak probabilistic trace equivalent, notation s ≈wt t, iff it holds that:

• For each resolution Zs ∈ Res(s) of s there is a resolution Zt ∈ Res(t) of t such that for all traces

α ∈ A ⋆ we have Pr(C w(zs,α)) = Pr(C w(zt ,α)).

• For each resolution Zt ∈ Res(t) of t there is a resolution Zs ∈ Res(s) of s such that for all traces

α ∈ A ⋆ we have Pr(C w(zt ,α)) = Pr(C w(zs,α)).

3 Trace metrics

In this section we introduce the quantitative analogues of strong and weak probabilistic trace equivalence,

namely the strong and weak trace metric, resp., which are 1-bounded pseudometrics that quantify how

much the behavior of two processes is apart wrt. the strong (resp. weak) probabilistic trace semantics. Our

metrics are a revised version of the trace metric proposed in [29]. Briefly, in [29] there is a distinction

between the notions of path and trace: any α ∈ A ⋆
τ is called path and the trace related to a path is

obtained by deleting any occurrence of τ from it. The metric in [29] is then defined only on traces and
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it has inspired our strong trace metric. In the present paper we distinguish between the strong and the

weak case and we regain the results in [29] by our equivalence of traces: the weak trace metric coincides

with the strong one on the quotient space wrt. ≡w.

3.1 The Kantorovich and Hausdorff lifting functionals

In the literature we can find several examples of behavioral metrics on systems with probability and

nondeterminism (see among others [1,6,7,12,14,29]). In this paper we follow the approach of [7,12,29]

in which two kind of metrics are combined to obtain a metric on the system. The Kantorovich metric [22]

quantifies the disparity between the probabilistic properties of processes and it is defined by means of

the notion of matching. For any set X , a matching for distributions π,π ′ ∈ ∆(X) is a distribution over the

product space w ∈ ∆(X ×X) with π and π ′ as left and right marginal resp., namely ∑y∈X w(x,y) = π(x)
and ∑x∈X w(x,y) = π ′(y) for all x,y ∈ X . Let W(π,π ′) denote the set of all matchings for π,π ′.

Definition 9 (Kantorovich metric, [22]). Let d : X ×X → [0,1] be a 1-bounded metric. The Kantorovich

lifting of d is the 1-bounded metric K(d) : ∆(X)×∆(X)→ [0,1] defined for all π,π ′ ∈ ∆(X) by

K(d)(π,π ′) = min
w∈W(π,π ′)

∑
x,y∈X

w(x,y) ·d(x,y).

We remark that since we are considering only probability distributions with finite support, the mini-

mum over W(π,π ′) is well defined for all π,π ′ ∈ ∆(X).

The Hausdorff metric allows us to lift any distance over probability distributions to a distance over

sets of probability distributions.

Definition 10 (Hausdorff metric). Let d̂ : ∆(X)×∆(X)→ [0,1] be a 1-bounded metric. The Hausdorff

lifting of d̂ is the 1-bounded metric H(d̂) : P(∆(X))×P(∆(X))→ [0,1] defined by

H(d̂)(Π1,Π2) = max
{

sup
π1∈Π1

inf
π2∈Π2

d̂(π1,π2), sup
π2∈Π2

inf
π1∈Π1

d̂(π2,π1)
}

for all Π1,Π2 ⊆ ∆(X), where inf /0 = 1, sup /0 = 0.

Hence, given two processes s, t ∈ S, the idea is to quantify the distance between each pair of their

resolutions by exploiting the Kantorovich metric, which quantifies the disparities in the probabilities of

the two processes to execute the same traces. Then, we lift this distance on resolutions to a distance

between s and t by means of the Hausdorff metric. Intuitively, as each resolution captures a different set

of nondeterministic choices of a process, we use the Hausdorff metric to compare the possible choices

of the two processes and to match them in order to obtain the minimal distance.

3.2 Strong trace metric

To define the strong trace metric we start from a distance between traces, defined as the discrete metric

over traces: two traces are at distance 1 if they are distinct, otherwise the distance is set to 0. Differently

from [29] we do not consider any discount on the distance between traces. Trace equivalences, and thus

metrics, are usually employed when the observations on the system cannot be done in a step-by-step

fashion, but only the total behavior of the system can be observed. Hence, a step-wise discount does not

fit in this setting. However, the discount would not introduce any technical issue.
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Definition 11 (Distance between traces). The distance between traces dT : A ⋆×A ⋆ → [0,1] is defined

for any pair of traces α ,β ∈ A ⋆ by

dT (α ,β ) =

{

0 if α = β

1 otherwise.

Following [29] we aim to lift the distance dT to a distance between resolutions by means of the

Kantorovich lifting functionalwhich, we recall, is defined on probability distributions. As shown in the

following example, we are not guaranteed that the function Pr(C ( , )) defines a probability distribution

on the set of traces of a resolution.

Example 2. Consider process t and the resolution Zr ∈ Res(t) for it, represented in Fig. 2. We can

distinguish three computations for zt :

c1 = zt

a
։ zt1

c2 = zt

a
։ zt2

c3 = zt

a
։ zt2

d
։ nil.

Clearly, Tr(C (zt)) = {a,ad}. Then we have

Pr(C (zt ,a)) = ∑c∈C (zt ,a) Pr(c) = Pr(c1)+Pr(c2) = 1

Pr(C (zt ,ad)) = ∑c∈C (zt ,ad) Pr(c) = Pr(c3) = 0.5

from which we gather

∑
α∈Tr(C (zt))

Pr(C (zt ,α)) = Pr(C (zt ,a))+Pr(C (zt ,ad)) = 1+0.5 > 1.

However, as shown in the following lemma, if we consider only maximal computations we obtain a

probability distribution over traces.

Lemma 1. Consider any resolution Z ∈ Res(S) with initial state z. We have that ∑c∈Cmax(z) Pr(c) = 1.

Proof. We proceed by induction over the depth of z.

The base case dpt(z) = 0 is immediate since we have that C (z) = {ε} and Pr(ε) = 1.

Consider now the inductive step dpt(z) > 0. Assume, wlog., that z
a
−→Z π . Therefore, each trace

c ∈ Cmax(z) will be of the form c = z
a
։ c′ for some c′ ∈ Cmax(z

′) for any z′ ∈ supp(π) and moreover for

such a trace c it holds that Pr(c) = π(z′)Pr(c′). Thus we have

∑c∈Cmax(z)Pr(c) = ∑ z′∈supp(π)
c′∈Cmax(z′)

π(z′)Pr(c′)

= ∑z′∈supp(π) π(z′)
(

∑c′∈Cmax(z′) Pr(c′)
)

= ∑z′∈supp(π) π(z′) ·1 (by induction over dpt(z′)< dpt(z))

= 1.

Definition 12 (Trace distribution). Consider any resolution Z ∈ Res(S), with initial state z. We define

the trace distribution of Z as the function TZ : A ⋆ → [0,1] defined for each α ∈ A ⋆ by

TZ (α) = Pr(Cmax(z,α)).
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Notice that only maximal computations are in the support of TZ . This guarantees that TZ is a

distribution.

Lemma 2. Consider any resolution Z ∈ Res(S), with initial state z. Then the trace distribution TZ of

Z is a probability distribution over A ⋆.

Proof. By definition and by Lemma 1 we have that for each α ∈ A ⋆

0 ≤ Pr(Cmax(z,α)) = ∑
c∈Cmax(z,α)

Pr(c)≤ ∑
c∈Cmax(z)

Pr(c) = 1

Hence, we are guaranteed that TZ (α) ∈ [0,1] for each α ∈ A ⋆. Thus, to prove the thesis we simply

need to show that ∑α∈A ⋆ TZ (α) = 1. We have that

∑α∈A ⋆ TZ (α) = ∑α∈A ⋆ Pr(Cmax(z,α))
= ∑α∈Tr(Cmax(z)) Pr(Cmax(z,α))

= ∑α∈Tr(Cmax(z)),c∈Cmax(z,α)Pr(c)

= ∑c∈
⋃

α∈Tr(Cmax(z)) Cmax(z,α) Pr(c)

= ∑c∈Cmax(z) Pr(c)

= 1

where

• the second equality follows from the fact that by definition Pr(Cmax(z,α)) = 0 for each α 6∈
Tr(Cmax(z));

• the fourth equality follows from the fact that each maximal computation of z belongs to a set

Cmax(z,α) for at most one trace α , namely
⋃

α∈Tr(Cmax(z))Cmax(z,α) is a disjoint union (and there-

fore no probability weight is counted more than once);

• the fifth equality follows by the fact that the disjoint union
⋃

α∈Tr(Cmax(z))Cmax(z,α) is a partition

of Cmax(z);

• the sixth equality follows by Lemma 1.

We remark that function T plays the role of the trace distribution introduced in [27]. Formally,

in [27] the trace distribution for a resolution is defined as the probability space built over its set of

traces. Here, we simply identify it with the probability distribution defined on the probability space.

In this setting, two resolutions are said to be trace distribution equivalent if they have the same trace

distribution and thus two processes are trace equivalent if their resolutions are pairwise equivalent.

Lemma 3. Consider any resolution Z ∈ Res(S) with initial state z. Consider any trace α ∈ A ⋆. Then

Pr(C (z,α)) = ∑c∈Pmax(z,α)Pr(c), where Pmax(z,α) is the set of maximal computations from z having a

prefix which is compatible with α .

Proof. For simplicity let us distinguish two cases.

1. Pr(C (z,α)) = 0. This implies that there is no computation from z which is compatible with α .

Clearly, this gives that there can not be any maximal computation from z having a prefix compatible

with α , namely Pmax(z,α) = /0. Thus we have ∑c∈Pmax(z,α) Pr(c) = 0 from which the thesis follows.

2. Pr(C (z,α)) > 0. In this case, we proceed by induction over |α |.
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• Base case |α | = 0, namely α = ε . The only computation compatible with α is the empty

computation for which it holds that Pr(C (z,α)) = 1. Since the empty computation is a prefix

for all computations from z we have that Pmax(z,α) = Cmax(z). By Lemma 1 we have that

∑c∈Cmax(z) Pr(c) = 1 and thus the thesis follows.

• Inductive step |α |> 0. Assume wlog that the only transition inferable for z in Z is z
a
−→Z π .

Hence α = aα ′ for some α ′ ∈ A ⋆, with |α ′|< |α |. Then we have

Pr(C (z,α)) = ∑z′∈supp(π) π(z′)Pr(C (z′,α ′))

= ∑z′∈supp(π)

(

π(z′) ·∑c′∈Pmax(z′,α ′) Pr(c′)
)

(by induction over |α ′|)

= ∑z′∈supp(π),c′∈Pmax(z′,α ′) π(z′)Pr(c′)

= ∑c∈Pmax(z,aα ′) Pr(c)

where the last equality follows by considering that

Pmax(z,aα ′) =
{

c | c = z
a
−→Z c′ and c′ ∈

⋃

z′∈supp(π)

Pmax(z
′,α ′)

}

.

Proposition 1. For any pair of resolutions Z1,Z2 ∈ Res(S), with initial states z1,z2 resp., we have that

TZ1
= TZ2

iff Pr(C (z1,α)) = Pr(C (z2,α)) for all traces α ∈ A ⋆.

Proof. The thesis follows by applying the same arguments used it the proof of Theorem 2 below.

Hence, we can now follow [29] to define the trace metric.

Definition 13 (Trace distance on resolutions). The trace distance on resolutions DT : Res(S)×Res(S)→
[0,1] is defined for any Z1,Z2 ∈ Res(S) by

DT (Z1,Z2) = K(dT )(TZ1
,TZ2

).

Proposition 2 ([29, Proposition 2]). The kernel of DT is strong trace distribution equivalence of resolu-

tions.

To deal with nondeterministic choices, we lift the distance over deterministic resolutions to a pseu-

dometric over processes by means of the Hausdorff lifting functional.

Definition 14 (Strong trace metric). Strong trace metric dT : S×S → [0,1] is defined for all s, t ∈ S as

dT (s, t) = H(DT )(Res(s),Res(t)).

Proposition 3 ([29, Proposition 3]). The kernel of dT is probabilistic strong trace equivalence.

Example 3. Consider processes s, t in Fig. 3. We have that s 6≈st t. Notice that none of the resolutions

for s can exhibit both traces ab and ac. Thus, whenever we chose resolution Zt ∈ Res(t) in Fig. 3 for t,

then there is no resolution for s that can match Zt on all traces.

Let us evaluate the trace distance between s and t. Since resolution Zt for t distinguishes the two

processes, we start by evaluating its distance from the resolutions for s. Consider the resolution Zs ∈
Res(s) in Fig. 3. By Def. 12, we have

TZs
= 0.5δac +0.5δa TZt

= 0.5δac +0.5δab.
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Figure 3: Processes s, t are such that s 6≈st t and dT (s, t) = 0.5.

Clearly, dT (ac,ac) = 0 and dT (ac,a) = dT (ac,ab) = dT (a,ab) = 1. Thus, by Def 13 we have

DT (Zs,Zt) = K(dT )(TZs
,TZt

)
= minw∈W(TZs ,TZt )

∑α∈supp(TZs),β∈supp(TZt )
w(α ,β ) ·dT (α ,β )

= 0.5 ·dT (ac,ac)+0.5 ·dT (a,ab)
= 0.5

where to minimize the distance we have matched the two occurrences of the trace ac. By similar calcu-

lations, one can easily obtain that

0.5 = DT (Zt ,Zs) = sup
Z2∈Res(t)

inf
Z1∈Res(s)

DT (Z2,Z1).

Moreover, it is immediate to check that whichever resolution for s we choose, there is always a resolution

for t which is at trace distance 0 from it, namely

0 = sup
Z1∈Res(s)

inf
Z2∈Res(t)

DT (Z1,Z2).

Therefore, we can conclude that

dT (s, t) = H(DT )(Res(s),Res(t)) = max{0, 0.5}= 0.5

3.3 Weak trace metric

To obtain the quantitative analogue of the weak trace equivalence, it is enough to adapt the notion of

distance between traces (Definition 11) to the weak context. The idea is that since silent steps cannot

be observed, then they should not count on the trace distance. Thus we introduce the notion of weak

distance between traces which is a 1-bounded pseudometric over A ⋆
τ having ≡w as kernel.

Definition 15 (Weak distance between traces). The weak distance between traces dw
T : A ⋆

τ ×A ⋆
τ → [0,1]

is defined for any pair of traces α ,β ∈ A ⋆
τ by

dw
T (α ,β ) =

{

0 if α ≡w β

1 otherwise.
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It is clear that dw
T is a 1-bounded pseudometric whose kernel is the equivalence of traces.

By substituting dT with dw
T in Definition 13 we obtain the notion of weak trace distance between

resolutions, denoted by the 1-bounded pseudometric Dw
T . By lifting the relation of equivalence of traces

≡w to an equivalence on probability distributions over traces ≡†
w, we obtain that the kernel of Dw

T is

given by the lifted equivalence on trace distributions, namely by the weak trace distribution equivalence

of resolutions. We can prove that our characterization of weak trace equivalence is equivalent to the one

proposed in [27] in terms of trace distributions.

To simplify the reasoning in the upcoming proofs, let us define the weak version of the trace distri-

bution given in Definition 12. The idea is that we want to define a probability distribution on the traces

executable by a resolution up-to trace equivalence.

Definition 16. Let s ∈ S and consider any resolution Z ∈ Res(S), with z = corr−1
Z
(s). We define the

weak trace distribution for Z as the function T w
Z

: A ⋆
τ → [0,1] defined by T w

Z
(α) = Pr(C w

max(z,α)).

Lemma 4. For each Z ∈ Res(S), the weak trace distribution T w
Z

is a probability distribution over A ⋆.

Proof. The thesis follows by applying the same arguments used in the proof of Lemma 2 above.

Remark 1. Notice that T w is not a probability distribution over A ⋆
τ . In fact it is enough to consider

the simple resolution Z having z as initial state for which the only transition in Z is c = z
a
−→Z δnil,

namely z executes a and then with probability 1 it ends its execution. Clearly we have that a ≡w τnaτm

for all n,m ≥ 0. Let αn,m = τnaτm. Then by definition of weak trace distribution (Definition 16) we

would have that T w
Z
(αn,m) = Pr(C w

max(z,αn,m)) = Pr(c) = 1, for all n,m ≥ 0. Clearly this would imply

that ∑α∈A ⋆
τ
T w

Z
(α) = ∑n,m≥0 T w

Z
(αn,m)> 1.

However we remark hat TZ is a probability distribution over A ⋆
τ and thus Dw

T is well defined.

We aim to show now that there is a strong relation between the trace distribution for a resolution and

its weak version: they are equivalent distributions.

Lemma 5. For each Z ∈ Res(S) we have that TZ ≡†
w T w

Z
.

Proof. The thesis follows by applying the same arguments used in the proof of Lemma 8 below.

Proposition 4. For any pair of resolutions Z1,Z2 ∈ Res(S), with initial states z1 and z2 resp., we have

that TZ1
≡†

w TZ2
iff Pr(C w(z1,α)) = Pr(C w(z2,α)) for all α ∈ A ⋆.

Proof. The thesis follows by the same arguments used in the proof of Theorem 4 below.

Proposition 5. The kernel of Dw
T is weak trace distribution equivalence of resolutions.

Proof. The thesis follows by the same arguments used in the proof of Theorem 9 below.

By substituting DT with Dw
T in Definition 14 we obtain the notion of weak trace metric, denoted by

the 1-bounded pseudometric dw
T .

Definition 17 (Weak trace metric). The weak trace metric dw
T : S×S → [0,1] is defined for all s, t ∈ S as

dw
T (s, t) = H(Dw

T )(Res(s),Res(t)).

The kernel of the weak trace metric is weak trace equivalence.

Proposition 6. The kernel of dw
T is probabilistic weak trace equivalence.
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Proof. (⇒) Assume first that dw
T (s, t) = 0. We aim to show that s ≈wt t. Since

• by definition dw
T (s, t) = H(Dw

T )(Res(s),Res(t)) and

• the kernel of Dw
T is ≡†

w by Proposition 5

from dw
T (s, t) = 0 we can infer that Res(s) ≡†

w Res(t). Then, by Proposition 4 we can conclude that

s ≈wt t.

(⇐) Assume now that s≈wt t. We aim to show that this implies that dw
T (s, t) = 0. By Proposition 4 we

have that s ≈wt t implies that Res(s) ≡†
w Res(t). Since the kernel of Dw

T is given by ≡†
w (Proposition 5),

we can infer

dw
T (s, t) = H(Dw

T )(Res(s),Res(t)) = 0.

4 Modal logics for traces

In this section we introduce two minimal modal logics L and Lw that will allow us to characterize

resp. the strong trace metric and its weak version, as well as the equivalences constituting their kernels.

The logic L (and consequently Lw) can be seen either as a simplified version of the modal logic L

from [13], which has been successfully employed in [9] to characterize the bisimilarity metric [7,12,14],

or more simply as a probabilistic version of the logic characterizing the trace semantics in the fully

nondeterministic case [5].

More precisely, L consists of two classes of formulae. The class L
t of trace formulae, which are

constituted by (finite) sequences of diamond operators and that will be used to represent traces, exactly

as in the fully nondeterministic case. Then, since we are treating traces as distributions over traces, to

capture the considered trace semantics we introduce the class L
d of trace distribution formulae, which

are defined by a probabilistic choice operator
⊕

as probability distributions over trace formulae.

Definition 18 (Modal logic L). The classes of trace distribution formulae L
d and trace formulae L

t over

A are defined by the following BNF-like grammar:

L
d : Ψ ::=

⊕

i∈I

riΦi L
t : Φ ::= ⊤ | 〈a〉Φ

where: (i) Ψ ranges over Ld, (ii) Φ ranges over Lt, (iii) a ∈A , (iv) I 6= /0 is a finite set of indexes, (v) the

formulae Φi for i ∈ I are pairwise distinct, namely Φi 6= Φ j for each i, j ∈ I with i 6= j and (vi) for all

i ∈ I we have ri ∈ (0,1] and ∑i∈I ri = 1.

To improve readability, we shall write r1Φ1 ⊕ r2Φ for
⊕

i∈I riΦi with I = {1,2} and Φ for
⊕

i∈I riΦi

with I = {i}, ri = 1 and Φi = Φ.

Definition 19 (Depth). The depth of trace distribution formulae in L
d is defined as dpt(

⊕

i∈I riΦi) =
maxi∈I dpt(Φi) where the depth of trace formulae in L

t is defined by induction on their structure as

(i) dpt(⊤) = 0 and (ii) dpt(〈a〉Φ) = 1+dpt(Φ).

Definition 20 (Semantics of Lt). The satisfaction relation |=⊆ C ×L
t is defined by structural induction

over trace formulae in L
t by

• c |=⊤ always;

• c |= 〈a〉Φ iff c = s
a
։ c′ for some computation c′ such that c′ |= Φ.
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We say that a computation c from a process s is compatible with the trace formula Φ ∈ L
t, notation

c ∈ C t(s,Φ), if c |= Φ and |c|= dpt(Φ).

Definition 21 (Semantics of Ld). The satisfaction relation |=⊆ S×L
d is defined by

• s |=
⊕

i∈I riΦi iff there is a resolution Z ∈ Res(s) with z = corr−1
Z
(s) such that for each i ∈ I we

have Pr(C t
max(z,Φi)) = ri.

We let L(s) denote the set of formulae satisfied by process s ∈ S, namely L(s) = {Ψ ∈ L
d | s |= Ψ}.

Example 4. Consider process t in Fig. 3. It is easy to verify that t |= 0.5〈a〉〈c〉⊤⊕0.5〈a〉〈b〉⊤. In fact,

if we consider the resolution Zt ∈ Res(t) in the same figure, we have that the computation c1 = zt

a
։

zt1

c
։ nil is compatible with the trace formula 〈a〉〈c〉⊤ and that the computation c2 = zt

a
։ zt2

b
։ nil

is compatible with the trace formula 〈a〉〈b〉⊤. Moreover, we have Pr(C t
max(zt ,〈a〉〈c〉⊤)) = 0.5 and

Pr(C t
max(zt ,〈a〉〈b〉⊤)) = 0.5.

The modal logic Lw differs from L solely in the labels of the diamonds in L
t
w which range over Aτ

in place of A . Hence, syntax and semantics of Lw directly follow from Definition 18 and Defs. 20-21,

resp.

We let Lw(s) denote the set of formlae satisfied by process s ∈ S, namely Lw(s) = {Ψ ∈L
d
w | s |= Ψ}.

We introduce the Lw-equivalence which extends the equivalence of traces ≡w to trace formulae.

Definition 22 (Lw-equivalence of formulae). The relation of Lw-equivalence of trace formulae ≡w⊆
L

t
w×L

t
w is the smallest equivalence relation satisfying (i) ⊤≡w ⊤ and (ii) 〈a1〉Φ1 ≡w 〈a2〉Φ2 iff

• either a1 = τ and Φ1 ≡w 〈a2〉Φ2,

• or a2 = τ and 〈a1〉Φ1 ≡w Φ2

• or a1 = a2 and Φ1 ≡w Φ2.

Then, the relation of Lw-equivalence of trace distribution formulae ≡†
w⊆ L

d
w×L

d
w is obtained by lifting

≡w to a relation on probability distributions over trace formulae.

Remark 2. Clearly we have Lw/≡w
=L, namely the notion of ≡w coincides with the equality of formulae

when restricted to (Ld×L
d)∪ (Lt×L

t). Given any Ψ1,Ψ2 ∈ L
d, we say that Ψ1 = Ψ2 if they express

the same probability distribution over trace formulae.

Notice that we are using the same symbol ≡w to denote both the equivalence of traces and Lw-

equivalence. The meaning will always be clear from the context.

5 Logical characterization of relations

In this section we present the characterization of strong (resp. weak) trace equivalence by means of L

(resp. Lw) (Theorem 3 and Theorem 5). Following [9], we introduce the notion of mimicking formula

of a resolution as a formula expressing the trace distribution for that resolution. Mimicking formulae

characterize the (weak) trace distribution equivalence of resolutions: two resolutions are (weak) trace

distribution equivalent iff their mimicking formulae are equal (resp. Lw-equivalent) (Theorem 2 and

Theorem 4).

The mimicking formula of a resolution Z ∈ Res(S) is defined as a trace distribution formula assign-

ing a positive weight only to the maximal traces of Z . Hence, we need to identify each maximal trace

of Z with a proper trace formula. This is achieved through the notion of tracing formula of a trace.
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Definition 23 (Tracing formula). Given any trace α ∈ A ⋆ we define the tracing formula of α , notation

Φα ∈ L
t, inductively on the structure of α as follows:

Φα =

{

⊤ if α = ε

〈a〉Φα ′ if α = aα ′,α ′ ∈ A ⋆.

Lemma 6. Let s ∈ S and α ∈ A ⋆. For each c ∈ C (s) we have Tr(c) = α iff c |= Φα and |c|= dpt(Φα).

Proof. (⇒) Assume first that Tr(c) =α . We aim to show that this implies that |c|= dpt(Φα) and c |=Φα .

To this aim we proceed by induction over |c|.

• Base case |c| = 0, namely c is the empty computation. Since α = Tr(c), this gives that α = ε and

therefore, by Def. 23, Φε =⊤. Then from Def. 19 we gather dpt(Φα) = 0 = |c| and by Def. 20 we

are guaranteed that c |= Φε .

• Inductive step |c| > 0. Assume wlog that c = s
a
։ c′. In particular this implies that |c′| < |c|.

Therefore, from α = Tr(c) we get that α must be of the form α = aα ′ for α ′ = Tr(c′). By Def. 23,

α = aα ′ implies Φα = 〈a〉Φα ′ . From α ′ = Tr(c′) and the inductive hypothesis over |c′| we get that

dpt(Φα ′) = |c′| and c′ |= Φα ′ . This, taken together with c = s
a
։ c′ gives c |= Φα . Moreover, we

have

dpt(Φα ) = dpt(Φα ′)+1 = |c′|+1 = |c|

thus concluding the proof.

(⇐) Assume now that |c| = dpt(Φα) and c |= Φα . We aim to show that this implies that Tr(c) = α ,

namely that c is compatible with α . From c |= Φα and the definition of tracing formula (Definition 23)

we gather that the sequence of the labels of the first dpt(Φα) execution steps of c matches α . Moreover,

|c| = dpt(Φα ) implies that those steps are actually the only execution steps for c. Therefore we can

immediately conclude that Tr(c) = α .

We remark that a computation c is compatible with Φα iff c and α satisfy previous Lemma 6.

Definition 24 (Mimicking formula). Consider any resolution Z ∈ Res(S) with initial state z. We define

the mimicking formula of Z , notation ΨZ , as

ΨZ =
⊕

α∈Tr(Cmax(z))

Pr(Cmax(z,α))Φα

where, for each α ∈ Tr(Cmax(z)), the formula Φα is the tracing formula of α .

Lemma 7. For any resolution Z ∈ Res(S), the mimicking formula of Z is a well defined trace distri-

bution formula.

Proof. By definition of mimicking formula (Definition 24) we have

ΨZ =
⊕

α∈Tr(Cmax(z))

Pr(Cmax(z,α))Φα

where for each α ∈ Tr(Cmax(z)) the formula Φα is the tracing formula of trace α .

Hence, to prove that ΨZ is a well defined trace distribution formula we simply need to show that

∑
α∈Tr(Cmax(z))

Pr(Cmax(z,α)) = 1

which follows by Lemma 2 by noticing that ∑α∈Tr(Cmax(z))Pr(Cmax(z,α)) = ∑α∈A ⋆ Pr(Cmax(z,α)).
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Example 5. Consider the resolutions Zs ∈ Res(s) and Zt ∈ Res(t) for processes s and t, resp., in Fig. 3.

The mimicking formulae for them are, resp.

ΨZs
= 0.5〈a〉〈c〉⊤⊕0.5〈a〉⊤

ΨZt
= 0.5〈a〉〈c〉⊤⊕0.5〈a〉〈b〉⊤.

The following results give us a first insight on the characterizing power of mimicking formulae: given

s ∈ S, the set of the mimicking formulae of its resolutions constitutes the set of formulae satisfied by s.

Proposition 7. Let s ∈ S. For each Z ∈ Res(s) it holds that s |= ΨZ .

Proof. Let Z ∈ Res(s), with z = corr−1
Z
(s). Hence, by definition of mimicking formula (Definition 24)

we have that

ΨZ =
⊕

α∈Tr(Cmax(z))

Pr(Cmax(z,α))Φα

where, for each α ∈ Tr(Cmax(z)) we have that Φα is the tracing formula of α . We need to show that

s |= ΨZ , namely we need to exhibit a resolution Z̄ ∈ Res(s), with z̄ = corr−1

Z̄
(s), s.t. for each α ∈

Tr(Cmax(z)) we have that Pr(C t(z̄,Φα )) = Pr(Cmax(z,α)). We aim to show that Z is such a resolution,

namely that for each α ∈ Tr(Cmax(z)) we have

Pr(C t
max(z,Φα)) = Pr(Cmax(z,α)).

Let α ∈ Tr(Cmax(z)). By definition we have

C
t
max(z,Φα ) = {c ∈ Cmax(z) | c |= Φα ∧ |c|= dpt(Φα)}

= {c ∈ Cmax(z) | Tr(c) = α} (by Lemma 6)

= Cmax(z,α) (α ∈ Tr(Cmax(z))).

Thus, we can conclude that

Pr(C t
max(z,Φα )) = ∑

c∈C t
max(z,Φα )

Pr(c) = ∑
c∈Cmax(z,α)

Pr(c) = Pr(Cmax(z,α)).

Theorem 1. Let s ∈ S. We have that L(s) = {1⊤}∪{ΨZ | Z ∈ Res(s)}.

Proof. From Proposition 7 and the definition of the relation |= (Definition 21) we can immediately infer

that {ΨZ | Z ∈ Res(s)} ⊆ L(s). Moreover 1⊤ ∈ L(s) is immediate. To conclude the proof we need

to show that also the opposite inclusion holds, namely that L(s)\{1⊤} ⊆ {ΨZ | Z ∈ Res(s)}. To this

aim, consider any Ψ =
⊕

i∈I riΦi and assume that Ψ ∈ L(s). We have to show that Ψ is the mimicking

formula of some resolution for s. Since s |= Ψ, from Definition 21 we can infer that there is at least one

resolution Z ∈ Res(s) with z = corr−1
Z
(s) s.t. for each i ∈ I we have Pr(C t

max(z,Φi)) = ri. We aim to

prove that among the resolutions ensuring that s |= Ψ, there is a particular resolution Z ∈ Res(s) s.t.

Ψ = ΨZ . (2)

First of all we recall that by definition of trace distribution formula (Definition 18), for each i∈ I we have

ri > 0 and moreover ∑i∈I ri = 1. By definition of C t, we have that c ∈ C t
max(z,Φi) iff c |= Φi and |c| =
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dpt(Φi), which by Lemma 6 implies that Φi = ΦTr(c). Hence, let us consider the resolution Z ∈ Res(s)
s.t. for each i ∈ I we have C t

max(z,Φi)⊆ Cmax(z), namely the resolution s.t. the computations compatible

with the trace formulae Φi are all maximal. Notice that the existence of such a resolution is guaranteed by

s |=Ψ. Since for each c∈C t
max(z,Φi) we have c∈Cmax(z), we can infer that Tr(c)∈Tr(Cmax(z)), namely

Φi = Φα for some α ∈ Tr(Cmax(z)). This gives that whenever Φi = Φα , for some α ∈ Tr(Cmax(z)), then

we can prove (as done in the proof of Proposition 7) that

Pr(C t
max(z,Φi)) = Pr(Cmax(z,α)). (3)

Furthermore, we have obtained that {Φi | i ∈ I} ⊆ {Φα | α ∈ Tr(Cmax(z))}.

To prove Equation (2) we need to show that also the opposite inclusion holds. Assume by contra-

diction that there is at least one β ∈ Tr(Cmax(z)) s.t. there is no i ∈ I with Φi = Φβ . Then we would

have

1 = ∑i∈I ri

= ∑i∈I Pr(C t
max(z,Φi))

≤ ∑α∈Tr(Cmax(z))\{β} Pr(Cmax(z,α)) (by Equation (3))

< ∑α∈Tr(Cmax(z))Pr(Cmax(z,α)) (β ∈ Tr(Cmax(z)) implies Pr(Cmax(z,β )) > 0)

= 1 (by Lemma 2)

which is a contradiction. Hence we can conclude that {Φi | i ∈ I} = {Φα | α ∈ Tr(Cmax(z))} and thus,

due to Equation (3), that Equation (2) holds.

Remark 3. In Theorem 1, 1⊤ is not included in the set of mimicking formulae of resolutions merely

for sake of presentation, as 1⊤ is the mimicking formula of the resolution for s in which no action is

executed.

The following theorem states that two resolutions are trace distribution equivalent iff their mimicking

formulae are the same.

Theorem 2. Let s, t ∈ S and consider Zs ∈ Res(s), with zs = corr−1
Zs
(s), and Zt ∈ Res(t), with zt =

corr−1
Zt
(t). Then ΨZs

= ΨZt
iff for all α ∈ A ⋆ it holds that Pr(C (zs,α)) = Pr(C (zt ,α)).

Proof. (⇒) Assume first that ΨZs
= ΨZt

. We aim to show that this implies Pr(C (zs,α)) = Pr(C (zt ,α))
for all α ∈ A ⋆. By definition of mimicking formula (Definition 24) we have

ΨZs
=

⊕

α∈Tr(Cmax(zs))

Pr(Cmax(zs,α))Φα

where for each α ∈ Tr(Cmax(zs)) the formula Φα is the tracing formula of α . Analogously

ΨZt
=

⊕

β∈Tr(Cmax(zt))

Pr(Cmax(zt ,β ))Φβ

where for each β ∈ Tr(Cmax(zt)) the formula Φβ is the tracing formula of β .

Then from the assumption ΨZs
= ΨZt

we gather

1. Tr(Cmax(zs)) = Tr(Cmax(zt));

2. from previous item 1 we have that Pr(Cmax(zs,α)) = Pr(Cmax(zt ,α)) for each α ∈ Tr(Cmax(zs)).
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We notice that item 1 above implies the stronger relation

Tr(C (zs)) = Tr(C (zt)). (4)

In fact each α ∈ Tr(C (zs)) is either a trace in Tr(Cmax(zs)) or a proper prefix of a trace in that set. In both

cases item 1 guarantees that each trace in Tr(C (zs)) has a matching trace in Tr(C (zt)) and viceversa.

Now, consider any α ∈ A ⋆. We aim to show that Pr(C (zs,α)) = Pr(C (zt ,α)). For simplicity of

presentation, we can distinguish two cases.

• Pr(C (zs,α)) = 0. In this case we have that no computation from zs is compatible with α , namely

there is no computation from zs for which the sequence of the labels of the execution steps matches

α . More precisely, we have that α 6∈ Tr(C (zs)). Since by Equation (4) we have that Tr(C (zs)) =
Tr(C (zt)) we can directly conclude that α 6∈ Tr(C (zt)), namely Pr(C (zt ,α)) = 0.

• Pr(C (zs,α)) > 0. In this case we have that α ∈ Tr(C (zs)) and by Equation (4) we have that this

implies that α ∈ Tr(C (zt)). Hence we are guaranteed that Pr(C (zt ,α)) > 0. It remains to show

that Pr(C (zs,α)) = Pr(C (zt ,α)). We have

Pr(C (zs,α)) = ∑c∈Pmax(zs,α) Pr(c) (by Lemma 3)

= ∑β∈Tr(Pmax(zs,α)) Pr(Cmax(zs,β )) (by def. of Pmax)

= ∑β∈Tr(Pmax(zs,α)) Pr(Cmax(zt ,β )) (Pmax(zs,α)⊆ Cmax(zs) and item 2)

= ∑β ′∈Tr(Pmax(zt ,α))Pr(Cmax(zt ,β
′)) (by Equation (4))

= ∑c′∈Pmax(zt ,α) Pr(c′) (by def. of Pmax)

= Pr(C (zt ,α)) (by Lemma 3).

(⇐) Assume now that for all α ∈A ⋆ it holds that Pr(C (zs,α)) = Pr(C (zt ,α)). We aim to show that

this implies that ΨZs
= ΨZt

. By definition of mimicking formula (Definition 24) we have

ΨZs
=

⊕

α∈Tr(Cmax(zs))

Pr(Cmax(zs,α))Φα

ΨZt
=

⊕

β∈Tr(Cmax(zt))

Pr(Cmax(zt ,β ))Φβ .

Therefore, to prove ΨZs
= ΨZt

we need to show that

Tr(Cmax(zs)) = Tr(Cmax(zt)) (5)

Pr(Cmax(zs,α)) = Pr(Cmax(zt ,α)) for each α ∈ Tr(Cmax(zs)). (6)

First of all we notice that Pr(C (zs,α)) = Pr(C (zt ,α)) for each α ∈ A ⋆ implies that Tr(C (zs)) =
Tr(C (zt)). This is due to the fact that by definition, given any α ∈ A ⋆, Pr(C (zs,α)) > 0 iff there is at

least one computation c ∈ C (zs) s.t. α = Tr(c). Since Pr(C (zs,α))> 0 implies Pr(C (zt ,α))> 0 we can

infer that for each α ∈ Tr(C (zs)) there is at least one computation c′ ∈ Tr(C (zt)) s.t. α = Tr(c′), namely

Tr(C (zs))⊆ Tr(C (zt)). As the same reasoning can be applied symmetrically to each α ∈ Tr(C (zt)), we

can conclude that

Tr(C (zs)) = Tr(C (zt)). (7)

Next we aim to show that a similar result holds even if we restrict our attention to maximal computations,

that is we aim to prove Equation (5).
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Let α ∈ Tr(Cmax(zs)). Notice that for this α we have Cmax(zs,α)⊆ Pmax(zs,α). Then we have

Pr(C (zs,α)) = ∑c∈Pmax(zs,α) Pr(c) (by Lemma 3)

= ∑c∈Cmax(zs,α) Pr(c)+∑c′∈Pmax(zs,α)\Cmax(zs,α) Pr(c′).
(8)

Moreover, by Lemma 3 it holds that Pr(C (zt ,α)) = ∑c′′∈Pmax(zt ,α) Pr(c′′).
Therefore, from Pr(C (zs,α)) = Pr(C (zt ,α)) we gather that

∑
c∈Cmax(zs,α)

Pr(c)+ ∑
c′∈Pmax(zs,α)\Cmax(zs,α)

Pr(c′) = ∑
c′′∈Pmax(zt ,α)

Pr(c′′). (9)

Assume by contradiction that Pmax(zt ,α)∩Cmax(zt ,α) = /0, namely there is no maximal computation

from zt which is compatible with α . Then for each action a ∈ A consider the trace αa and define

Addzs
(α) = {a ∈ A | αa ∈ Tr(C (zs))}. From Equation (7) we can directly infer that Addzs

(α) =
Addzt

(α). Moreover, since we are assuming that no maximal computation from zt is compatible with α ,

we get
⋃

a∈Addzs (α)

Pmax(zs,αa) = Pmax(zs,α)\Cmax(zs,α) (10)

⋃

a∈Addzt (α)

Pmax(zt ,αa) = Pmax(zt ,α) (11)

where the unions are guaranteed to be disjoint (a single computation cannot be compatible with more

than one trace αa). Furthermore, by Lemma 3 we have that for each a ∈ Addzs
(α)

Pr(C (zs,αa)) = ∑c1∈Pmax(zs,αa) Pr(c1)

Pr(C (zt ,αa)) = ∑c2∈Pmax(zt ,αa) Pr(c2)

from which we get that for each a ∈ Addzs
(α) it holds that

∑
c1∈Pmax(zs,αa)

Pr(c1) = ∑
c2∈Pmax(zt ,αa)

Pr(c2). (12)

Therefore we have that

∑c∈Cmax(zs,α) Pr(c)+∑c′∈Pmax(zs,α)\Cmax(zs,α) Pr(c′)

= ∑c∈Cmax(zs,α) Pr(c)+∑c′∈
⋃

a∈Addzs (α) Pmax(zs,αa) Pr(c′) (by Equation (10))

= ∑c∈Cmax(zs,α) Pr(c)+∑a∈Addzs (α)

(

∑c′∈Pmax(zs,αa) Pr(c′)
)

(disjoint union)

= ∑c∈Cmax(zs,α) Pr(c)+∑a∈Addzs (α)

(

∑c′′∈Pmax(zt ,αa) Pr(c′′)
)

(by Equation (12))

= ∑c∈Cmax(zs,α) Pr(c)+∑c′′∈
⋃

a∈Addzt (α) Pmax(zt ,αa) Pr(c′′) (Addzs
(α) = Addzt

(α))

= ∑c∈Cmax(zs,α) Pr(c)+∑c′′∈Pmax(zt ,α) Pr(c′′) (by Equation (11)).

Thus we have obtained that

∑
c∈Cmax(zs,α)

Pr(c)+ ∑
c′∈Pmax(zs,α)\Cmax(zs,α)

Pr(c′) = ∑
c∈Cmax(zs,α)

Pr(c)+ ∑
c′′∈Pmax(zt ,α)

Pr(c′′)

which, since by the choice of α we have that ∑c∈Cmax(zs,α)Pr(c)> 0, is in contradiction with Equation (9).

Therefore, we have obtained that whenever α ∈ Tr(Cmax(zs)) then there is at least one maximal compu-

tation c from zt s.t. α = Tr(c), that is Tr(Cmax(zs)) ⊆ Tr(Cmax(zt)). Since the same reasoning can be

applied symmetrically to each α ∈ Tr(Cmax(zt)) we gather that also Tr(Cmax(zt)) ⊆ Tr(Cmax(zs)) holds.

The two inclusions give us Equation (5).

Finally, we aim to prove Equation (6). Let α ∈ Tr(Cmax(zs)). We can distinguish two cases.
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• |α | = dpt(zs). First of all we notice that from Equation (7) and the assumption Pr(C (zs,β )) =
Pr(C (zt ,β )) for each β ∈ A ⋆, we can infer that |α |= dpt(zt). Hence, we have

Pr(Cmax(zs,α)) = Pr(C (zs,α)) = Pr(C (zt ,α)) = Pr(Cmax(zt ,α)).

• |α |< dpt(zs). Then we have

Pr(Cmax(zs,α))
= ∑c∈Cmax(zs,α) Pr(c)

= ∑c′∈Pmax(zs,α) Pr(c′)−∑c′′∈Pmax(zs,α)\Cmax(zs,α)Pr(c′′)

= Pr(C (zs,α))−∑c′′∈Pmax(zs,α)\Cmax(zs,α) Pr(c′′)

= Pr(C (zt ,α))−∑c′′∈Pmax(zs,α)\Cmax(zs,α)Pr(c′′)

= ∑c′′′∈Pmax(zt ,α) Pr(c′′′)−∑c′′∈Pmax(zs,α)\Cmax(zs,α) Pr(c′′)

= ∑c1∈Cmax(zt ,α) Pr(c1)+∑c2∈Pmax(zt ,α)\Cmax(zt ,α) Pr(c2)−∑c′′∈Pmax(zs,α)\Cmax(zs,α) Pr(c′′)

= ∑c1∈Cmax(zt ,α) Pr(c1)+∑c2∈
⋃

b∈Addzt (α) Pmax(zt ,αb) Pr(c2)−∑c′′∈
⋃

b∈Addzs (α) Pmax(zs,αb) Pr(c′′)

= ∑c1∈Cmax(zt ,α) Pr(c1)+∑b∈Addzt (α)

(

∑c2∈Pmax(zt ,αb) Pr(c2)
)

+

−∑b∈Addzs (α)(∑c′′∈Pmax(zs,αb) Pr(c′′))

= ∑c1∈Cmax(zt ,α) Pr(c1)+∑b∈Addzt (α)Pr(C (zt ,αb))−∑b∈Addzs (α)Pr(C (zs,αb))

= ∑c1∈Cmax(zt ,α) Pr(c1)

= Pr(Cmax(zt ,α))

where

– the second and the sixth steps follow by Equation (8);

– the third, fifth and ninth steps follow by Lemma 3;

– the fourth step follows by Pr(C (zs,α)) = Pr(C (zt ,α));

– the seventh step follows by Equation (10);

– the tenth step follows by Addzs
(α) = Addzt

(α) (given by Equation (7)) and the initial as-

sumption which guarantees that for each b ∈ Addzs
(α), Pr(C (zs,αb)) = Pr(C (zt ,αb)).

Then we can derive the characterization result for the strong case: two processes s, t are strong trace

equivalent iff they satisfy the same formulae in L.

Theorem 3. For all s, t ∈ S we have that s ≈st t iff L(s) = L(t).

Proof. (⇒) Assume first that s ≈st t. We aim to sow that this implies that L(s) = L(t). By Definition 6

s ≈st t implies that

(i) for each resolution Zs ∈ Res(s), with zs = corr−1
Zs
(s), there is a resolution Zt ∈ Res(t), with zt =

corr−1
Zt
(t), s.t. for each α ∈ A ⋆ we have Pr(C (zs,α)) = Pr(C (zt ,α));

(ii) for each resolution Zt ∈ Res(t), with zt = corr−1
Zt
(t), there is a resolution Zs ∈ Res(s), with zs =

corr−1
Zs
(s), s.t. for each α ∈ A ⋆ we have Pr(C (zs,α)) = Pr(C (zt ,α)).

Consider any Zs ∈Res(s), with zs = corr−1
Zs
(s), and let Zt ∈Res(t), with zt = corr−1

Zt
(t), be any resolution

of t satisfying item (i) above. By Theorem 2, Pr(C (zs,α)) = Pr(C (zt ,α)) for all α ∈ A ⋆ implies that

ΨZs
= ΨZt

. More precisely, we have that

for each Zs ∈ Res(s) there is Zt ∈ Res(t) s.t. ΨZs
= ΨZt

. (13)
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Symmetrically, item (ii) above taken together with Theorem 2 gives that

for each Zt ∈ Res(t) there is a Zs ∈ Res(s) s.t. ΨZt
= ΨZs

. (14)

Therefore, from Equations (13) and (14) we gather

{ΨZs
| Zs ∈ Res(s)}= {ΨZt

| Zt ∈ Res(t)}. (15)

By Theorem 1 we have that L(s) = {1⊤}∪{ΨZs
| Zs ∈ Res(s)} and similarly L(t) = {1⊤}∪{ΨZt

|
Zt ∈ Res(t)}. Therefore, from Equation (15) we can conclude that L(s) = L(t).

(⇐) Assume now that L(s) = L(t). We aim to show that this implies that s ≈st t. By Theorem 1

we have that L(s) = {1⊤}∪{ΨZs
| Zs ∈ Res(s)} and analogously L(t) = {1⊤}∪{ΨZt

| Zt ∈ Res(t)}.

Hence, from the assumption we can infer that {ΨZs
| Zs ∈ Res(s)}= {ΨZt

| Zt ∈ Res(t)}.
Clearly the equality between the two sets implies that

• for each Zs ∈ Res(s) there is a Zt ∈ Res(t) s.t. ΨZs
= ΨZt

and

• for each Zt ∈ Res(t) there is a Zs ∈ Res(s) s.t. ΨZt
= ΨZs

.

By applying Theorem 2 to the two items above we obtain that

• for each resolution Zs ∈ Res(s), with zs = corr−1
Zs
(s), there is a resolution Zt ∈ Res(t), with zt =

corr−1
Zt
(t), s.t. for each α ∈ A ⋆ we have Pr(C (zs,α)) = Pr(C (zt ,α));

• for each resolution Zt ∈ Res(t), with zt = corr−1
Zt
(t), there is a resolution Zs ∈ Res(s), with zs =

corr−1
Zs
(s), s.t. for each α ∈ A ⋆ we have Pr(C (zs,α)) = Pr(C (zt ,α));

from which we can conclude that s ≈st t.

The notions of tracing formula and mimicking formula and the related results Lemma 6, Lemma 7,

Proposition 7 and Theorem 1 can be easily extended to the weak case by extending the set of traces A ⋆

to the set A ⋆
τ .

The following theorem gives the characterization of weak trace distribution equivalence: two resolu-

tions are weak trace distribution equivalent iff their mimicking formulae are Lw-equivalent.

To simplify the upcoming proofs, we introduce an alternative version of the weak mimicking formula,

which captures the weak trace distribution (see Definition 16) of resolutions.

Definition 25. Consider any resolution Z ∈ Res(S) with initial state z. We define the weak mimicking

formula of Z as the trace distribution formula Ψw
Z

given by

Ψw
Z =

⊕

α∈Trw(Cmax(z))

Pr(C w
max(z,α))Φα

where, for each α ∈ Trw(Cmax(z)), the formula Φα is the tracing formula of α .

Notice that from the definitions of C w
max( , ) and Trw( ) we can infer that Ψw represents a trace

distribution formula over the quotient space of Lw wrt. ≡w, that is Ψw ∈ L
d.

Lemma 8. For each Z ∈ Res(S) it holds that ΨZ ≡†
w Ψw

Z
.

Proof. Consider Z ∈ Res(S) with initial state z. First of all we recall that by definition of mimicking

formula (Definition 24) we have

ΨZ =
⊕

α∈Tr(Cmax(z))

Pr(Cmax(z,α))Φα
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where for each α ∈ Tr(Cmax(z)), the formula Φα is the tracing formula of α . By definition of weak

mimicking formula (Definition 25) we have

Ψw
Z =

⊕

β∈Trw(Cmax(z))

Pr(C w
max(z,β ))Φβ

where for each β ∈ Trw(Cmax(z)), the formula Φβ is the tracing formula of β . Moreover, we have that

for each β ∈ Trw(Cmax(z))

Pr(C w
max(z,β )) = ∑c∈C w

max(z,β)
Pr(c)

= ∑c∈Cmax(z) s.t. Tr(c)≡wβ Pr(c)

= ∑α∈Tr(Cmax(z)) s.t. α≡wβ Pr(Cmax(z,α)).

Furthermore, by definition of tracing formula (Definition 23) and of ≡w (Definition 7), it is immediate

that α ≡w β iff Φα ≡w Φβ , for each α ,β ∈ A ⋆. For simplicity, we denote by αβ each α ∈ Tr(Cmax(z))
s.t. α ≡w β for some β ∈ Trw(Cmax(z)). Notice that by construction of Trw( ), no trace α ∈ Tr(Cmax(z))
can be equivalent to more than one β ∈ Trw(Cmax(z)). Therefore, we have obtained that

Ψw
Z

=
⊕

β∈Trw(Cmax(z))Pr(C w
max(z,β ))Φβ

≡†
w

⊕

β∈Trw(Cmax(z))
αβ ∈Tr(Cmax(z))

Pr(Cmax(z,αβ ))Φαβ

≡†
w

⊕

α∈Tr(Cmax(z)) Pr(Cmax(z,α))Φα

= ΨZ .

Theorem 4. Let s, t ∈ S and consider Zs ∈ Res(s), with zs = corr−1
Zs
(s), and Zt ∈ Res(t), with zt =

corr−1
Zt
(t). Then ΨZs

≡†
w ΨZt

iff for all α ∈ A ⋆ it holds that Pr(C w(zs,α)) = Pr(C w(zt ,α)).

Proof. (⇒) Assume first that ΨZs
≡†

w ΨZt
. We aim to show that Pr(C w(zs,α)) = Pr(C w(zt ,α)) for all

α ∈ A ⋆. By Lemma 8 we have that

ΨZs
≡†

w Ψw
Zs

and ΨZt
≡†

w Ψw
Zt
.

Thus, ΨZs
≡†

w ΨZt
implies Ψw

Zs
≡†

w Ψw
Zt

. Hence the prove the proof obligation, it is enough to prove that

Ψw
Zs

≡†
w Ψw

Zt
implies Pr(C w(zs,α)) = Pr(C w(zt ,α)) for each α ∈ A

⋆. (16)

From Ψw
Zs

≡†
w Ψw

Zt
we get that

Ψw
Zt

=
⊕

α∈Trw(Cmax(zs))
βα∈Trw(Cmax(zt ))∩[α]w

Pr(C w
max(zt ,βα))Φβα

where, for each α ∈ Trw(Cmax(zs)), ∑βα∈Trw(Cmax(zt))∩[α ]w Pr(C w
max(zt ,βα)) = Pr(C w

max(zs,α)) and Φβα
≡w

Φα for each βα ∈ Trw(Cmax(zt))∩ [α ]w.

We notice that by definition the elements of Trw(Cmax(zt)) represent distinct equivalence classes with

respect to ≡w. Thus we are guaranteed that for each α ∈ Trw(Cmax(zt))∩ [α ]w contains a single trace βα .

Therefore, in this particular case, Ψw
Zs

≡†
w Ψw

Zt
is equivalent to say that Ψw

Zs
= Ψw

Zt
. Moreover, since the

representative of the equivalence classes wrt ≡w can always be chosen in A ⋆, we can always construct
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the sets Trw(Cmax(zs)) and Trw(Cmax(zt)) in such a way that Trw(Cmax(zs))∩A ⋆ = Trw(Cmax(zs)) and

Trw(Cmax(zt))∩A ⋆ = Trw(Cmax(zt)). Hence, the same argumentations presented in the first part of the

proof of Theorem 2 allow us to prove the proof obligation Equation (16).

(⇐) Assume now that for all α ∈ A ⋆ it holds that Pr(C w(zs,α)) = Pr(C w(zt ,α)). We aim to

show that this implies that ΨZs
≡†

w ΨZt
. To this aim we show that the assumption Pr(C w(zs,α)) =

Pr(C w(zt ,α)) for all α ∈A ⋆ implies Ψw
Zs

= Ψw
Zt

. This follows from the same argumentations presented

in the second part of the proof of Theorem 2. Then, since from Lemma 8 we have ΨZs
≡†

w Ψw
Zs

and

ΨZt
≡†

w Ψw
Zt

, we can conclude that ΨZs
≡†

w ΨZt
as required.

Then we can derive the characterization result for the weak case: two processes s, t are weak trace

equivalent iff they satisfy equivalent formulae in Lw.

Theorem 5. For all s, t ∈ S we have that s ≈wt t iff Lw(s)≡
†
w Lw(t).

Proof. (⇒) Assume first that s ≈wt t. We aim to sow that this implies that Lw(s) ≡
†
w Lw(t). By Defini-

tion 8 s ≈wt t implies that

(i) for each resolution Zs ∈ Res(s), with zs = corr−1
Zs
(s), there is a resolution Zt ∈ Res(t), with zt =

corr−1
Zt
(t), s.t. for each α ∈ A ⋆ we have Pr(C w(zs,α)) = Pr(C w(zt ,α));

(ii) for each resolution Zt ∈ Res(t), with zt = corr−1
Zt
(t), there is a resolution Zs ∈ Res(s), with zs =

corr−1
Zs
(s), s.t. for each α ∈ A ⋆ we have Pr(C w(zs,α)) = Pr(C w(zt ,α)).

Consider any Zs ∈Res(s), with zs = corr−1
Zs
(s), and let Zt ∈Res(t), with zt = corr−1

Zt
(t), be any resolution

of t satisfying item (i) above. By Theorem 4, Pr(C w(zs,α)) = Pr(C w(zt ,α)) for all α ∈A ⋆ implies that

ΨZs
≡†

w ΨZt
. More precisely, we have that

for each Zs ∈ Res(s) there is Zt ∈ Res(t) s.t. ΨZs
≡†

w ΨZt
. (17)

Symmetrically, item (ii) above taken together with Theorem 4 gives that

for each Zt ∈ Res(t) there is a Zs ∈ Res(s) s.t. ΨZt
≡†

w ΨZs
. (18)

Therefore, from Equations (17) and (18) we gather

{ΨZs
| Zs ∈ Res(s)} ≡†

w {ΨZt
| Zt ∈ Res(t)}. (19)

By Theorem 1 we have that Lw(s) = {1⊤}∪{ΨZs
| Zs ∈ Res(s)} and similarly Lw(t) = {1⊤}∪{ΨZt

|
Zt ∈ Res(t)}. Therefore, from Equation (19) we can conclude that Lw(s)≡

†
w Lw(t).

(⇐) Assume now that Lw(s)≡
†
w Lw(t). We aim to show that this implies that s ≈wt t. By Theorem 1

we have that Lw(s) = {1⊤}∪{ΨZs
|Zs ∈Res(s)} and analogously Lw(t)= {1⊤}∪{ΨZt

|Zt ∈Res(t)}.

Hence, from the assumption we can infer that {ΨZs
| Zs ∈ Res(s)} ≡†

w {ΨZt
| Zt ∈ Res(t)}.

Clearly the equivalence between the two sets implies that

• for each Zs ∈ Res(s) there is a Zt ∈ Res(t) s.t. ΨZs
≡†

w ΨZt
and

• for each Zt ∈ Res(t) there is a Zs ∈ Res(s) s.t. ΨZt
≡†

w ΨZs
.

By applying Theorem 4 to the two items above we obtain that

• for each resolution Zs ∈ Res(s), with zs = corr−1
Zs
(s), there is a resolution Zt ∈ Res(t), with zt =

corr−1
Zt
(t), s.t. for each α ∈ A ⋆ we have Pr(C w(zs,α)) = Pr(C w(zt ,α));

• for each resolution Zt ∈ Res(t), with zt = corr−1
Zt
(t), there is a resolution Zs ∈ Res(s), with zs =

corr−1
Zs
(s), s.t. for each α ∈ A ⋆ we have Pr(C w(zs,α)) = Pr(C w(zt ,α));

from which we can conclude that s ≈wt t.
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6 Logical characterization of trace metrics

In this section we present the logical characterization of strong and weak trace metric (resp. Theorem 8

and Theorem 11). We define a suitable distance on formulae in L (resp. Lw) and we characterize the

strong (resp. weak) trace metric between processes as the distance between the sets of formulae satisfied

by them.

6.1 L-characterization of strong trace metric

Firstly, we need to define a distance on trace formulae.

Definition 26 (Distance on L
t). The function D t

L
: L

t×L
t → [0,1] is defined over Lt as follows:

D
t
L
(Φ1,Φ2) =

{

0 if Φ1 = Φ2

1 otherwise.

Proposition 8. The function D t
L

is a 1-bounded metric over Lt.

Proof. The thesis follows by noticing that D t
L

is the discrete metric over Lt.

To define a distance over trace distribution formulae we see them as probability distribution over

trace formulae and we define the distance over Ld as the Kantorovich lifting of the metric D t
L

.

Definition 27 (Distance on L
d). The function Dd

L
: L

d×L
d → [0,1] is defined over Ld as follows:

D
d
L
(Ψ1,Ψ2) = K(D t

L
)(Ψ1,Ψ2).

Proposition 9. The function Dd
L

is a 1-bounded metric over Ld.

Proof. First we prove that Dd
L

is a metric over Ld, namely that

1. Dd
L
(Ψ1,Ψ2) = 0 iff Ψ1 = Ψ2;

2. Dd
L
(Ψ1,Ψ2) = Dd

L
(Ψ2,Ψ1);

3. Dd
L
(Ψ1,Ψ2)≤ Dd

L
(Ψ1,Ψ3)+Dd

L
(Ψ3,Ψ2).

Proof of item 1

(⇐) Assume first that Ψ1 = Ψ2. Then Dd
L
(Ψ1,Ψ2) = 0 immediately follows from Definition 27,

since the Kantorovich metric is a pseudometric.

(⇒) Assume now that Dd
L
(Ψ1,Ψ2) = 0. We aim to show that this implies that Ψ1 = Ψ2. Assume

wlog. that Ψ1 =
⊕

i∈I riΦi and that Ψ2 =
⊕

j∈J r jΦ j. Then we have

D
d
L(Ψ1,Ψ2) = min

w∈W(Ψ1,Ψ2)
∑

i∈I, j∈J

w(Φi,Φ j)D
t
L(Φi,Φ j) (20)

and the distance in Equation (20) is 0 if, given the optimal matching w̄

w̄(Φi,Φ j)> 0 iff D
t
L
(Φi,Φ j) = 0.

By Proposition 8 we have that D t
L
(Φi,Φ j) = 0 iff Φi = Φ j. In particular, let Φ ji be any formula in

{Φ j | j ∈ J} s.t. Φi = Φ ji . Since by Definition 18 the trace formulae Φi occurring in Ψ1 are pairwise

distinct and, analogously, the trace formulae Φ j occurring in Ψ2 are pairwise distinct, we gather that

ri = ∑ j∈J w̄(Φi,Φ j) = ∑ ji∈J w̄(Φi,Φ ji) = w̄(Φi,Φ ji)
r j = ∑i∈I w̄(Φi,Φ j) = ∑i j∈I w̄(Φi j

,Φ j) = w̄(Φi j
,Φ j).
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Therefore we can infer that Ψ1 = Ψ2 as probability distributions over Lt.

Proof of item 2 Immediate from the discrete metric and the matching being both symmetric.

Proof of item 3 Assume wlog. that Ψ1 =
⊕

i∈I riΦi, Ψ2 =
⊕

j∈J r jΦ j and Ψ3 =
⊕

h∈H rhΦh.

Let w1,3 ∈W(Ψ1,Ψ3) be an optimal matching for Ψ1,Ψ3, namely

D
d
L
(Ψ1,Ψ3) = min

w∈W(Ψ1,Ψ3)
∑
i∈I

h∈H

w(Φi,Φh)D
t
L
(Φi,Φh) = ∑

i∈I
h∈H

w1,3(Φi,Φh)D
t
L
(Φi,Φh)

and let w2,3 ∈W(Ψ2,Ψ3) be an optimal matching for Ψ2,Ψ3, that is

D
d
L(Ψ2,Ψ3) = min

w∈W(Ψ2,Ψ3)
∑
j∈J

h∈H

w(Φ j,Φh)D
t
L(Φ j,Φh) = ∑

j∈J
h∈H

w2,3(Φ j,Φh)D
t
L(Φ j,Φh).

Consider now the function f : I× J×H → [0,1] defined by

f (i, j,h) =w1,3(Φi,Φh) ·w2,3(Φ j,Φh) ·
1

rh

.

Then, we have ∑ j∈J f (i, j,h) = w1,3(Φi,Φh) namely the projection of f over the first and third compo-

nents coincides with the optimal matching for Ψ1,Ψ3. Similarly, ∑i∈I f (i, j,h) = w2,3(Φ j,Φh) namely

the projection of f over the second and third components coincides with the optimal matching for Ψ2,Ψ3.

Moreover, it holds that ∑ j∈J,h∈H f (i, j,h) = ri and ∑i∈I,h∈H f (i, j,h) = r j, that is f (i, j,h) is a matching

in W(Ψ1,Ψ2). Therefore,

Dd
L
(Ψ1,Ψ2) = minw∈W(Ψ1,Ψ2) ∑i∈I, j∈J w(Φi,Φ j)D

t
L
(Φi,Φ j) (by definition)

≤ ∑i∈I, j∈J,h∈H f (i, j,h)D t
L
(Φi,Φ j) (by construction of f )

≤ ∑i∈I, j∈J,h∈H f (i, j,h)
(

D t
L
(Φi,Φh) + D t

L
(Φ j,Φh)

)

(since D t
L

is a metric)

= ∑i∈I, j∈J,h∈H f (i, j,h)D t
L
(Φi,Φh)+

∑i∈I, j∈J,h∈H f (i, j,h)D t
L
(Φ j,Φh)

= ∑i∈I,h∈H

(

∑ j∈J f (i, j,h)
)

·D t
L
(Φi,Φh)+

∑ j∈J,h∈H

(

∑i∈I f (i, j,h)
)

·D t
L
(Φ j,Φh)

= ∑i∈I,h∈H w1,3(Φi,Φh)D
t
L
(Φi,Φh)+

∑ j∈J,h∈H w2,3(Φ j,Φh)D
t
L
(Φ j,Φh) (by construction of f )

= K(D t
L
)(Ψ1,Ψ3)+K(D t

L
)(Ψ3,Ψ2) (by definition of w1,3,w2,3)

= Dd
L
(Ψ1,Ψ3)+Dd

L
(Ψ3,Ψ2) (by definition).

To conclude, we need to show that Dd
L

is 1-bounded, namely that for each Ψ1,Ψ2 ∈ L
d we have

Dd
L
(Ψ1,Ψ2)≤ 1. Assume wlog that Ψ1 =

⊕

i∈I riΦi and Ψ2 =
⊕

j∈J r j ∈ Φ j. We have

Dd
L
(Ψ1,Ψ2) = minw∈W(Ψ1,Ψ2) ∑i∈I, j∈J w(Φi,Φ j)D

t
L
(Φi,Φ j)

≤ ∑i∈I, j∈J w(Φi,Φ j)D
t
L
(Φi,Φ j) (for an arbitrary w)

≤ ∑i∈I, j∈J w(Φi,Φ j) (D t
L

is either 1 or 0)

= 1 (w is probability distribution).
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Example 6. Consider the formulae Ψ1 = 0.6〈a〉〈b〉⊤⊕0.4〈a〉〈c〉⊤ and Ψ2 = 0.7〈a〉〈c〉⊤⊕0.3〈a〉〈b〉⊤.

We have that

Dd
L
(Ψ1,Ψ2) = minw∈W(Ψ1,Ψ2) ∑ Φ∈supp(Ψ1)

Φ′∈supp(Ψ2)

w(Φ,Φ′)D t
L
(Φ,Φ′)

≤ 0.3D t
L
(〈a〉〈b〉⊤,〈a〉〈b〉⊤)+0.4D t

L
(〈a〉〈c〉⊤,〈a〉〈c〉⊤)+0.3D t

L
(〈a〉〈b〉⊤,〈a〉〈c〉⊤)

= 0.3 ·0+0.4 ·0+0.3 ·1
= 0.3

Next result derives from our characterization of trace distribution equivalence of resolutions (Theo-

rem 2).

Theorem 6. The kernel of Dd
L

is trace distribution equivalence of resolutions.

Proof. Let s, t ∈ S and consider Zs ∈ Res(s), with zs = corr−1
Zs
(s), and Zt ∈ Res(t), with zt = corr−1

Zs
(t).

By Theorem 2 we have that zs ≈st zt iff ΨZs
= ΨZt

. Since by Proposition 9 Dd
L

is a metric on L
d, we

have that Dd
L
(ΨZs

,ΨZt
) = 0 iff ΨZs

= ΨZt
. Thus we can conclude that

zs ≈st zt iff ΨZs
= ΨZt

iff D
d
L
(ΨZs

,ΨZt
) = 0.

We lift the distance over formulae to a distance over processes as the Hausdorff distance between the

sets of formulae satisfied by them.

Definition 28. The L-distance over processes DL : S×S → [0,1] is defined, for all s, t ∈ S, by

DL(s, t) = H(Dd
L
)(L(s),L(t)).

Proposition 10. The mapping DL is a 1-bounded pseudometric over S.

Proof. First we show that DL is a pseudometric over S, namely that for each s, t,u ∈ S

DL(s,s) = 0 (21)

DL(s, t) = DL(t,s) (22)

DL(s, t) ≤ DL(s,u)+DL(u, t) (23)

Equation (21) and Equation (22) are immediate from the definition of DL (Definition 28).

Let us prove Equation (23). Firstly, we notice that from the definition of Hausdorff distance we have

DL(s, t) = max{ sup
Ψ∈L(s)

inf
Ψ′∈L(t)

D
d
L
(Ψ,Ψ′), sup

Ψ′∈L(t)

inf
Ψ∈L(s)

D
d
L
(Ψ,Ψ′)}.

Thus, for all s, t,u ∈ S we can infer that

sup
Ψ∈L(s)

inf
Ψ′′∈L(u)

D
d
L(Ψ,Ψ′′)≤ DL(s,u) (24)

sup
Ψ′′∈L(u)

inf
Ψ′∈L(t)

D
d
L
(Ψ′′,Ψ′)≤ DL(u, t). (25)

As a first step, we aim to show that

sup
Ψ∈L(s)

inf
Ψ′∈L(t)

D
d
L
(Ψ,Ψ′)≤ DL(s,u)+DL(u, t). (26)
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For sake of simplicity, we index formulae in L(s) by indexes in the set J, formulae in L(t) by indexes in

set I and formulae in L(u) by indexes in H . By definition of infimum we have that for each ε1 > 0

for each Ψ j ∈ L(s) there is a Ψh j
∈ L(u) s.t. D

d
L
(Ψ j,Ψh j

)< inf
Ψh∈L(u)

D
d
L
(Ψ j,Ψh)+ ε1 (27)

and analogously for each ε2 > 0

for each Ψh ∈ L(u) there is a Ψih ∈ L(t) s.t. D
d
L
(Ψh,Ψih)< inf

Ψi∈L(t)
D

d
L
(Ψh,Ψi)+ ε2. (28)

In particular given Ψ j ∈ L(s) let Ψh j
∈ L(u) be the index realizing Equation (27), with respect to ε1, and

let Ψih j
∈ L(t) be the index realizing Equation (28) with respect to Ψh j

and ε2. Then we have

Dd
L
(Ψ j,Ψih j

)

≤ Dd
L
(Ψ j,Ψh j

)+Dd
L
(Ψh j

,Ψih j
)

<
(

infΨh∈L(u) Dd
L
(Ψ j,Ψh)+ ε1

)

+
(

infΨi∈L(t) Dd
L
(Ψh j

,Ψi)+ ε2

)

(Eq. 27,28)

≤
(

supΨ j∈L(s) infΨh∈L(u) Dd
L
(Ψ j,Ψh)+ ε1

)

+
(

supΨh∈L(u)
infΨi∈L(t) Dd

L
(Ψh,Ψi)+ ε2

)

from which we gather

inf
Ψi∈L(t)

D
d
L
(Ψ j,Ψi)≤ D

d
L
(Ψ j,Ψih j

)< sup
Ψ j∈L(s)

inf
Ψh∈L(u)

D
d
L
(Ψ j,Ψh)+ sup

Ψh∈L(u)

inf
Ψi∈L(t)

D
d
L
(Ψh,Ψi)+ ε1 + ε2.

Thus, since j was arbitrary, we obtain

sup
Ψ j∈L(s)

inf
Ψi∈L(t)

D
d
L(Ψ j,Ψi)≤ sup

Ψ j∈L(s)

inf
Ψh∈L(u)

D
d
L(Ψ j,Ψh)+ sup

Ψh∈L(u)

inf
Ψi∈L(t)

D
d
L(Ψh,Ψi)+ ε1 + ε2

and since this relation holds for any ε1 and ε2 we can conclude that

sup
Ψ j∈L(s)

inf
Ψi∈L(t)

D
d
L
(Ψ j,Ψi)≤ sup

Ψ j∈L(s)

inf
Ψh∈L(u)

D
d
L
(Ψ j,Ψh)+ sup

Ψh∈L(u)

inf
Ψi∈L(t)

D
d
L
(Ψh,Ψi).

Then, by the inequalities in Equation (24) and Equation (25) we can conclude that

sup
Ψ j∈L(s)

inf
Ψi∈L(t)

D
d
L(Ψ j,Ψi)≤ DL(s,u)+DL(u, t)

and thus Equation (26) holds. Switching the roles of s and t in the steps above allows us to infer

sup
Ψi∈L(t)

inf
Ψ j∈L(s)

D
d
L
(Ψ j,Ψi)≤ DL(s,u)+DL(u, t). (29)

Finally, we have

DL(s, t) = max{supΨ j∈L(s) infΨi∈L(t) Dd
L
(Ψ j,Ψi),supΨi∈L(t) infΨ j∈L(s) Dd

L
(Ψ j,Ψi)}

≤ DL(s,u)+DL(u, t)

where the last relation follows by Equations (26) and (29).

To conclude, we need to show that DL is 1-bounded. We recall that by Proposition 9, Dd
L

is 1-

bounded. We have

DL(s, t) = H(Dd
L
)(L(s),L(t))

= max
{

supΨi∈L(s) infΨ j∈L(t) Dd
L
(Ψi,Ψ j), supΨ j∈L(t) infΨi∈L(s) Dd

L
(Ψi,Ψ j)

}

≤ max{1, 1}
= 1.
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Proposition 11. Let s ∈ S. The set L(s) is a closed subset of L wrt. the topology induced by Dd
L

.

Proof. As we are working on a metric space, the proof obligation is equivalent to prove that each se-

quence in L(s) that admits a limit converges in L(s), namely

for each {Ψn}n∈N ⊆ L(s) s.t. there is Ψ ∈ L with lim
n→∞

Ψn = Ψ then Ψ ∈ L(s). (30)

From Theorem 1 we have that L(s) = {⊤}∪{ΨZ | Z ∈ Res(s)}. Since a finite union of closed sets is

closed, the proof obligation Equation (30) is equivalent to prove that

{⊤} is closed (31)

{ΨZ | Z ∈ Res(s)} is closed (32)

Equation (31) is immediate since the only sequence in {⊤} admitting a limit is the constant sequence

Ψn =⊤ for all n ∈ N.

Let us deal now with Equation (32). First of all, we notice that sequences in {ΨZ |Z ∈ Res(s)} can

be written in the general form

Ψn =
⊕

i∈In

r
(n)
i Φ

(n)
i

with {
⊕

i∈In
r
(n)
i Φ

(n)
i }n∈N ⊆ L(s)\{⊤}.

Assume that there is a trace distribution formula Ψ ∈ L
d s.t. limn→∞ Ψn = Ψ. We aim to show that

Ψ ∈ L(s), namely that

Ψ = ΨZ for some Z ∈ Res(s). (33)

In what follows, we assume wlog that limit trace distribution formula Ψ has the form Ψ =
⊕

j∈J r jΦ j.

From {
⊕

i∈In
r
(n)
i Φ

(n)
i }n∈N ⊆ L(s) \ {⊤} we gather that for each n ∈ N there is a resolution Zn ∈

Res(s) s.t. ΨZn
=

⊕

i∈In
r
(n)
i Φ

(n)
i . For each n ∈ N, let zn = corr−1

Zn
(s). Then ΨZn

=
⊕

i∈In
r
(n)
i Φ

(n)
i implies

that In = Tr(Cmax(zn)), namely In is the set of traces to which the maximal computations of the process

zn are compatible. Hence, for each i ∈ In we have that Φ
(n)
i is the tracing formula of the trace indexed by

i and r
(n)
i = Pr(Cmax(zn, i)).

We notice that
limn→∞ Ψn = Ψ

iff limn→∞ Dd
L
(Ψn,Ψ) = 0

iff limn→∞ K(D t
L
)(Ψn,Ψ) = 0

that is iff the sequence {Ψn}n∈N converges to Ψ with respect to the Kantorovich metric. Since we are

considering distributions with finite support, the convergence with respect to the Kantorovich metric is

equivalent to the weak convergence of probability distributions (also called convergence in distribution)

which states that limn→∞ Ψn(Φ) = Ψ(Φ) for each continuity point Φ ∈ L
t of Ψ. Since the probability

distribution over trace formuale Ψ is discrete and with finite support, its continuity points are the trace

formulae which are not in its support. Hence, we have that limn→∞ Ψn(Φ) = 0 for each Φ 6∈ {Φ j | j ∈ J}.

More specifically, we obtain that limn→∞ In = J which gives that if there is an index ĩ s.t. limn→∞ Φ
(n)

ĩ
6∈

{Φ j | j ∈ J}, or if {Φ
(n)

ĩ
}n∈N has no limit, then limn→∞ r

(n)

ĩ
= 0. Furthermore, since D t

L
is the discrete

metric over Lt, we have that a sequence of trace formulae {Φ(n)}n∈N converges to Φ iff the sequence

is definitively constant, namely iff there is an N ∈ N s.t. Φ(n) = Φ for all n ≥ N. Therefore, from

limn→∞ In = J we can infer that there is an N ∈N s.t. In = J for all n ≥ N. Consequently, by construction
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of the sets In, we obtain that J = Tr(Cmax(zN)) thus giving that, for each j ∈ J, Φ j is the tracing formula

of the trace indexed by j. Since moreover we are considering image-finite processes, for each j ∈ J

Pr(Cmax(zn, j)) assumes only a finite number of values wrt n ≥ N. Therefore, we can infer that there

is an M ≥ N ∈ N s.t. for each j ∈ J we have Pr(Cmax(zn, j)) = Pr(Cmax(zm, j)) for all n,m ≥ M. Thus,

from Definition 24, we infer that the resolution ZM ∈ Res(s), namely the resolution whose mimicking

formula corresponds to the M-th trace distribution formula in the sequence {Ψn}n∈N, is s.t. Ψ = ΨZM
,

thus proving Equation (33) and concluding the proof.

From our L-characterization of strong trace equivalence (Theorem 3) we obtain the following result.

Theorem 7. The kernel of DL is trace equivalence.

Proof. (⇒) Assume first that s ≈st t. We aim to show that this implies that DL(s, t) = 0. By Theorem 3

we have that s ≈st t implies that L(s) = L(t) from which we gather

DL(s, t) = H(Dd
L
)(L(s),L(t)) = 0.

(⇐) Assume now that DL(s, t) = 0. We aim to show that this implies that s ≈st t. Since L(s) and L(t)
are closed by Proposition 11 and since DL is a pseudometric by Proposition 10, from DL(s, t) = 0 we

can infer that L(s) = L(t). By Theorem 3 we can conclude that s ≈st t.

Finally, we obtain the characterization of the strong trace metric.

Theorem 8 (Characterization of strong trace metric). For all s, t ∈ S we have dT (s, t) = DL(s, t).

Proof. By definition of trace metric (Definition 14) we have that

dT (s, t) = max

{

sup
Zs∈Res(s)

inf
Zt∈Res(t)

DT (Zs,Zt), sup
Zt∈Res(t)

inf
Zs∈Res(s)

DT (Zs,Zt)

}

.

By definition of L-distance over processes (Definition 28) we have that

DL(s, t) = H(Dd
L
)(L(s),L(t))

= H(Dd
L
)({⊤}∪{ΨZs

| Zs ∈ Res(s)},{⊤}∪{ΨZt
| Zt ∈ Res(t)})

= H(Dd
L
)({ΨZs

| Zs ∈ Res(s)},{ΨZt
| Zt ∈ Res(t)})

= max
{

supZs∈Res(s) infZt∈Res(t) Dd
L
(ΨZs

,ΨZt
), supZt∈Res(t) infZs∈Res(s)D

d
L
(ΨZs

,ΨZt
)
}

where the third equality follows from the fact that by Def. 27 we have Dd
L
(⊤,⊤) = 0 and Dd

L
(⊤,Ψ) = 1

for any Ψ 6= ⊤. Thus we have that ⊤ = argminΨ∈{⊤}∪{ΨZt |Zt∈Res(t)}D
d
L
(⊤,Ψ) and symmetrically ⊤ =

argminΨ∈{⊤}∪{ΨZs |Zs∈Res(s)}D
d
L
(Ψ,⊤). Moreover, for any Ψ 6= ⊤ we have that Dd

L
(Ψ,Ψ′) ≤ Dd

L
(Ψ,⊤)

for any Ψ′ ∈ {ΨZt
| Zt ∈ Res(t)} and Dd

L
(Ψ′′,Ψ)≤ Dd

L
(⊤,Ψ) for any Ψ′′ ∈ {ΨZs

| Zs ∈ Res(s)}.

Hence, to prove the thesis it is enough to show that

DT (Zs,Zt) = D
d
L(ΨZs

,ΨZt
) for all Zs ∈ Res(s),Zt ∈ Res(t). (34)

Let Zs ∈ Res(s), with zs = corr−1
Zs
(s), and Zt ∈ Res(t), with zt = corr−1

Zt
(t). Then by definition of

mimicking formula (Definition 24) we have

ΨZs
=

⊕

α∈Tr(Cmax(zs))

Pr(Cmax(zs,α))Φα
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where for each α ∈ Tr(Cmax(zs)) we have that Φα is the tracing formula for the trace α . Similarly,

ΨZt
=

⊕

β∈Tr(Cmax(zt))

Pr(Cmax(zt ,β ))Φβ

where for each β ∈ Tr(Cmax(zt)) we have that Φβ is the tracing formula for the trace β .

By definition of trace distance between resolutions (Definition 13) we have that

DT (Zs,Zt) = min
w∈W(TZs ,TZt )

∑
α∈Tr(Cmax(zs)),β∈Tr(Cmax(zt))

w(α ,β )dT (α ,β ) (35)

where, by definition of trace distance between traces (Definition 11), we have that dt(α ,β ) = 0 if α = β

and dt(α ,β ) = 1 otherwise.

Hence, by definition of tracing formula (Definition 23), we have that for all α ∈ Tr(Cmax(zs)),β ∈
Tr(Cmax(zt)) we have dT (α ,β ) = D t

L
(Φα ,Φβ ), thus giving

(35) = min
w∈W(TZs ,TZt )

∑
α∈Tr(Cmax(zs)),β∈Tr(Cmax(zt))

w(α ,β )D t
L
(Φα ,Φβ ). (36)

Let w̄ be an optimal matching for DT (Zs,Zt), namely

(36) = ∑
α∈Tr(Cmax(zs)),β∈Tr(Cmax(zt))

w̄(α ,β )D t
L(Φα ,Φβ ). (37)

Then, by definition of matching and of T (Definition 12) we have that for any α ∈ Tr(Cmax(zs)),β ∈
Tr(Cmax(zt))

Pr(Cmax(zs,α)) = TZs
(α) = ∑β∈Tr(Cmax(zt)) w̄(α ,β )

Pr(Cmax(zt ,β )) = TZt
(β ) = ∑α∈Tr(Cmax(zs)) w̄(α ,β ).

Therefore we have obtained that w̄ is a matching for ΨZs
and ΨZt

. In particular we notice that w̄ is

actually an optimal matching for ΨZs
,ΨZt

. This follows from the optimality of w̄ for TZs
,TZt

. In fact

each matching for ΨZs
,ΨZt

can be constructed from a matching for TZs
,TZt

using the same technique

proposed above. Moreover, given w1 ∈W(TZs
,TZt

) and w2 being the matching for Ψ1,Ψ2 built from

it, the reasoning above guarantees that

∑
α∈Tr(Cmax(zs)),β∈Tr(Cmax(zt))

w1(α ,β )dT (α ,β ) = ∑
α∈Tr(Cmax(zs))
β∈Tr(Cmax(zt ))

w2(α ,β )D t
L
(Φα ,Φβ ).

w̄ being optimal for DT implies w̃ being optimal for Dd
L

. Hence by Definition 27 we have

D
d
L
(ΨZs

,ΨZt
) = ∑

α∈Tr(Cmax(zs)),β∈Tr(Cmax(zt))

w̄(α ,β )D t
L
(Φα ,Φβ ).

From Equation (37) we infer DT (Zs,Zt) = Dd
L
(ΨZs

,ΨZt
) thus proving Equation (34) and concluding

the proof.

6.2 Lw-characterization of weak trace metric

The idea behind the definition of a metric on Lw is pretty much the same to the strong case. The main

difference is that the distance on Lw is a pseudometric whose kernel is given by Lw-equivalence.
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Definition 29 (Distance on L
t
w). The function D t

Lw
: L

t
w×L

t
w → [0,1] is defined over Lt

w as follows:

D
t
Lw
(Φ1,Φ2) =

{

0 if Φ1 ≡w Φ2

1 otherwise.

Clearly, D t
Lw

is a pseudometric on L
t
w whose kernel is given by equivalence of trace formulae and

we can lift it to a pseudometric over Ld
w via the Kantorovich lifting functional.

Definition 30 (Distance on L
d
w). The function Dd

Lw
: L

d
w×L

d
w → [0,1] is defined over Ld

w as follows:

D
d
Lw
(Ψ1,Ψ2) = K(D t

Lw
)(Ψ1,Ψ2).

Proposition 12. The function Dd
Lw

is a 1-bounded pseudometric over Ld
w.

Proof. The same arguments used in the proof of Proposition 9 apply, where in place of item 1 we simply

need to show that Dd
Lw
(Ψ,Ψ) = 0, which is immediate from the definition through the Kantorovich

pseudometric.

Theorem 9. The kernel of Dd
Lw

is Lw-equivalence of trace distribution formulae.

Proof. (⇒) Assume first that Dd
Lw
(Ψ1,Ψ2) = 0 for Ψ1 =

⊕

i∈I riΦi and Ψ2 =
⊕

j∈J r jΦ j. We aim to

show that this implies Ψ1 ≡
†
w Ψ2. From the assumption, we have

0 = Dd
Lw
(
⊕

i∈I riΦi,
⊕

j∈J r jΦ j)

= minw∈W(Ψ1,Ψ2) ∑i∈I, j∈J w(Φi,Φ j)D
t
Lw
(Φi,Φ j)

= ∑i∈I, j∈J w(Φi,Φ j)D
t
Lw
(Φi,Φ j) (for w optimal matching).

Thus, for each i ∈ I and j ∈ J we can distinguish two cases:

• either w(Φi,Φ j) = 0,

• or w(Φi,Φ j)> 0, implying D t
Lw
(Φi,Φ j) = 0, which is equivalent to say that Φi ≡w Φ j by Defini-

tion 29.

For each i ∈ I, let Ji ⊆ J be the set of indexes ji for which w(Φi,Φ ji) > 0 and, symmetrically, for each

j ∈ J let I j ⊆ I be the set of indexes i j for which w(Φi j
,Φ j)> 0. So we have

Ψ1 =
⊕

i∈I riΦi

=
⊕

i∈I

(

∑ j∈J w(Φi,Φ j)
)

Φi (w ∈W(Ψ1,Ψ2))
≡†

w

⊕

i∈I

(

∑ ji∈Ji
w(Φi,Φ j j

)
)

Φi (by construction of each Ji)

≡†
w

⊕

i∈I, ji∈Ji
w(Φi,Φ ji)Φ ji (Φi ≡w Φ ji for each ji ∈ Ji)

≡†
w

⊕

i∈I, ji∈Ji, i′ji
∈I ji

w(Φi′ji
,Φ ji)Φi′ji

(Φi′ji
≡w Φ ji for each i′ji ∈ I ji )

≡†
w

⊕

i j∈I j , j∈J w(Φi j
,Φ j)Φi j

(all indexes j ∈ J are involved)

≡†
w

⊕

j∈J

(

∑i j∈I j
w(Φi j

,Φ j)
)

Φ j (Φ j ≡w Φi j
for each i j ∈ I j)

≡†
w

⊕

j∈J

(

∑i∈I w(Φi,Φ j)
)

Φ j (by construction of each I j)

=
⊕

j∈J r jΦ j (w ∈W(Ψ1,Ψ2))

= Ψ2.
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(⇐). Assume that Ψ1 ≡†
w Ψ2. We aim to show that Dd

Lw
(Ψ1,Ψ2) = 0. Assume wlog. that Ψ1 =

⊕

i∈I riΦi. By definition of ≡w (Definition 7) and definition of lifting of a relation (Definition 2), from

Ψ2 ≡
†
w

⊕

i∈I riΦi we gather Ψ2 =
⊕

i∈I
ji∈Ji

r ji Φ ji with ∑ ji∈Ji
r ji = ri and Φ ji ≡w Φi for all ji ∈ Ji, i ∈ I. Then

Dd
Lw
(Ψ1,Ψ2) = Dd

Lw
(
⊕

i∈I riΦi,
⊕

i∈I, ji∈Ji
r ji Φ ji)

= minw∈W(Ψ1,Ψ2) ∑ i∈I, jh∈Jh
h∈I

w(Φi,Φ jh)D
t
Lw
(Φi,Φ jh)

≤ ∑ i∈I, jh∈Jh
h∈I

w̃(Φi,Φ jh)D
t
Lw
(Φi,Φ jh)

= ∑i∈I, ji∈Ji
r jiD

t
Lw
(Φi,Φ ji)

= 0 (Φi ≡w Φ ji for each ji ∈ Ji)

where the inequality follows by observing that function w̃ defined by w̃(Φi,Φ jh) = r ji if h = i and

w̃(Φi,Φ jh) = 0 otherwise, is a matching in W(Ψ1,Ψ2).

Corollary 1. Z1,Z2 ∈ Res(S) are weak trace distribution equivalent iff Dd
Lw
(ΨZ1

,ΨZ2
) = 0.

Proof. (⇒) Assume first that Z1 and Z2 are weak trace distribution equivalent. Then from Theorem 4

we infer that ΨZ1
≡w ΨZ2

. By Theorem 9 this implies Dd
Lw
(ΨZ1

,ΨZ2
) = 0.

(⇐) Assume now that Dd
Lw
(ΨZ1

,ΨZ2
) = 0. Then from Theorem 9 we infer that ΨZ1

≡w ΨZ2
. By

Theorem 4 this implies that Z1 and Z2 are weak trace distribution equivalent.

By the Hausdorff functional we lift the pseudometric Dd
Lw

to a pseudometric over processes.

Definition 31. The Lw-distance over processes DLw
: S×S → [0,1] is defined, for all s, t ∈ S, by

DLw
(s, t) = H(Dd

Lw
)(Lw(s),Lw(t)).

Proposition 13. The mapping DLw
is a 1-bounded pseudometric over S.

Proof. The same arguments used in the proof of Proposition 10 apply.

Proposition 14. Let s ∈ S. The set Lw(s) is a closed subset of Lw wrt. the topology induced by Dd
Lw

.

Proof. Since (Ld
w,D

d
Lw
) is a pseudometric space (Proposition 12 and Theorem 9), to prove the thesis we

need to show that the quotient space Lw(s)/≡w
is a closed subset of Lw/≡w

with respect to the topology

induced by Dd
Lw

(in fact (Ld
w/≡w

,Dd
Lw
) is a metric space). From Remark 2 we have that Ld

w/≡w
= L

d

and Lw(s)/≡w
= L(s). Moreover, we have that Dd

Lw
|Ld

w/≡w
= Dd

L
. Hence, the same arguments used in the

proof of Proposition 11 allow us to prove that Lw(s)/≡w
is a closed subset of Lw/≡w

wrt. the topology

induced by Dd
Lw

. This gives the result also for Lw(s) wrt to Lw and Dd
Lw

.

Theorem 10. The kernel of DLw
is weak trace equivalence.

Proof. (⇒) Assume that s ≈wt t. We aim to show that DLw
(s, t) = 0. By Theorem 5 we have that s ≈wt t

implies that Lw(s) ≡
†
w Lw(t). Since the kernel of Dd

Lw
is given by ≡†

w (Theorem 9), we can infer

DLw
(s, t) = H(D t

Lw
)(Lw(s),Lw(t)) = 0.

(⇐) Assume now that DLw
(s, t) = 0. We aim to show that this implies that s ≈wt t. Since (i) Lw(s) and

Lw(t) are closed by Proposition 14, (ii) DLw
is a pseudometric by Proposition 13 and (iii) the kernel of

Dd
Lw

is ≡†
w by Theorem 9, from DLw

(s, t) = 0 we can infer Lw(s)≡
†
w Lw(t). Then, by Theorem 5 we can

conclude s ≈wt t.
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Finally, we obtain the characterization of the weak trace metric.

Theorem 11 (Characterization of weak trace metric). For all s, t ∈ S we have dw
T (s, t) = DLw

(s, t).

Proof. The same arguments used in the proof of Thm 8 apply.

7 From boolean to real semantics

In this section we focus on L and we exploit the distance between formulae to define a real valued

semantics for it, namely given a process s we assign to each formula a value in [0,1] expressing the

probability that s satisfies it. Then we show that our logical characterization of trace metric can be

restated in terms of the general schema dT (s, t) = sup
Ψ∈Ld

| [Ψ](s)− [Ψ](t) | where [Ψ](s) denotes the value

of the formula Ψ at process s, accordingly to the new real valued semantics. We remark that although,

due to space restrictions, we present only the result for L, the technique we propose would lead to the

same results when applied to Lw.

First of all, we recall the notion of distance function, namely the distance between a point and a set.

Definition 32 (Distance function). Let L′ ⊆ L
d. Given any Ψ ∈ L

d we denote by Dd
L
(Ψ,L′) the distance

between Ψ and the set L′ defined by D
d
L
(Ψ,L′) = inf

Ψ′∈L′
D

d
L
(Ψ,Ψ′).

Then we obtain the following characterization of the Hausdorff distance.

Proposition 15. Let L1,L2 ⊆ L
d. Then it holds that H(Dd

L)(L1,L2) = sup
Ψ∈Ld

|Dd
L(Ψ,L1)−D

d
L(Ψ,L2)|.

Proof. It is clear that

H(Dd
L)(L1,L2) = max

{

sup
Ψ1∈L1

D
d
L(Ψ1,L2), sup

Ψ2∈L2

D
d
L(Ψ2,L1)

}

. (38)

Firstly we show that

H(Dd
L)(L1,L2)≤ sup

Ψ∈Ld

|Dd
L(Ψ,L1)−D

d
L(Ψ,L2)|. (39)

Without loss of generality, we can assume that H(Dd
L
)(L1,L2) = supΨ1∈L1

Dd
L
(Ψ1,L2). Then we have

supΨ1∈L1
Dd

L
(Ψ1,L2) = supΨ1∈L1

|Dd
L
(Ψ1,L2)−Dd

L
(Ψ1,L1)|

≤ supΨ∈Ld |Dd
L
(Ψ,L2)−Dd

L
(Ψ,L1)|

from which Equation (39) holds.

Next, we aim to show the converse inequality, namely

H(Dd
L
)(L1,L2)≥ sup

Ψ∈Ld

|Dd
L
(Ψ,L1)−D

d
L
(Ψ,L2)|. (40)

To this aim, we show that

for each Ψ ∈ L
d it holds |Dd

L
(Ψ,L1)−D

d
L
(Ψ,L2)| ≤ H(Dd

L
)(L1,L2). (41)

• Assume Ψ ∈ L1. Then Dd
L
(Ψ,L1) = 0 so that |Dd

L
(Ψ,L1)−Dd

L
(Ψ,L2)|= Dd

L
(Ψ,L2). Moreover

D
d
L
(Ψ,L2)≤ sup

Ψ1∈L1

D
d
L
(Ψ1,L2)≤ H(Dd

L
)(L1,L2)

and Equation (41) follows in this case.
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• The case of Ψ ∈ L2 is analogous and therefore Equation (41) follows also in this case.

• Finally, assume that Ψ 6∈ L1∪L2. Without loss of generality, we can assume that Dd
L
(Ψ,L1) ≥

Dd
L
(Ψ,L2). By definition of infimum it holds that for each ε > 0 there is a formula Ψε ∈ L2 s.t.

D
d
L
(Ψ,Ψε )< D

d
L
(Ψ,L2)+ ε . (42)

Analogously, for each ε ′ > 0 and for each Ψ2 ∈ L2 there is a Ψε ′ ∈ L1 s.t.

D
d
L(Ψ2,Ψε ′)< D

d
L(Ψ2,L1)+ ε ′. (43)

Let us fix ε ,ε ′ > 0. Then let Ψε ∈ L2 be the formula realizing Equation (42), with respect to Ψ,

and let Ψ̃ε ′ be the formula in L1 realizing Equation (42), with respect to this Ψε . Therefore, we

have
|Dd

L
(Ψ,L1)−Dd

L
(Ψ,L2)|

= Dd
L
(Ψ,L1)−Dd

L
(Ψ,L2)

< Dd
L
(Ψ,L1)−Dd

L
(Ψ,Ψε )+ ε (by Equation (42))

= infΨ1∈L1
Dd

L
(Ψ,Ψ1)−Dd

L
(Ψ,Ψε )+ ε (by Definition 32)

< Dd
L
(Ψ,Ψ̃ε ′)−Dd

L
(Ψ,Ψε )+ ε

≤ Dd
L
(Ψ,Ψε )+Dd

L
(Ψε ,Ψ̃ε ′)−Dd

L
(Ψ,Ψε )+ ε (by triangle inequality)

= Dd
L
(Ψε ,Ψ̃ε ′)+ ε

< Dd
L
(Ψε ,L1)+ ε ′+ ε (by Equation (43))

≤ supΨ2∈L2
Dd

L
(Ψ2,L1)+ ε ′+ ε

≤ H(Dd
L
)(L1,L2)+ ε ′+ ε (by Equation (38)).

Summarizing, we have obtained that

|Dd
L(Ψ,L1)−D

d
L(Ψ,L2)|< H(Dd

L)(L1,L2)+ ε ′+ ε

and since this inequality holds for each ε and ε ′, we can conclude that Equation (41) holds.

Equation (39) and Equation (40) taken together prove the thesis.

To define the real-valued semantics of Ld we exploit the distance Dd
L

. Informally, to quantify how

much the formula Ψ is satisfied by process s we evaluate first how far Ψ is from being satisfied by s.

This corresponds to the minimal distance between Ψ and a formula satisfied by s, namely to Dd
L
(Ψ,L(s)).

Then we simply notice that, as our distances are all 1-bounded, being Dd
L
(Ψ,L(s)) far from s is equivalent

to be 1−Dd
L
(Ψ,L(s)) close to it. Thus we assign to Ψ the real value 1−Dd

L
(Ψ,L(s)) in s.

Definition 33 (Real-valued semantics of Ld). We define the real-valued semantics of Ld as the function

[ ]( ) : L
d×S → [0,1] defined for all Ψ ∈ L

d and s ∈ S as [Ψ](s) = 1−Dd
L
(Ψ,L(s)).

We can restate our characterization theorem (Theorem 3) as a probabilistic L
d-model checking prob-

lem.

Theorem 12 (Characterization of strong trace metric II). For all s, t ∈ S we have

dT (s, t) = sup
Ψ∈Ld

| [Ψ](s)− [Ψ](t) | .

Proof. From Theorem 3 we have dT (s, t) = DL(s, t). Hence the thesis is equivalent to prove

DL(s, t) = sup
Ψ∈Ld

| [Ψ](s)− [Ψ](t) | .
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We have

DL(s, t) = H(Dd
L
)(L(s),L(t)) (by Definition 28)

= supΨ∈Ld | Dd
L
(Ψ,L(s))−Dd

L
(Ψ,L(t)) | (by Proposition 15)

= supΨ∈Ld | Dd
L
(Ψ,L(s))−Dd

L
(Ψ,L(t))+1−1 |

= supΨ∈Ld | 1−Dd
L
(Ψ,L(t))−

(

1−Dd
L
(Ψ,L(s))

)

|
= supΨ∈Ld | [Ψ](t)− [Ψ](s) | (by Definition33).

8 Concluding remarks

We have provided a logical characterization of the strong and weak variants of trace metric on finite

processes in the PTS model. Our results are based on the definition of a distance over the two-sorted

boolean logics L and Lw, which we have proved to characterize resp. strong and weak probabilistic trace

equivalence by exploiting the notion of mimicking formula of a resolution.

Our distance is a 1-bounded pseudometric that quantifies the syntactic disparities of the formulae and

we have proved that the trace metric corresponds to the distance between the sets of formulae satisfied

by the two processes. This approach, already successfully applied in [9] to the characterization of the

bisimilarity metric, is not standard. Logical characterizations of the trace metrics have been obtained

in terms of the probabilistic L-model checking problem, where L is the class of logical properties of

interest, [1, 3, 11]. However we have proved that our approach can be exploited to regain classical one:

by means of our distance between formulae we have defined a real-valued semantics for L, namely a

probabilistic model checking of a formula in a process, and then we have proved that the trace metric

constitutes the least upper bound to the error that can be observed in the verification of an L formula.

Another interesting feature of our approach is its generality, since it can be easily applied to some

variants of the trace equivalence and trace metric. In [4, 27] the authors distinguish between resolutions

obtained via deterministic schedulers and the ones obtained via randomized schedulers. The only differ-

ence between the two classes is in the evaluation of the probability weights: in deterministic resolutions,

which are the ones we have considered in this paper, each possible resolution of nondeterminism is con-

sidered singularly and thus the target probability distributions of their transitions are the same as in the

considered process. In randomized resolutions, internal nondeterminism is solved by assigning a proba-

bility weight to each choice and thus the target distributions are obtained from the convex combination

of the target distributions of the considered process. Since the definition of the mimicking formulae de-

pends solely on the values of the probability weights in the resolutions and not on how these weights are

evaluated, our characterization can be applied also to the case of trace equivalences and metrics defined

in terms of randomized resolutions.

As a first step in the future development of our work, we aim to extend our results to the trace

equivalence defined in [4] which, differently from the equivalence of [27] considered in this paper, is

compositional wrt. the parallel composition operator. Roughly speaking, in [4] for each given trace it

is checked whether the resolutions of two processes assign the same probability it, whereas in [27] for

a chosen resolution of the first process we check whether there is a resolution for the second process

that assigns the same probability to all traces. Furthermore, no trace metric has been defined yet for the

equivalence in [4]. Our idea is then firstly to define such a trace metric and secondly to simplify the logic

L by substituting the trace distribution formulae with a simple test on the execution probability of a trace,

with an operator similar to the probabilistic operator in [26]. By applying our approach to the new logic

we will obtain the characterization of the trace equivalence and metric.
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Then, we will study metrics and logical characterizations for the testing equivalences defined in [4].

Further, in [3] a sequence of Kantorovich bisimilarity-like metrics converging to the trace metric on

MCs is provided. Hence we aim to combine our characterization results in [9] with the ones in this paper

in order to see if a similar result of convergence can be obtained also with our technique on PTSs.

Finally, it would be interesting to apply the SOS-based decomposition method proposed in [10]

to L (resp. Lw) in order to derive congruence formats for the probabilistic strong (resp. weak) trace

equivalence from its logical characterization. We also aim to extend this technique in order to derive

compositional properties, as uniform continuity [17], of strong and weak trace metric.
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