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We have recently defined a weak Markovian bisimulation equivalence in an integrated-time setting,
which reduces sequences of exponentially timed internal actions to individual exponentially timed
internal actions having the same average duration and execution probability as the corresponding
sequences. This weak Markovian bisimulation equivalence is a congruence for sequential processes
with abstraction and turns out to induce an exact CTMC-levelaggregation at steady state for all
the considered processes. However, it is not a congruence with respect to parallel composition. In
this paper, we show how to generalize the equivalence in a waythat a reasonable tradeoff among
abstraction, compositionality, and exactness is achievedfor concurrent processes. We will see that,
by enhancing the abstraction capability in the presence of concurrent computations, it is possible to
retrieve the congruence property with respect to parallel composition, with the resulting CTMC-level
aggregation being exact at steady state only for a certain subset of the considered processes.

1 Introduction

Several Markovian behavioral equivalences (see [1] and thereferences therein) have been proposed in
the literature for relating and manipulating system modelswith an underlying continuous-time Markov
chain (CTMC) [15] semantics. However, only a few of them are provided with the useful capability
of abstracting from internal actions. In particular, [3] has recently addressed the case in which internal
actions are exponentially timed – rather than immediate like in [9] – by defining a weak Markovian
bisimulation equivalence inspired by the weak (Markovian)isomorphism of [11]. The idea is to reduce
to individual exponentially timed internal transitions all thesequencesof exponentially timed internal
transitions that traverse states enablingonly exponentially timed internal actions, with the reduction
preserving the average duration and the execution probability of the original sequences.

From a stochastic viewpoint, this reduction amounts to replacing hypoexponentially distributed du-
rations with exponentially distributed durations having the same expected value. As a consequence,
processes related by the weak Markovian bisimulation equivalence of [3] may not possess the same
transient performance measures, unless they refer to properties of the form mean time to certain events.
However, those processes certainly possess the same steady-state performance measures, because the ag-
gregation induced by the considered equivalence on the CTMCunderlying each process has been shown
to be exact at steady state.

The weak Markovian bisimulation equivalence of [3] is not a congruence with respect to parallel
composition, a fact that limits its usefulness for compositional state space reduction purposes. The con-
tribution of this paper is to show that compositionality canbe retrieved by enhancing the abstraction
capability of the considered equivalence in the presence ofparallel composition. The basic idea is al-
lowing a sequence of exponentially timed internal transitions originated from a sequential process to be
reduced also in the case in which that process is composed in parallel with other processes enabling
observableactions. Unfortunately, there is a price to pay for achieving compositionality: exactness at
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steady state will no longer hold for all processes, but only for processes with no synchronization at all
and processes whose synchronizations do not take place right before the sequences to be reduced.

This paper is organized as follows. After introducing a Markovian process calculus in Sect. 2 and
recalling strong and weak Markovian bisimilarity in Sect. 3, in Sect. 4 we develop a variant of weak
Markovian bisimilarity that deals with parallel composition and we investigate its congruence and exact-
ness properties. Finally, in Sect. 5 we provide some concluding remarks.

2 Concurrent Markovian Processes

In order to study properties such as congruence of the variant (to be defined) of the weak Markovian
bisimilarity of [3], we introduce typical behavioral operators through a Markovian process calculus
(MPC for short). In [3], we have considered sequential processes with abstraction built from opera-
tors like the inactive process, exponentially timed actionprefix, alternative composition, recursion, and
hiding. Here, we include parallel composition too, so as to be able to represent concurrent processes.

As usual, we denote the internal action byτ and we assume that the resulting concurrent processes
are governed by the race policy: if several exponentially timed actions are simultaneously enabled, the
action that is executed is the one sampling the least duration. We also assume that the duration of an
action deriving from the synchronization of two exponentially timed actions is exponentially distributed
with a rate obtained by applying (like, e.g., in [10]) some commutative and associative operation denoted
by ⊗ to the rates of the two original actions.

Definition 2.1 Let ActM =Name×R>0 be a set of actions, whereName=Namev∪{τ} is a set of action
names – ranged over bya,b – andR>0 is a set of action rates – ranged over byλ ,µ ,γ . Let Var be a set
of process variables ranged over byX,Y. The process languagePL M is generated by the following
syntax:

P ::= 0 inactive process
| <a,λ>.P exponentially timed action prefix
| P+P alternative composition
| X process variable
| recX : P recursion
| P/H hiding
| P‖SP parallel composition

wherea∈ Name, λ ∈ R>0, X ∈ Var, andH,S⊆ Namev. We denote byPM the set of closed and guarded
process terms ofPL M – ranged over byP,Q.

In order to distinguish between process terms such as<a,λ>.0+<a,λ>.0 and<a,λ>.0, like in [3]
the semantic model[[P]]M for a process termP ∈ PM is a labeled multitransition system that takes into
account the multiplicity of each transition, intended as the number of different proofs for the transition
derivation. The multitransition relation of[[P]]M is contained in the smallest multiset of elements ofPM ×
ActM ×PM that satisfies the operational semantic rules in Table 1 – where { →֒ } denotes syntactical
replacement – and keeps track of all the possible ways of deriving each of its transitions.

3 Strong and Weak Markovian Bisimulation Equivalences

The notion of strong bisimilarity for MPC is based on the comparison of exit rates [11, 10]. The exit rate
of a process termP ∈ PM with respect to action namea ∈ Nameand destinationD ⊆ PM is the rate at
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(PREM)
<a,λ>.P

a,λ
−−−→M P

(RECM)
P{recX : P →֒ X}

a,λ
−−−→M P′

recX : P
a,λ

−−−→M P′

(ALTM,1)
P1

a,λ
−−−→M P′

P1+P2
a,λ

−−−→M P′
(ALTM,2)

P2
a,λ

−−−→M P′

P1+P2
a,λ

−−−→M P′

(HIDM,1)
P

a,λ
−−−→M P′ a /∈ H

P/H
a,λ

−−−→M P′/H
(HIDM,2)

P
a,λ

−−−→M P′ a∈ H

P/H
τ ,λ

−−−→M P′/H

(PARM,1)
P1

a,λ
−−−→M P′

1 a /∈ S

P1‖SP2
a,λ

−−−→M P′
1‖SP2

(PARM,2)
P2

a,λ
−−−→M P′

2 a /∈ S

P1‖SP2
a,λ

−−−→M P1‖SP′
2

(SYNM)
P1

a,λ1
−−−→M P′

1 P2
a,λ2

−−−→M P′
2 a∈ S

P1‖SP2
a,λ1⊗λ2
−−−→M P′

1‖SP′
2

Table 1: Structured operational semantic rules for MPC

which P can execute actions of namea that lead toD:

rate(P,a,D) = ∑{|λ ∈ R>0 | ∃P′ ∈ D.P
a,λ

−−−→M P′ |}
where{| and |} are multiset delimiters and the summation is taken to be zeroif its multiset is empty.
By summing up the rates of all the actions ofP, we obtain the total exit rate ofP, i.e., ratet(P) =
∑a∈Namerate(P,a,PM), which is the reciprocal of the average sojourn time associated withP.

Definition 3.1 An equivalence relationB overPM is a Markovian bisimulation iff, whenever(P1,P2) ∈
B, then for all action namesa∈ Nameand equivalence classesD ∈ PM/B:

rate(P1,a,D) = rate(P2,a,D)
Markovian bisimilarity∼MB is the largest Markovian bisimulation.

As shown in [11, 10, 6, 7], the relation∼MB possesses the following properties:

• ∼MB is a congruence with respect to all the operators of MPC as well as recursion.

• ∼MB has a sound and complete axiomatization whose basic laws areshown below:

(AMB,1) P1+P2 = P2+P1

(AMB,2) (P1+P2)+P3 = P1+(P2+P3)
(AMB,3) P+0 = P
(AMB,4) <a,λ1>.P+<a,λ2>.P = <a,λ1+λ2>.P

The last one encodes the race policy and hence replaces the idempotency lawP+P= P valid for
nondeterministic processes. The other laws are the usual distribution laws for the hiding operator
and the expansion law for the parallel composition operator.
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• ∼MB induces a CTMC-level aggregation known as ordinary lumpability, which is exact both at
steady state and at transient state.

• ∼MB can be decided in polynomial time for all finite-state processes.

In [3], we have weakened the distinguishing power of∼MB by relating sequences of exponentially
timedτ-actions to single exponentially timedτ-actions having the same average duration and execution

probability as the sequences. GivenP ∈ PM , we say thatP is stable ifP 6
τ ,λ

−−−→M P′ for all λ andP′,
otherwise we say that it is unstable. In the latter case, we say that P is fully unstable iff, whenever

P
a,λ

−−−→M P′, thena= τ . We denote byPM,fu andPM,nfu the sets of process terms ofPM that are fully
unstable and not fully unstable, respectively.

The most natural candidates as sequences of exponentially timed τ-actions to abstract are those
labeling computations that traverse fully unstable states.

Definition 3.2 Let n ∈ N>0 and P1,P2, . . . ,Pn+1 ∈ PM. A computationc of length n from P1 to Pn+1

having the formP1
τ ,λ1

−−−→M P2
τ ,λ2

−−−→M . . .
τ ,λn

−−−→M Pn+1 is reducible iffPi ∈ PM,fu for all i = 1, . . . ,n.

If reducible, the computationc above can be reduced to a single exponentially timedτ-transition whose
rate is obtained from the positive real value below:

probtime(c) =

(
n
∏
i=1

λi
rate(Pi ,τ ,PM)

)
·

(
n
∑

i=1

1
rate(Pi ,τ ,PM)

)

by leaving its first factor unchanged and taking the reciprocal of the second one. The valueprobtime(c)
is a measure of the execution probability ofc (first factor: product of the execution probabilities of the
transitions ofc) and the average duration ofc (second factor: sum of the average sojourn times in the
states traversed byc).

The weak variant of∼MB defined in [3] is such that (i) processes inPM,nfu are dealt with as in∼MB

and (ii) the length of reducible computations from processes inPM,fu to processes inPM,nfu is abstracted
away while preserving the execution probability and the average duration of those computations. In
the latter case, we need to lift measureprobtime from individual reducible computations to multisets
of reducible computations. Denoting byreducomp(P,D, t) the multiset of reducible computations from
P∈ PM,fu to someP′ in D ⊆ PM whose average duration ist ∈R>0, we consider the followingt-indexed
multiset of sums ofprobtimemeasures:

pbtm(P,D) =
⋃

t∈R>0 s.t. reducomp(P,D,t) 6= /0
{| ∑

c∈reducomp(P,D,t)
probtime(c) |}

Definition 3.3 An equivalence relationB ⊆ (PM,nfu ×PM,nfu)∪ (PM,fu ×PM,fu) is a weak Markovian
bisimulation iff for all (P1,P2) ∈ B:

• If P1,P2 ∈ PM,nfu, then for alla∈ Nameand equivalence classesD ∈ PM/B:
rate(P1,a,D) = rate(P2,a,D)

• If P1,P2 ∈ PM,fu, then for all equivalence classesD ∈ PM,nfu/B:
pbtm(P1,D) = pbtm(P2,D)

Weak Markovian bisimilarity≈MB is the largest weak Markovian bisimulation.

Example 3.4 Typical cases of weakly Markovian bisimilar process terms are:
<τ ,µ>.<τ ,γ>.Q <τ ,γ>.<τ ,µ>.Q <τ , µ ·γ

µ+γ>.Q
and:
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<τ ,µ>.(<τ ,γ1>.Q1+<τ ,γ2>.Q2)

<τ , γ1
γ1+γ2

·
(

1
µ + 1

γ1+γ2

)−1
>.Q1+<τ , γ2

γ1+γ2
·
(

1
µ + 1

γ1+γ2

)−1
>.Q2

and:
<τ ,µ1>.<τ ,γ>.Q1+<τ ,µ2>.<τ ,γ>.Q2

<τ , µ1
µ1+µ2

·
(

1
µ1+µ2

+ 1
γ

)−1
>.Q1+<τ , µ2

µ1+µ2
·
(

1
µ1+µ2

+ 1
γ

)−1
>.Q2

whereQ,Q1,Q2 ∈ PM,nfu (see [3] for the details).

Similar to weak bisimilarity for nondeterministic processes,≈MB is not a congruence with respect to
the alternative composition operator. This problem, whichhas to do with fully unstable process terms,
can be prevented by adopting a construction analogous to theone used in [13] for weak bisimilarity over
nondeterministic process terms. In other words, we have to apply the exit rate equality check also to fully
unstable process terms, with the equivalence classes to consider being the ones with respect to≈MB.

Definition 3.5 Let P1,P2 ∈ PM . We say thatP1 is weakly Markovian bisimulation congruent toP2,
written P1 ≃MB P2, iff for all action namesa∈ Nameand equivalence classesD ∈ PM/≈MB :

rate(P1,a,D) = rate(P2,a,D)

As shown in [3], the relation≃MB possesses the following properties:

• ≃MB is the coarsest congruence – with respect to all the operators of MPC other than parallel
composition, as well as recursion – contained in≈MB .

• ≃MB has a sound and complete axiomatization over the set of sequential process terms (i.e., pro-
cess terms with no occurrences of the parallel composition operator), whose basic laws are those
of ∼MB plus the following one (which includes the various cases shown in Ex. 3.4):

(AMB,5) <a,λ>. ∑
i∈I

<τ ,µi>. ∑
j∈Ji

<τ ,γi, j>.Pi, j =

<a,λ>. ∑
i∈I

∑
j∈Ji

<τ , µi
µ ·

γi, j

γ ·
(

1
µ + 1

γ

)−1
>.Pi, j

whereI 6= /0 is a finite index set,Ji 6= /0 is a finite index set for alli ∈ I , µ = ∑i∈I µi , andγ =∑ j∈Ji
γi, j

for all i ∈ I .

• ≃MB induces a CTMC-level aggregation called W-lumpability, which is exact only at steady state
and performs reductions consistent withAMB,5. Moreover,≃MB preserves transient properties
expressed in terms of the mean time to certain events.

• ≃MB can be decided in polynomial time only for those finite-stateprocesses that are not divergent,
i.e., that have no cycles of exponentially timedτ-transitions.

4 Compositionality for Concurrent Processes

The relation≃MB is not a congruence with respect to the parallel compositionoperator, thus restricting
the usefulness for compositional state space reduction purposes of the framework developed in [3].

Example 4.1 Assuming parallel composition to have lower priority than any other operator, it holds that:
<a,λ>.<τ ,µ>.<τ ,γ>.0 ≃MB <a,λ>.<τ , µ ·γ

µ+γ>.0
while:

<a,λ>.<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0 6≃MB <a,λ>.<τ , µ ·γ
µ+γ>.0‖ /0<a′,λ ′>.0
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First of all, we note that:
<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0 6≈MB <τ , µ ·γ

µ+γ>.0‖ /0<a′,λ ′>.0
In fact, fora′ 6= τ the two process terms are not fully unstable with:

rate(<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0,τ , [<τ ,γ>.0‖ /0<a′,λ ′>.0]≈MB ) = µ
rate(<τ , µ ·γ

µ+γ>.0‖ /0<a′,λ ′>.0,τ , [<τ ,γ>.0‖ /0<a′,λ ′>.0]≈MB ) = 0
On the other hand, fora′ = τ the two process terms are fully unstable with:

pbtm(<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0, [0‖ /0 0]≈MB ) = {|( µ
µ+λ ′ ·

γ
γ+λ ′ ) · (

1
µ+λ ′ +

1
γ+λ ′ +

1
λ ′ ),

( µ
µ+λ ′ ·

λ ′

γ+λ ′ ) · (
1

µ+λ ′ +
1

γ+λ ′ +
1
γ ),

( λ ′

µ+λ ′ ) · (
1

µ+λ ′ +
1
µ + 1

γ ) |}

pbtm(<τ , µ ·γ
µ+γ>.0‖ /0<a′,λ ′>.0, [0‖ /0 0]≈MB ) = {|(

µ ·γ
µ+γ

µ ·γ
µ+γ +λ ′ ) · (

1
µ ·γ

µ+γ +λ ′ +
1
λ ′ ),

( λ ′

µ ·γ
µ+γ +λ ′ ) · (

1
µ ·γ

µ+γ +λ ′ +
1

µ ·γ
µ+γ

) |}

Thus:
[<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0]≈MB ∩ [<τ , µ ·γ

µ+γ>.0‖ /0<a′,λ ′>.0]≈MB = /0
and hence:

rate(<a,λ>.<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0,a, [<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0]≈MB) = λ
whereas:

rate(<a,λ>.<τ , µ ·γ
µ+γ>.0‖ /0<a′,λ ′>.0,a, [<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0]≈MB ) = 0

Also the two divergent process terms recX : <τ ,µ>.<τ ,γ1>.X and recX : <τ ,µ>.<τ ,γ2>.X, γ1 6= γ2,
are related by≃MB but this no longer holds when placing them in the context‖ /0<a′,λ ′>.0, a′ 6= τ .

Taking inspiration from the weak isomorphism of [11], in this section we show how to retrieve full
compositionality by enhancing the abstraction capabilityof ≃MB in the case of concurrent computations.
The price to pay is that exactness will hold at steady state only for a certain class of processes.

4.1 Revising Weak Markovian Bisimilarity

As we have seen,≈MB and≃MB abstract from sequences of exponentially timedτ-actions while preserv-
ing (at the computation level) their execution probabilityand average duration and (at the system level)
transient properties expressed in terms of the mean time to certain events as well as steady-state perfor-
mance measures. This kind of abstraction has been done in thesimplest possible case: sequences of
exponentially timedτ-actions labeling computations that traversefully unstable states.

In order to achieve compositionality when dealing with concurrent processes, a revision of the notion
of reducible computation is unavoidable. More precisely, we need to address the case of sequences
of exponentially timedτ-actions labeling computations that traverseunstable states satisfying certain
conditions. The reason is that, if we view a system description as the parallel composition of several
sequential processes, any of those processes may have localcomputations traversingfully unstable local
states, but in the overall system those local states may bepart of global states that are not fully unstable.

For instance, this is the case with the process<τ ,µ>.<τ ,γ>.0‖ /0<a,λ>.0, whose underlying la-
beled multitransition system is depicted below on the left:

a,λ

s1,2

s1,5

a,λ

s1,3

s1,6

a,λ

s1,1

1,4s µτ,

µτ, τ γ,

τ γ,

τ, .γµ /(µ+γ )

τ, .γµ /(µ+γ )

a,λ

s2,2

s2,4

a,λ

s2,1

s2,3

As can be noted, the fully unstable local states traversed bythe only local computation of the sequential
process<τ ,µ>.<τ ,γ>.0 may become part of unstable global states that are not fully unstable ifa 6= τ .
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Our objective is to change the notion of reducible computation in such a way that the labeled multitransi-
tion system on the left can be regarded as being weakly Markovian bisimilar to the labeled multitransition
system on the right. As can be noted, this implies that execution probabilities and average durations can
only be preservedat the level of local computations, hence transient properties expressed in terms of the
mean time to certain events can no longer be preserved at the system level.

In a concurrent setting, a sequence of exponentially timedτ-actions may be replicated due to inter-
leaving, in the sense that it may label several computationsthat share no transition. The revision of the
notion of reducible computation is thus based on the idea that, for each computation that traverses fully
unstablelocal states and is labeled with exponentially timedτ-actions, we have to recognize – and take
into account at once –all the replicasof that computation and pinpoint their initial and final states. In
our example, there are two replicas with initial statess1,1 ands1,4 and final statess1,3 ands1,6.

In general, a one-to-one correspondence can be establishedbetween the states traversed by any two
replicas by following the direction of the transitions. In our example, the pairs of corresponding states are
the two initial states(s1,1,s1,4), the two intermediate states(s1,2,s1,5), and the two final states(s1,3,s1,6).
We can say thatwhen moving vertically the current stage of the replicas is preserved.

In addition to the exponentially timedτ-transition belonging to the replica, any two states traversed
by the same replica can only possess transitions that are pairwise identically labeled. Those transitions
are originated from (the local states of) sequential processes that are in parallel with (the local state of)
the sequential process originating the considered reducible computation. The set of those transitions not
belonging to the replica can thus be viewed as thecontextof the replica. In our example, the context of
the top replica has a single transition labeled with<a,λ>, whereas the context of the bottom replica is
empty. Thus,when moving horizontally the context of each replica is preserved, i.e., the context does
not change along a replica. On the other hand,different replicas may have different contexts.

With regard to the identification of the boundary of the replicas of a reducible computation, there are
two possibilities. One is that the final states have no exponentially timedτ-transition, as in our example.
The other is that, at a certain point, each replica has an exponentially timedτ-transition back to one of
the preceding states of the replica itself, as shown below with a variant of our example:

a,λ a,λ

µτ,

µτ,

τ γ,

τ γ,

a,λ

τ, .γµ /(µ+γ )

τ, .γµ /(µ+γ )

In this case, for each replica we view its return state as being its final state. In the figure above, for both
replicas the final state coincides with the initial state.

The new notion of replicated reducible computation must be accompanied by an adjustment of the
way measureprobtime and multisetpbtm are calculated. Given a computationc of the form

P1
τ ,λ1

−−−→M P2
τ ,λ2

−−−→M . . .
τ ,λn

−−−→M Pn+1 that is reducible in the sense of Def. 3.2, the denominator of
the i-th fraction occurring in each of the two factors ofprobtime(c) can indifferently berate(Pi,τ ,PM)
or ratet(Pi): those two values coincide becausePi ∈ PM,fu for all i = 1, . . . ,n. In contrast, if the reducible
computationc is replicated, each of its replicas has a possibly differentcontext and it is fundamental
that rate(Pi,τ ,PM) values are taken as denominators, so as to focus onτ-transitions. Since there can be
τ-transitions also in the context, each destination of thoseexit rates needs to be a specific setP con-
taining only the states traversed by the replicas rather than the generic setPM. Taking into account only
τ-transitions leading to states inP ensurescontext independencein this concurrent setting, which opens
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the way to the achievement of the sameprobtimevalue for all the replicas of a reducible computation.
We are by now ready to provide the definition of replicated reducible computation together with the

revision of bothprobtimeand pbtm. Since several reducible computations can depart from the same
state (see the second and the third pair of process terms of Ex. 3.4), in general we will have to handle
replicated trees of reducible computationsrather than replicated individual reducible computations.

In the sequel, we considerm∈ N>0 process termsP1,P2, . . . ,Pm ∈ PM different from each other. We

suppose thatPk
ak,λk

−−−→M Pk+1 for all k = 1, . . . ,m− 1, with Pk having a nonempty tree of computations
that are locally reducible for allk= 1, . . . ,m (sees1,1 ands1,4 in our example). This tree is formalized as
the setCτ

k of all the finite-length computations starting fromPk such that each of them (i) is labeled with a
sequence of exponentially timedτ-actions, (ii) traverses states that are all different withthe possible ex-
ception of the final state and one of its preceding states, and(iii) shares no transitions with computations
in Cτ

k′ for all k′ 6= k.
We further suppose that the union ofCτ

1,C
τ
2, . . . ,C

τ
m can be partitioned inton∈N>0 groups of replicas

each consisting ofm computations from all them sets, such that all the computations in the same group
have the same length and are labeled with the same sequence ofexponentially timedτ-actions. As a
consequence, for allk= 1, . . . ,m we can write:

Cτ
k = {ck,i ≡ Pk,i,1

τ ,λi,1

−−−→M Pk,i,2

τ ,λi,2

−−−→M . . .
τ ,λi,li

−−−→M Pk,i,li+1 | 1≤ i ≤ n}
wherePk,i,1 ≡ Pk is the initial state andl i ∈N>0 is the length of the computation for alli = 1, . . . ,n.

Definition 4.2 The family of computationsC τ = {Cτ
1,C

τ
2, . . . ,C

τ
m} is said to be generally reducible, or

g-reducible for short, iff eitherm= 1 and for alli = 1, . . . ,n:

• P1,i, j ∈ PM,fu for all j = 1, . . . , l i ;

• P1,i,li+1 ∈ PM,nfu or P1,i,li+1 ≡ P1,i, j for some j = 1, . . . , l i ;

or m≥ 1, with P1,i, j ∈ PM,nfu for all i = 1, . . . ,n and j = 1, . . . , l i whenm= 1, and for alli = 1, . . . ,n:

• For all k= 1, . . . ,m, j = 1, . . . , l i , and<a,λ> ∈ ActM :

1. [Deviation from the replica] IfPk,i, j
a,λ

−−−→M P′ with P′ 6≡ Pk,i, j+1, then:

a. [change of replica via context] eitherP′ ≡ Pk′,i, j for somek′ = 1, . . . ,m;
b. [change of computation] orP′ ≡ Pk,i′, j ′ with a= τ andλ = λi′, j ′−1 for somei′ = 1, . . . ,n

other thani and somej ′ = 2, . . . , l i′+1.

2. [Context preservation along the replica] For allk′ = 1, . . . ,m, it holds thatPk,i, j
a,λ

−−−→M Pk′,i, j

iff Pk,i, j ′
a,λ

−−−→M Pk′,i, j ′ for all j ′ = 1, . . . , l i .

3. [Stage preservation across replicas] For alli′ = 1, . . . ,n other thani and j ′ = 2, . . . , l i′+1,

it holds thatPk,i, j
a,λ

−−−→M Pk,i′, j ′ iff Pk′,i, j
a,λ

−−−→M Pk′,i′, j ′ for all k′ = 1, . . . ,m.

• [Termination] One of the following holds:

4. Whenever there existsλi,li+1 ∈R>0 such thatPk,i,li+1

τ ,λi,li+1

−−−→M Pk,i,li+2 for all k= 1, . . . ,m, then
at least one of conditions 1, 2, and 3 above is not satisfied byPk′,i,li+1 for somek′ = 1, . . . ,m.

4̃. There is noλi,li+1 ∈R>0 such thatPk,i,li+1

τ ,λi,li+1

−−−→M Pk,i,li+2 for all k= 1, . . . ,m.

4̂. Pk,i,li+1 ≡ Pk,i, j for all k= 1, . . . ,m and somej = 1, . . . , l i .
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Some comments are now in order:

• In the case thatm= 1 and all the traversed states are fully unstable (see the “either” option),
Def. 4.2 coincides with Def. 3.2 except for the fact that the former considers a tree of computations
whilst the latter considers a single computation.

• The casem= 1 with P1,i, j ∈ PM,nfu for every i = 1, . . . ,n and j = 1, . . . , l i happens when all the
sequential process terms in parallel with the one originating the tree of locally reducible computa-
tions repeatedly execute a single action (selfloop transition), thus causing no replica of the tree to
be formed. Both this case and the casem≥ 2 are subject to conditions 1, 2, 3, and 4.

• Condition 1 establishes that each transition deviating (see P′ 6≡ Pk,i, j+1) from the replica of the
considered computation ofC τ :

– either is a vertical transition of the context that preserves the current stage of the replicas and
hence causes the passage to the corresponding state of another replica (k′ 6= k) or to the same
state of the same replica (k′ = k, meaning that one of the sequential process terms in parallel
with the one originating the considered computation repeatedly executes a single action);

– or is a transition belonging to some other computation inC τ starting from the same process
termPk as the considered computation.

These two facts together imply the maximality ofC τ , because taking into account deviating transi-
tions causes all replicas to be included. In addition, they prevent process terms like
<τ ,µ>.(<τ ,γ>.0+<a,λ>.0) +<a,λ>.0 and<τ , µ ·γ

µ+γ>.0+<a,λ>.0 – which do not con-
tain occurrences of parallel composition (m= 1) and have no fully unstable states whena 6= τ –
from being deemed to be equivalent.

• Condition 2 is related to condition 1.a and ensures that the context of a replica is preserved along
each state traversed by the replica.

• Condition 3 is related to condition 1.b and ensures that any transition belonging neither to the
considered computation nor to its context (i.e., belongingto some other computation inC τ ) is
present at the same stage of each replica of the considered computation.

• The three variants of condition 4 establish the boundary of the replicas of the considered com-
putation in a way that guarantees the maximality of the length of the replicas themselves under
(i) conditions 1, 2, and 3, (ii) the constraint that all of their transitions are labeled with exponen-
tially timed τ-actions, (iii) and the constraint that all the traversed states are different with the
possible exception of the final state and one of its precedingstates.

Let initial (C τ) = {Pk | 1 ≤ k ≤ m} and final(C τ) = {Pk,i,li+1 | 1 ≤ k ≤ m,1 ≤ i ≤ n} be the sets
of initial states and final states of the computations inC τ . In order to avoid interferences between the
computations inCτ

1,C
τ
2, . . . ,C

τ
m and the transitions belonging to the context of those computations, for

any computationck,i in C τ we consider the following context-free measure:

probtimecf(ck,i) =

(
li
∏
j=1

λi, j

rate(Pk,i, j ,τ ,Pk)

)
·

(
li
∑
j=1

1
rate(Pk,i, j ,τ ,Pk)

)

wherePk = {Pk,i′, j ′ | 1 ≤ i′ ≤ n,2 ≤ j ′ ≤ l i′+1}. In this way, all replicas of the same computation will
have the sameprobtimecf measure, as shown below.

Proposition 4.3 WheneverC τ is g-reducible, then for allk,k′ = 1, . . . ,mandi = 1, . . . ,n:
probtimecf(ck,i) = probtimecf(ck′,i)
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Moreover, we replace the generic multisetpbtm(P,D) with the more specific multisetspbtmcf(Pk,D∩
final(C τ)) for all Pk ∈ initial (C τ). The latter multisets are based onprobtimecf instead ofprobtime
as well as onreducompcf instead ofreducomp, where reducompcf(Pk,D ∩ final(C τ), t) is the multi-
set of computations identical to those inCτ

k that go fromPk to D∩ final(C τ) and have average dura-
tion t. We point out that computations of length zero are not considered ast ∈ R>0, so that whenever
Pk ∈ initial (C τ)∩D∩final(C τ), then the calculation ofpbtmcf(Pk,D∩final(C τ)) does take into account
computations identical to those inCτ

k going fromPk to itself.

Proposition 4.4 WheneverC τ is g-reducible, then for allk,k′ = 1, . . . ,m:
pbtmcf(Pk,final(C τ)) = pbtmcf(Pk′ ,final(C τ))

We are finally ready to introduce the revised definition of weak Markovian bisimilarity.

Definition 4.5 An equivalence relationB overPM is a g-weak Markovian bisimulation iff, whenever
(P1,P2) ∈ B, then:

• For all visible action namesa∈ Namev and equivalence classesD ∈ PM/B:
rate(P1,a,D) = rate(P2,a,D)

• If P1 is not an initial state of any g-reducible family of computations, thenP2 is not an initial state
of any g-reducible family of computations either, and for all equivalence classesD ∈ PM/B:

rate(P1,τ ,D) = rate(P2,τ ,D)

• If P1 is an initial state of some g-reducible family of computations, thenP2 is an initial state of
some g-reducible family of computations too, and for all g-reducible families of computationsC τ

1
with P1 ∈ initial (C τ

1 ) there exists a g-reducible family of computationsC τ
2 with P2 ∈ initial (C τ

2 )
such that for all equivalence classesD ∈ PM/B:

pbtmcf(P1,D∩final(C τ
1 )) = pbtmcf(P2,D∩final(C τ

2 ))

G-weak Markovian bisimilarity≈MB,g is the largest g-weak Markovian bisimulation.

Example 4.6 The process terms mentioned in each of the three cases of Ex. 3.4 are still related by≈MB,g.
Note that each of those process terms is the only initial state of a g-reducible family of computations
composed by a single computation (first case) or a single treeof computations (second and third case)
traversing only fully unstable states, thusm= 1 and the “either” option of Def. 4.2 applies.

Example 4.7 Let us reconsider the two process terms at the beginning of Ex. 4.1. Now we have:
<a,λ>.<τ ,µ>.<τ ,γ>.0 ≈MB,g <a,λ>.<τ , µ ·γ

µ+γ>.0
and:

<a,λ>.<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0 ≈MB,g <a,λ>.<τ , µ ·γ
µ+γ>.0‖ /0<a′,λ ′>.0

because it holds that:
<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0 ≈MB,g <τ , µ ·γ

µ+γ>.0‖ /0<a′,λ ′>.0
In fact, fora′ 6= τ the two process terms are the initial states of two g-reducible families of computations
C τ

1 andC τ
2 , respectively, each composed of two replicas – the first one having context{<a′,λ ′>} and

final state 0‖ /0<a′,λ ′>.0 and the second one having empty context and final state 0‖ /0 0 – with:
pbtmcf(<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0,D∩final(C τ

1 )) = {| 1
µ + 1

γ |}

pbtmcf(<τ , µ ·γ
µ+γ>.0‖ /0<a′,λ ′>.0,D∩final(C τ

2 )) = {| µ+γ
µ ·γ |}

wheneverD contains the final state 0‖ /0<a′,λ ′>.0, as the way of calculatingprobtimecf andpbtmcf does
not take the context into account.
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Fora′ = τ , in addition toC τ
1 andC τ

2 , the two process terms are the initial states of two further g-reducible
families of computationsC ′τ

1 andC ′τ
2 , respectively, each composed of two replicas of length 1 labeled

with <a′,λ ′>. In this case:
pbtmcf(<τ ,µ>.<τ ,γ>.0‖ /0<a′,λ ′>.0,D∩final(C ′τ

1 )) = {| 1
λ ′ |}

pbtmcf(<τ , µ ·γ
µ+γ>.0‖ /0<a′,λ ′>.0,D∩final(C ′τ

2 )) = {| 1
λ ′ |}

wheneverD contains the two≈MB,g-equivalent final states<τ ,µ>.<τ ,γ>.0‖ /0 0 and<τ , µ ·γ
µ+γ>.0‖ /0 0.

The two divergent process terms at the end of Ex. 4.1 are not related by≈MB,g becauseγ1 6= γ2; hence,
they no longer result in a disruption of compositionality when placed in the context‖ /0<a′,λ ′>.0.

We conclude by showing that there exists a relationship between≈MB,g and≈MB only for process
terms that have no cycles of exponentially timedτ-actions. The reason of this limitation is that≈MB,g

imposes checks on those cycles that are not always performedby ≈MB, like, e.g., in the case of the two
divergent process terms recX : <τ ,γ1>.X and recX : <τ ,γ2>.X whereγ1 6= γ2.

Proposition 4.8 Let P1,P2 ∈ PM be not divergent. Then:
P1 ≈MB P2 =⇒ P1 ≈MB,g P2

4.2 Congruence Property

The investigation of the compositionality of≈MB,g with respect to MPC operators leads to results analo-
gous to those for≈MB [3], plus the achievement of congruence with respect to parallel composition.

Proposition 4.9 Let P1,P2 ∈ PM . WheneverP1 ≈MB,g P2, then:

1. <a,λ>.P1 ≈MB,g <a,λ>.P2 for all <a,λ> ∈ ActM .

2. P1/H ≈MB,g P2/H for all H ⊆ Namev.

3. P1‖SP≈MB,g P2‖SP andP‖SP1 ≈MB,g P‖SP2 for all S⊆ Namev andP∈ PM .

The relation≈MB,g is not a congruence with respect to the alternative composition operator due to
fully unstable process terms: for instance, it holds that<τ ,µ>.<τ ,γ>.0 ≈MB,g <τ , µ ·γ

µ+γ>.0 whereas

<τ ,µ>.<τ ,γ>.0+<a,λ>.0 6≈MB,g <τ , µ ·γ
µ+γ>.0+<a,λ>.0. In fact, if it werea 6= τ , then we would

have:
rate(<τ ,µ>.<τ ,γ>.0+<a,λ>.0,τ , [0]≈MB,g) = 0

rate(<τ , µ ·γ
µ+γ>.0+<a,λ>.0,τ , [0]≈MB,g) = µ ·γ

µ+γ
otherwise fora= τ the two process terms would be the initial states of two g-reducible families of com-
putations, respectively, each composed of a single tree of computations with final state 0and we would
have:

pbtmcf(<τ ,µ>.<τ ,γ>.0+<a,λ>.0,{0}) = {| µ
µ+λ ·

(
1

µ+λ + 1
γ

)
, λ

µ+λ · 1
µ+λ |}

pbtmcf(<τ , µ ·γ
µ+γ>.0+<a,λ>.0,{0}) = {| 1

µ ·γ
µ+γ +λ |}

The congruence violation with respect to the alternative composition operator can be prevented by
adopting a construction analogous to the one used in [13] forweak bisimilarity over nondeterministic
process terms and adapted in [3] to≈MB. Therefore, we have to apply the exit rate equality check for
τ-actions also to process terms that are initial states of g-reducible families of computations, with the
equivalence classes to consider being the ones with respectto ≈MB,g.

Definition 4.10 Let P1,P2 ∈ PM . We say thatP1 is g-weakly Markovian bisimulation congruent toP2,
written P1 ≃MB,g P2, iff for all action namesa∈ Nameand equivalence classesD ∈ PM/≈MB,g:

rate(P1,a,D) = rate(P2,a,D)
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Proposition 4.11 ∼MB ⊂≃MB,g⊂≈MB,g, with ≃MB,g=≈MB,g over the set of process terms ofPM that
are not initial states of any g-reducible family of computations.

Proposition 4.12 Let P1,P2 ∈ PM and<a,λ> ∈ ActM . Then:
<a,λ>.P1 ≃MB,g <a,λ>.P2 ⇐⇒ P1 ≈MB,g P2

The relation≃MB,g turns out to be the coarsest congruence – with respect to all the operators of MPC
as well as recursion – contained in≈MB,g, as shown below.

Theorem 4.13 Let P1,P2 ∈ PM. WheneverP1 ≃MB,g P2, then:

1. <a,λ>.P1 ≃MB,g <a,λ>.P2 for all <a,λ> ∈ ActM .

2. P1+P≃MB,g P2+P andP+P1 ≃MB,g P+P2 for all P∈ PM .

3. P1/H ≃MB,g P2/H for all H ⊆ Namev.

4. P1‖SP≃MB,g P2‖SP andP‖SP1 ≃MB,g P‖SP2 for all S⊆ Namev andP∈ PM .

Theorem 4.14 Let P1,P2 ∈ PM. ThenP1 ≃MB,g P2 iff P1+P≈MB,g P2+P for all P∈ PM.

With regard to recursion, we need to extend≃MB,g to open process terms in the usual way. Similar to
other congruence proofs for bisimulation equivalence withrespect to recursion, here we rely on a notion
of g-weak Markovian bisimulation up to≈MB,g inspired by the notion of Markovian bisimulation up to
∼MB of [5]. This notion differs from its nondeterministic counterpart used in [13] due to the necessity of
working with equivalence classes in this Markovian setting.

Definition 4.15 Let P1,P2 ∈ PL M be process terms containing free occurrences ofk∈ N process vari-
ablesX1, . . . ,Xk ∈ Var at most. We defineP1 ≃MB,g P2 iff P1{Qi →֒ Xi | 1≤ i ≤ k} ≃MB,g P2{Qi →֒ Xi |
1≤ i ≤ k} for all Q1, . . . ,Qk ∈ PL M containing no free occurrences of process variables.

Definition 4.16 Let + denote the operation of transitive closure for relations. Abinary relationB

overPM is a g-weak Markovian bisimulation up to≈MB,g iff, whenever(P1,P2) ∈ B, then:

• For all visible action namesa∈ Namev and equivalence classesD ∈ PM/(B∪B−1∪ ≈MB,g)
+:

rate(P1,a,D) = rate(P2,a,D)

• If P1 is not an initial state of any g-reducible family of computations, then P2 is not
an initial state of any g-reducible family of computations either, and for all equivalence classes
D ∈ PM/(B∪B−1∪≈MB,g)

+:
rate(P1,τ ,D) = rate(P2,τ ,D)

• If P1 is an initial state of some g-reducible family of computations, thenP2 is an initial state of
some g-reducible family of computations too, and for all g-reducible families of computationsC τ

1
with P1 ∈ initial (C τ

1 ) there exists a g-reducible family of computationsC τ
2 with P2 ∈ initial (C τ

2 )
such that for all equivalence classesD ∈ PM/(B∪B−1∪ ≈MB,g)

+:
pbtmcf(P1,D∩final(C τ

1 )) = pbtmcf(P2,D∩final(C τ
2 ))

Proposition 4.17 Let B be a relation overPM . If B is a g-weak Markovian bisimulation up to≈MB,g,
then(P1,P2) ∈ B impliesP1 ≈MB,g P2 for all P1,P2 ∈ PM . Moreover(B∪B−1∪≈MB,g)

+ =≈MB,g.

Theorem 4.18 Let P1,P2 ∈ PL M be process terms containing free occurrences ofk∈ N process vari-
ablesX1, . . . ,Xk ∈ Var at most. WheneverP1 ≃MB,g P2, then:

recX1 : . . . : recXk : P1 ≃MB,g recX1 : . . . : recXk : P2
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4.3 Exactness at Steady State

We conclude by examining the exactness of the CTMC-level aggregation induced by≈MB,g and≃MB,g.
In general, a CTMC aggregation is said to be exact at steady state (resp. transient state) iff the steady-state
(resp. transient) probability of being in a macrostate of anaggregated CTMC is the sum of the steady-
state (resp. transient) probabilities of being in each of the constituent microstates of the original CTMC
from which the aggregated one has been obtained. This property implies the preservation of steady-state
(resp. transient) reward-based performance measures across CTMC models.

The aggregation to examine – which we call GW-lumpability – shares with the one induced by≈MB

and≃MB – called W-lumpability in [3] – the characteristic of viewing certain sequences of exponentially
timedτ-actions to be equivalent to individual exponentially timed τ-actions having the same average du-
ration and the same execution probability as the corresponding sequences when the latter are considered
locally to the processes originating them.1 On the other hand, due to the idea of context embodied in the
notion of g-reducible family of computations and the consequent capability of distinguishing between ac-
tion disabling and action interruption, a notable difference between GW-lumpability and W-lumpability
is that the former may aggregate states also in the case of concurrent processes, while the latter cannot.

Reducing a computation formed by at least two exponentiallytimed τ-transitions to a single expo-
nentially timedτ-transition with the same average duration amounts to approximating a hypoexponen-
tially (or Erlang) distributed random variable with an exponentially distributed random variable having
the same expected value. This implies that, in general, GW-lumpability cannot preserve transient per-
formance measures, as was the case with W-lumpability [3]. However, while W-lumpability at least
preserves transient properties expressed in terms of the mean time to certain events, this is no longer the
case with GW-lumpability as we have seen at the beginning of Sect. 4.1.

What turns out for GW-lumpability is that, similar to W-lumpability, it preserves steady-state per-
formance measures, provided that the states traversed by any replica of a reducible computation have
the same rewards and the transitions – belonging to the replica or to the context – departing from any
two traversed states have pairwise identical rewards. However, unlike W-lumpability, we have to confine
ourselves to processes in which synchronizations (if any) do not take place right before the beginning of
computations that are reducible according to the “or” option of Def. 4.2. This constraint comes from the
insensitivity conditions for generalized semi-Markov processes mentioned in [12, 8, 11].

Theorem 4.19 GW-lumpability is exact at steady state over every process termP∈ PM such that, for all
g-reducible families of computationsC τ in [[P]]M with sizem≥ 2, or sizem= 1 and all the traversed
states being not fully unstable, no state ininitial (C τ) is the target state of a transition in[[P]]M arising
from the synchronization of two or more actions.

Example 4.20 In order to illustrate the need for the constraint on synchronizations in Thm. 4.19, con-
sider the following two process terms:

P1 ≡ recX : <τ ,µ>.<τ ,γ>.<b,δ>.X ‖{b} recY : <a,λ>.<b,δ>.Y
P2 ≡ recX : <τ , µ ·γ

µ+γ>.<b,δ>.X‖{b} recY : <a,λ>.<b,δ>.Y
Observe thatP1 ≈MB,g P2 and that[[P1]]M and[[P2]]M are given by the two labeled multitransition systems
depicted at the beginning of Sect. 4.1, respectively, with an additional transition labeled with<b,δ>
from the final state to the initial one. In the case thatµ = γ = λ = δ = 1 andδ ⊗δ = δ , it turns out that
the steady-state probability distribution for[[P1]]M is as follows:

1To be precise, since the Markov property of the original CTMCis not preserved but the aggregated stochastic process is
still assumed to be a CTMC, it would be more appropriate to call those aggregations pseudo-aggregations [14].
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π[s1,1] = 2
13 π[s1,2] = 1

13 π[s1,3] = 1
13

π[s1,4] = 2
13 π[s1,5] = 3

13 π[s1,6] = 4
13

whereas the steady-state probability distribution for[[P2]]M is as follows:
π[s2,1] = 2

10 π[s2,2] = 1
10

π[s2,3] = 4
10 π[s2,4] = 3

10

Thus, the CTMC underlying[[P2]]M is not an exact aggregation of the CTMC underlying[[P1]]M because:
π[s1,1]+π[s1,2] 6= π[s2,1] π[s1,3] 6= π[s2,2]

π[s1,4]+π[s1,5] 6= π[s2,3] π[s1,6] 6= π[s2,4]

As can be noted, the transition in[[P1]]M labeled with<b,δ> arises from the synchronization of two
b-actions and its target state is the initial state of a computation belonging to a g-reducible family with
sizem= 2; hence, Thm. 4.19 does not apply.

In contrast, if we consider a synchronization-free variantof the two process terms above like for
instance:

P3 ≡ recX : <τ ,µ>.<τ ,γ>.<b1,δ1>.X ‖ /0 recY : <a,λ>.<b2,δ2>.Y
P4 ≡ recX : <τ , µ ·γ

µ+γ>.<b1,δ1>.X‖ /0 recY : <a,λ>.<b2,δ2>.Y
we have that forµ = γ = λ = δ1 = δ2 = 1 the steady-state probability distribution for[[P3]]M is:

π[s3,1] = 1
6 π[s3,2] = 1

6 π[s3,3] = 1
6

π[s3,4] = 1
6 π[s3,5] = 1

6 π[s3,6] = 1
6

and the steady-state probability distribution for[[P4]]M is:
π[s4,1] = 2

6 π[s4,2] = 1
6

π[s4,3] = 2
6 π[s4,4] = 1

6

hence the CTMC underlying[[P4]]M is an exact aggregation of the CTMC underlying[[P3]]M because:
π[s3,1]+π[s3,2] = π[s4,1] π[s3,3] = π[s4,2]

π[s3,4]+π[s3,5] = π[s4,3] π[s3,6] = π[s4,4]

5 Conclusion

In this paper, we have introduced≈MB,g and≃MB,g as variants of the weak Markovian bisimulation
equivalences≈MB and≃MB proposed in [3], which suffer from a limited usefulness for state space re-
duction purposes as they are not congruences with respect tothe parallel composition operator. The
motivation behind≈MB,g and≃MB,g is thus that of retrieving full compositionality. Taking inspiration
from the idea of preserving the context of [11], this has beenachieved by enhancing the abstraction ca-
pability – with respect to≈MB and≃MB – when dealing with concurrent computations. The price to pay
for the resulting compositional abstraction capability isthat the exactness at steady state of the induced
CTMC-level aggregation does not hold for all the consideredprocesses – as it was for≈MB and≃MB –
but only for sequential processes with abstraction and concurrent processes whose synchronizations do
not take place right before the beginning of computations tobe reduced. Additionally, not even transient
properties expressed in terms of the mean time to certain events are preserved in general.

With regard to [11], where weak isomorphism has been studied, our equivalences≈MB,g and≃MB,g

have been developed in the more liberal bisimulation framework. A more important novelty with respect
to weak isomorphism is that we have considered not only individual sequences of exponentially timed
τ-actions. In fact, we have addressed trees of exponentiallytimedτ-actions and we have established the
conditions under which such trees can be reduced – also in thepresence of parallel composition – by
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locally preserving both the average duration and the execution probability of their branches.
Another approach to abstracting fromτ-actions in an exponentially timed setting comes from [4],

where a variant of Markovian bisimilarity was defined that checks for exit rate equality with respect to
all equivalence classes apart from the one including the processes under examination. Congruence and
axiomatization results were provided for the proposed equivalence, and a logical characterization based
on CSL was illustrated in [2]. However, unlike≈MB,g and≃MB,g, nothing was said about exactness.

As far as future work is concerned, we would like to investigate equational and logical characteri-
zations of≃MB,g as well as conduct case studies for assessing its usefulnessin practice (especially with
respect to the constraint on synchronizations that guarantees steady-state exactness). With regard to
verification issues, since≃MB ⊂≃MB,g for non-divergent process terms, we have that the equivalence
checking algorithm developed for≃MB in [3] can be exploited for compositional state space reduction
with respect to≃MB,g, by applying it to each of the sequential processes composedin parallel.
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