
L. Bortolussi and H. Wiklicky (Eds.): QAPL 2013
EPTCS 117, 2013, pp. 19–33, doi:10.4204/EPTCS.117.2

c© Paolo Tranquilli
This work is licensed under the
Creative Commons Attribution License.

Indexed Labels for Loop Iteration Dependent Costs

Paolo Tranquilli∗

DISI (Dipartimento di Informatica – Scienza e Ingegneria)
Università di Bologna Alma Mater

tranquil@cs.unibo.it

We present an extension to the labelling approach, a technique for lifting resource consumption
information from compiled to source code. This approach, which is at the core of the annotating
compiler from a large fragment of C to 8051 assembly of the CerCo project, loses preciseness when
differences arise as to the cost of the same portion of code, whether due to code transformation
such as loop optimisations or advanced architecture features (e.g.cache). We propose to address this
weakness by formally indexing cost labels with the iterations of the containing loops they occur in.
These indexes can be transformed during the compilation, and when lifted back to source code they
produce dependent costs.

The proposed changes have been implemented in CerCo’s untrusted prototype compiler from a
large fragment of C to 8051 assembly.

1 Introduction

Recent years have seen impressive advancements in the field of formal description and certification of
software components. In the fields of compilers a well-documented example is CompCert, a project
which has spawned the proof of correctness of a compiler froma large fragment of C to assembly [9].
The success of this endeavour is also supported by a comparison with other compilers as to the number
of bugs found with testing tools [14].

The CerCo project [2] strives to add a significant aspect to the picture: certified resource consump-
tion. More precisely our aim is to build a certified C compilertargeting embedded systems that produces,
apart from object code functionally equivalent to the input, anannotationof the source code which is
a sound and precise description of the execution cost of the compiled code. Time and stack are the
immediate resources on which the method can be applied.

The current state of the art in commercial products that analyse reaction time or memory usage
of programs installed in embedded systems (e.g.Scade [8] or AbsInt [1]) is that the estimate is based
upon an abstract interpretation of the object code that may require explicit and untrusted annotations
of the binaries stating how many times loops are iterated (see e.g. [13]). Our aim, on the other hand,
is to lift cost information of small fragments of object code, so that these bits of information may be
compositionally combined at the source level, abstractingaway the specifics of the architecture and only
having to reason about standard C semantics the programmer will be familiar with. This information can
be used to decide complexity assertions either with pencil and paper or with a tool for automated and
formal reasoning about C programs such as Frama-C [3].

The theoretical basis of the CerCo compiler has been outlined by Amadioet al [6], where in partic-
ular the labelling approach is described. Summarising, theproposal consists in ‘decorating’ the source
code by inserting labels at key points. These labels are preserved as compilation progresses, from one
intermediate language to another. Once the final object codeis produced, such labels should correspond

∗This work is funded by the CerCo FET-Open EU Project.

http://dx.doi.org/10.4204/EPTCS.117.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

20 Indexed Labels for Loop Iteration Dependent Costs

to the parts of the compiled code that have a constant cost. This cost can then be assigned to blocks of
source code.

Two properties must hold of any cost estimate given to blocksof code. The first property, paramount
to the correctness of the method, issoundness—the actual execution cost must be bounded by the esti-
mate. In the labelling approach, this is guaranteed if everyloop in the control flow of the compiled code
passes through at least one cost label. Were it not the case, the cost of the loop would be taken in charge
by a label external to it, so that any constant cost assignment would be invalidated by enough iterations
of the loop. The second property, optional but desirable, ispreciseness—the estimateis the actual cost.
This is of particular importance for embedded real-time systems, where in particular situations we may
care that a code runs forat leastsome clock cycles. In the labelling approach, this is true if, for every
label, every possible execution of the compiled code starting from such a label yields the same cost be-
fore hitting another one. In simple architectures such as the 8051 micro-controller which is targeted by
the current stage of the CerCo project, this can be guaranteed by placing labels at the start of any branch
in the control flow, and by ensuring that no labels are duplicated.

The reader should note that the above mentioned requirements state properties that must hold for the
code obtainedat the endof the compilation chain. Even if one is careful about injecting the labels at
suitable places in the source code, the requirements might still fail because of two main obstacles.

• The compilation process might introduce important changesin the control flow, inserting loops or
branches. This might happen for example when replacing operations that are unavailable in the
target architecture, such as generic shift and multi-byte division in the 8051 architecture1.

• Even when the compiled codedoes—as far as the the syntactic control flow graph is concerned—
respect the conditions for soundness and preciseness, the cost of blocks of instructions might not
be independent of context and thus not compositional, so that different passes through a label
might have different costs. This becomes a concern if one wishes to apply the approach to more
complex architectures, for example one with caching or pipelining.

Even if we solved the problem outlined in the first point for our current compilation chain, the point
remains a weakness of the current labelling approach when itcomes to some common code transforma-
tions. In particular, mostloop optimisationschange the control flow graph duplicating code and adding
or changing the branches. An example optimisation of this kind is loop peeling, where a first iteration
of the loop is hoisted out of and before its body. This optimisation is employed by compilers in order
to trigger other optimisations, such as dead code elimination or invariant code motion. Here, the hoisted
iteration might possibly be assigned a different cost than later iterations.

The second point above highlights another weakness. Different tools allow to predict up to a certain
extent the behaviour of cache. For example, theaiT tool [1] allows the user to estimate the worst-case
execution time taking into account advanced features of thetarget architecture. While such a tool is not fit
for a compositional approach which is central to CerCo’s project2, aiT’s ability to produce tight estimates
of execution costs would still enhance the effectiveness ofthe CerCo compiler,e.g. by integrating such
techniques in its development. A typical case where cache analysis yields a difference in the execution
cost of a block is in loops: the first iteration will usually stumble upon more cache misses than subsequent
iterations.

If one looks closely, the source of the two weaknesses of the regular labelling approach of [6] outlined
above is common: the inability to state different costs for different occurrences of labels in the execution

1The reader might see the work outlined in [5] to get a grasp of how we tackle this problem in CerCo’s compiler.
2aiT assumes the cache is empty at the start of computation, and treats each procedure call separately, unrolling a great part

of the control flow.

Paolo Tranquilli 21

x,y, . . . (identifiers) e, f , . . . (expressions)
P,S,T, . . . ::= skip | s; t | if e then Selse T | while edo s | x := e (statements)

Figure 1: The syntax ofImp.

trace. The difference in cost might be originated by labels being duplicated along the compilation, or by
the costs being sensitive to the current state of execution.

The work we present here addresses this weakness by introducing cost labels that are dependent on
which iteration of its containing loops it occurs in. This isachieved by means ofindexed labels; all cost
labels are decorated with formal indexes coming from the loops containing such labels. These indexes
allow us to rebuild, even after multiple loop transformations, which iterations of the original loops in
the source code a particular label occurrence belongs to. During the annotating stage, this information is
presented to the user by means ofdependent costs.

Here we concentrate on integrating the labelling approach with two loop transformations—loop peel-
ing andloop unrolling. They will be presented for a toy language in Section 2, For general information
on compiler optimisations (and loop optimisations in particular) we refer the reader to the vast literature
on the subject (e.g.[12, 11]).

The proposed changes have been implemented in CerCo’s untrusted prototype compiler available on
CerCo’s homepage3. For lack of space the present work will not delve into the details of the implemen-
tation.

Whilst we cover only two loop optimisations in this paper, weargue that the work presented herein
poses a good foundation for extending the labelling approach, in order to cover more and more common
optimisations, as well as gaining insight into how to integrate advanced cost estimation techniques, such
as cache analysis, into the CerCo compiler. Moreover loop peeling itself has the fortuitous property of
enhancing and enabling other optimisations. Experimentation with CerCo’s untrusted prototype com-
piler, which implements constant propagation and partial redundancy elimination [10, 12], show how
loop peeling enhances those other optimisations.

Outline. We will present our approach on a minimal ‘toy’ imperative language,Imp with gotos, which
we present in Section 2 along with formal definitions of the loop transformations. This language already
presents most of the difficulties encountered when dealing with C, so we stick to it for the sake of
this presentation. In Section 3 we summarize the labelling approach as presented in [6]. Section 4
presentsindexed labels, our proposal for dependent labels which are able to describe precise costs even
in the presence of the various loop transformations we consider, together with a more detailed example
(Subsection 4.5). Finally Section 5 speculates on further work on the subject.

2 The minimal imperative language Imp

We briefly outline the toy language, the minimalist imperative languageImp. Its syntax is presented
in Figure 1. We may omit theelse clause of a conditional if it leads to askip statement. The precise
grammar for expressions is not particularly relevant so we do not give one in full. We will use the notation
(S,K,s) → (S′,K′,s′) for Imp’s small-step semantics of which we skip the unsurprising definition. S is

3http://cerco.cs.unibo.it/

http://cerco.cs.unibo.it/

22 Indexed Labels for Loop Iteration Dependent Costs

i f b then

S;
wh i l e b do S

7→

wh i l e b do S 7→

wh i l e b do

S;
i f b then

S;
...
i f b then

S

Figure 2: Loop peeling (left) and loop unrolling (right).

the statement being executed,K is a continuation (i.e. a stack of statements to be executed afterS) ands
is the store (i.e. a map from variables to integers).

Further down the compilation chain. We abstract over the rest of the compilation chain. We posit the
existence, for every languageL further down the compilation chain, of a suitable notion of ‘sequential
instructions’, wherein each instruction has a single natural successor. To these sequential instructions we
can add our own.

Loop transformations. We present the loop transformations we deal with in Figure 2.These trans-
formations are local,i.e. they target a single loop and transform it. Which loops are targeted may be
decided by somead hocheuristic. However, the precise details of which loops are targeted and how is
not important here.

As already mentioned in the introduction, loop peeling consists in preceding the loop with a copy
of its body, appropriately guarded. This is usually done to trigger further optimisations. Integrating this
transformation into the labelling approach would also allow, in the future, the integration of a common
case of cache analysis, as predicting cache hits and misses benefits from a form ofvirtual loop peeling [7].

Loop unrolling consists of the repetition of several copiesof the body of the loop inside the loop
itself (inserting appropriate guards, or avoiding them altogether if enough information about the loop’s
guard is available at compile time). This can limit the number of (conditional or unconditional) jumps
executed by the code and trigger further optimisations dealing with pipelining, if appropriate for the
architecture. Notice that we present unrolling in a wilfully näıveversion. On the one hand usually less
general loops and more well-behaving loops are targeted; onthe other hand, conditionals are seldom used
to cut up the body of the unrolled loop. However we are mainly interested in the changes to the control
flow the transformation does. The problem this transformation poses to CerCo’s labelling approach are
independent of the sophistication of the actual transformation.

We decided to apply transformations in the front-end in order to only target loops explicitly written
by the programmer. This is because we need to output source code annotations that are meaningful to
the user, and in order to do so we only transform loops that were explicitly written as so.

Example 1. In Figure 3 we show a program (a wilfully inefficient computation of the sum of the firstn
factorials) and a possible combination of transformationsapplied to it (again for the sake of presentation
rather than efficiency).

Paolo Tranquilli 23

s := 0 ;
i := 0 ;
wh i l e i < n do

p := 1 ;
j := 1 ;
wh i l e j ≤ i do

p := j ∗ p ;
j := j +1 ;

s := s+ p ;
i := i+1 ;

s := 0 ;
i := 0 ;
i f i < n then

p := 1 ;
j := 1 ;
wh i l e j ≤ i do

p := j ∗ p ;
j := j +1 ;

s := s+ p ;
i := i+1 ;
wh i l e i < n do

p := 1 ;
j := 1 ;
i f j ≤ i then

p := j ∗ p ;
j := j +1 ;
i f j ≤ i then

p := j ∗ p ;
j := j +1 ;
wh i l e j ≤ i do

p := j ∗ p ;
j := j +1 ;
i f j ≤ i then

j := j +1 ;
s := s+ p ;
i := i+1 ;
i f i < n then

p := 1 ;
j := 1 ;
wh i l e j ≤ i do

p := j ∗ p ;
j := j +1 ;
i f j ≤ i do

p := j ∗ p ;
j := j +1 ;

s := s+ p ;
i := i+1 ;

unrolled

peeled

unrolled

unrolled

peeled

Figure 3: An example of loop transformations. Blocks are delimited by indentation.

3 Labelling: a quick sketch of the previous approach

Plainly labelledℓImp is obtained by adding to the codecost labels(with metavariablesα ,β , . . .), and
cost-labelled statements:

S,T ::= · · · | α : S

Cost labels allow us to track some program points along the compilation chain. For further details we
refer to [6].

The small step semantics turns into a labelled transition system and a natural notion of trace (i.e. lists
of labels) arises. The small-step rules ofImp remain as unlabelled steps, while adding the rule

(α : S,K,s)
α
→ (S,K,s)

24 Indexed Labels for Loop Iteration Dependent Costs

Cost labels are thus emitted by cost-labelled statements only4. We then write
λ
→∗ for the transitive closure

of the small step semantics which produces by concatenationthe traceλ .

Labelling. Given anImp programP its labelling in ℓImp is defined byα : L (P), putting cost labels
after every branching statement, at the start of both branches, and a cost label at the beginning of the
program. The relevant recursive cases for the definition ofL (P) are

L (if e then Selse T) = if e then α : L (S) else β : L (T)

L (while edo S) = (while edo α : L (S));β : skip

whereα ,β are fresh cost labels. In all other cases the definition just passes to substatements. Notice
that labelling enjoys soundness (a label is added inside each loop) and preciseness (there is a label at all
branches, included the loop-exiting one).

Labels in the rest of the compilation chain. All languages further down the chain get a new sequential
statementemit α whose effect is to be consumed in a labelled transition whilekeeping the same state.
All other instructions guard their operational semantics and do not emit cost labels.

Preservation of semantics throughout the compilation process is restated, in rough terms, as:

starting state ofP
λ
→∗ halting state⇐⇒ starting state ofC (P)

λ
→∗ halting state (1)

HereP is a program of a language along the compilation chain, starting and halting states depend on the
language, andC is any of the compilation passes5. This must in particular be true for any optimisation
pass the compilation undergoes.

Instrumentations. Let C be the whole compilation fromℓImp to the labelled version of some low-
level languageL. Supposing such compilation has not introduced any new loopor branching, we have
that:

• every loop contains at least a cost label;

• every branching has different labels for the two branches.

With these two conditions, we have that each and every cost label in C (P) for any P corresponds to
a block of sequential instructions, to which we can assign a constantcost6. As we have explained
in the introduction, the two properties above ensuresoundnessand precisenessof this cost estimate
respectively. We therefore may assume the existence of acost mappingκP from cost labels to natural
numbers, assigning to each cost labelα the cost of the block containing the single occurrence ofα .

Given any cost mappingκ , we can enrich a labelled program so that a particular fresh variable (the
cost variable c) keeps track of the summation of costs during the execution.We call this procedure
instrumentationof the program, and it is defined recursively by:

I (α : S) = c := c+κ(α);I (S)

In all other cases the definition passes to substatements. One can then reason on the instrumented version
of the code like he would on any program, asserting statements about complexity by inspectingc.

4In the general case, because of the conditional ternary operator, any evaluation of expressions can emit cost labels too.
5The case of divergent computations needs to be addressed too. Also, the requirement can be weakened by demanding a

weaker form of equivalence of the traces than equality. Bothof these issues are beyond the scope of this presentation.
6This in fact requires the machine architecture to be ‘simpleenough’, or for some form of execution analysis to take place.

Paolo Tranquilli 25

The problem with loop optimisations. Let us take loop peeling, and apply it to the labelling of a
program without any prior adjustment:

(while edo α : S);β : skip 7→ (if b then α : S;while b do α : S);β : skip

What happens is that the cost labelα is duplicated with two distinct occurrences. If these two occurrences
correspond to different costs in the compiled code, the bestthe cost mapping can do is to take the
maximum of the two, preserving soundness (i.e. the cost estimate still bounds the actual one) but losing
preciseness (i.e. the actual cost could be strictly less than its estimate).

4 Indexed labels

This section presents the core of the new approach. In brief points it amounts to the following:

4.1. Enrich cost labels with formal indexes stating, for each loop containing the label in the source code,
what iteration it occurs in.

4.2. Each time a loop transformation is applied and a cost labels is split in different occurrences, each of
these will be reindexed so that every time they are emitted their position in the original loop will be
reconstructed.

4.3. Along the compilation chain, alongside theemit instruction we add other instructions updating the
indexes, so that iterations of the original loops can be rebuilt at the operational semantics level even
when the original structure of loops is lost.

4.4. The machinery computing the cost mapping will still work, but assigning costs to indexed cost labels,
rather than to cost labels as we wish. However,dependent costscan be calculated, where dependency
is on which iteration of the containing loops we are in.

4.1 Indexing the cost labels

Formal indexes and ιℓImp. Let i0, i1, . . . be a sequence of distinguished fresh identifiers that will be
used as loop indexes. Asimple expressionis an affine arithmetical expression in one of these indexes,
that isa∗ ik +b with a,b,k ∈ N. Simple expressionse1 = a1 ∗ ik +b1 ande2 = a2 ∗ ik +b2 in the same
index can be composed—substitutinge2 in the ik of e1 we havee1 ◦e2 := (a1a2) ∗ ik+(a1b2+b1), and
this operation has an identity element 1∗ ik +0 (which we will denote simply byik). Constants can be
expressed as simple expressions, so that we identify a natural c with 0∗ ik+c.

An indexing(with metavariablesI , J, . . .) is a list of transformations of successive formal indexes
dictated by simple expressions, that is a mapping7

i0 7→ a0 ∗ i0+b0, . . . , ik−1 7→ ak−1 ∗ ik−1+bk−1

An indexed cost label(metavariablesA, B, . . .) is the combination of a cost labelα and an indexing
I , writtenα〈I〉. The cost label underlying an indexed one is called itsatom.

Imp with indexed labels (from now onιℓImp) is defined by having loops with a formal index attached
to them and by allowing statements to be labelled by indexed labels:

S,T, . . . ::= · · · ik : while edo S| A : S

7Here we restrict each mapping to be one from an index to a simple expressionon the same index. This might not be the
case if more loop optimisations are accounted for (for example, interchanging two nested loops could give rise to an indexing
like i0 7→ i1, i1 7→ i0).

26 Indexed Labels for Loop Iteration Dependent Costs

Notice that unindexed loops may still exist in the language:though it does not concern this simple toy
example, they would correspond to multi-entry loops which are ignored by indexing and optimisations
in a scenario with gotos.

We will discussιℓImp’s semantics later, in Subsection 4.3.

Indexed labelling. In order to compute theindexed labellingL ι of a program, we need to keep track
of the nesting of indexed loops as we visit the program abstract syntax tree.

Let Idk be the indexing of lengthk made from identity simple expressions,i.e. the sequencei0 7→
i0, . . . , ik−1 7→ ik−1. We define the tiered indexed labellingL ι(S,k) by recursion setting:

L
ι(while b do T,k) := ik : while b do α〈Idk+1〉 : L

ι(T,k+1));β 〈Idk〉 : skip

L
ι(if b then T1 else T2,k) := if b then α〈Idk〉 : L

ι(T1,k) else β 〈Idk〉 : L
ι(T2,k)

Here, as usual,α andβ are fresh cost labels, and other cases just keep making the recursive calls on the
substatements. Theindexed labellingof a programP is then defined asα〈〉 : L ι(P,0), i.e.a further fresh
unindexed cost label is added at the start, and we start from level 0.

In plainer words: each loop is indexed byik wherek is the number of other loops containing this one,
and all cost labels under the scope of a loop indexed byik are indexed by all indexesi0, . . . , ik, without
any transformation.

4.2 Indexed labels and loop transformations

We define thereindexingα〈I〉 ◦ (ik 7→ f) as an operator on indexed labels by setting8:

α〈i0 7→ e0, . . . , ik 7→ ek, . . . , in 7→ en〉 ◦ (ik 7→ f) := α〈i0 7→ e0, . . . , ik 7→ ek ◦ f , . . . , in 7→ en〉.

We extend this definition to statements inιℓImp by applying the above transformation to all indexed
labels contained in a statement.

We can now finally redefine loop peeling and loop unrolling, taking into account indexed labels. The
attentive reader will notice that no assumptions will be made as to the labelling of the statements that are
involved. This ensures that the transformation can be repeated and composed at will. Also, notice that
after erasing all labelling information (i.e. indexed cost labels and loop indexes) we recover exactly the
same transformations presented in Section 2. The transformations are presented in Figure 4.

As can be expected, in loop peeling the peeled iteration of the loop gets reindexed with 0, as it always
correspond to the first iteration of the loop. The iterationsof the remaining loop are shifted by 1. Notice
that this transformation can lower the actual depth of some loops, however their index is left untouched.
In loop unrolling each copy of the unrolled body has its indexes remapped so that when they are executed,
the original iteration of the loop to which they correspond can be recovered.

Fact 2. Loop peeling and unrolling preserve the following invariant, which we callnon-overlap of in-
dexed labels: for all labelsα〈I〉 andα〈J〉 such thatI 6= J, the first different simple expressions of the two
are disjoint,i.e. they always evaluate to different constants. Moreover for every loopik : while edo Sand
labelα〈I〉 in S, no label outside the loop with the same atom can share the same prefix up toik.

8If mappings are not restricted to only depend on the index being mapped, reindexing should be substituted in each occur-
rence ofik.

Paolo Tranquilli 27

ik : wh i l e b do S 7→ i f b then S◦ (ik 7→ 0) ; ik : wh i l e b do S◦ (ik 7→ ik+1)

ik : wh i l e b do S 7→

ik : wh i l e b do

S◦ (ik 7→ n∗ ik) ;
i f b then

S◦ (ik 7→ n∗ ik +1) ;
...
i f b then

S◦ (ik 7→ n∗ ik +n−1)

Figure 4: Loop peeling and loop unrolling in the presence of indexed labels. In loop unrollingn is the
number of times the loop is unrolled.

4.3 Semantics and compilation of indexed labels

In order to make sense of loop indexes, one must keep track of their values in the state. Aconstant
indexing (metavariablesC, . . .) is an indexing which employs only constant simple expressions. The
evaluation of an indexed labelA in a constant indexingC, denotedA|C, is defined by:

A|i0 7→c0,...,ik−1 7→ck−1 := A◦ (i0 7→ c0)◦ · · · ◦ (ik−1 7→ ck−1)

Here, we are using the definition of−◦− given in Subsection 4.1 at page 25. We consider the above
defined only if the the resulting indexing of the label is constant too9.

Constant indexings will be used to keep track of the exact iterations of the original code that the emit-
ted labels belong to. We thus define two basic actions to update constant indexings:C[ik↑] increments
the value ofik by one, andC[ik↓0] resets it to 0.

We are ready to explain how the operational semantics of indexed labelledImp updates the one
of plain ℓImp. The emitted cost labels will now be ones indexed by constantindexings. We add to
continuations a special indexed loop constructorik : while b do Sthen K.

The difference between the regular stack concatenationik : while b do S·K and the new constructor
is that the latter indicates the loop is the active one in which we already are, while the former is a loop
that still needs to be started10.

The state will now be a 4-tuple(S,K,s,C) which adds a constant indexing to the triple of the regular
semantics. The small-step rules for all but cost-labelled and indexed loop statements remain the same,
without touching theC parameter. The new cases are:

(A : S,K,s,C)
A|C
→ (S,K,s,C)

(ik : while b do S,K,C)→

{

(S, ik : while b do Sthen K,s,C[ik↓0]) if (b,s) ⇓ v 6= 0,

(skip,K,s,C) otherwise,

(skip, ik : while b do Sthen K,C)→

{

(S, ik : while b do Sthen K,s,C[ik↑]) if (b,s) ⇓ v 6= 0,

(skip,K,s,C) otherwise.

Here(b,s) ⇓ v means that expressionb evaluates to valuev in memory states. Some explanations are in
order. We can see that emitting a label always instantiates it with the current indexing, and that hitting an

9For example(i0 7→ 2∗ i0, i1 7→ i1+1)|i0 7→2 is undefined, but(i0 7→ 2∗ i0, i1 7→ 0)|i0 7→2 = i0 7→ 4, i1 7→ 0, is indeed a constant
indexing, even if the domain of the original indexing is not covered by the constant one.

10In the presence ofcontinue andbreak statements active loops need to be kept track of in any case.

28 Indexed Labels for Loop Iteration Dependent Costs

indexed loop the first time initializes the corresponding index to 0. Continuing the same loop increments
the index as expected.

The starting state with stores for a programP is (P,ε ,s,(i0 7→ 0, . . . , in−1 7→ 0) whereε is the empty
stack andi0, . . . , in−1 cover all loop indexes ofP11.

Compilation. Further down the compilation chain the loop structure is usually partially or completely
lost. We cannot rely on it any more to keep track of the original source code iterations. We therefore add,
alongside theemit instruction, two other sequential instructionsind reset k and ind inc k whose only
effect is to reset to 0 (resp. increment by 1) the loop indexik. These instructions will keep track of points
in the code corresponding to loop entrances and continuations respectively.

The first step of compilation fromιℓImp consists of prefixing the translation of an indexed loop
ik : while b do Swith ind reset k and postfixing the translation of its bodySwith ind inc k. Later in the
compilation chain we must propagate the instructions dealing with cost labels.

We would like to stress the fact that this machinery is only needed to give a suitable semantics of
observables on which preservation proofs can be done. By no means are the added instructions and
the constant indexing in the state meant to change the actual(let us say denotational) semantics of the
programs. In this regard the two new instructions have a similar role as theemit one. A forgetful mapping
of everything (syntax, states, operational semantics rules) can be defined erasing all occurrences of cost
labels and loop indexes, and the result will always be a regular version of the language considered.

Stating the preservation of semantics. In fact, the statement of preservation of semantics does not
change at all, if not for considering traces of evaluated indexed cost labels rather than traces of plain
ones. So every pass will still need to enjoy property (1).

4.4 Dependent costs in the source code

The task of producing dependent costs from constant costs induced by indexed labels is quite technical.
Before presenting it here, we would like to point out that theannotations produced by the procedure
described in this subsection, even if correct, can be enormous and unreadable. The prototype compiler
employs simplifications that will not be documented here to mitigate this problem.

Upon compiling the indexed labellingL ι(P) of anImp programP, we may still apply the machinery
described in [6] and sketched in Section 3 and get a statically computed cost mapping fromindexedlabels
to naturals.

As we need to annotate the source code, we want a way to expressand compute the costs of cost
labels. In order to do so, we have to group the costs of single indexed labels with the same atom. In order
to do so we introducedependent costs.

Let us suppose that for the sole purpose of annotation, we have available in the language C-like
conditional ternary expressions of the forme? f1 : f2, and that we have access to common operators on
integers such as equality, order and modulus.

Simple conditions. First, we need to shift fromtransformationsof loop indexes toconditionson them.
We identify a set of conditions on natural numbers which are able to express the image of any composi-

11For a program which is the indexed labelling of anImp one this corresponds to the maximum nesting of single-entryloops.
We can also avoid computing this value in advance if we defineC[i↓0] to extendC’s domain as needed, so that the starting
constant indexing can be the empty one.

Paolo Tranquilli 29

tion of simple expressions.Simple conditionsare of three possible forms:

p ::= ik = n|ik ≥ n|ik moda= b∧ ik ≥ n

Given a simple conditionp and a constant indexingC we can easily define whenp holds forC (writ-
ten p|C): it suffices to substitute the formal indexes with their value inC. A dependent cost expression
is an expression built solely out of integer constants and ternary expressions with simple conditions at
their head,i.e. K ::= n | p ?K1 : K2. Given a dependent cost expressionK where all of the loop indexes
appearing in it are in the domain of a constant indexingC, we can easily define the valueK|C ∈ N by
evaluating the heads of all ternary expressions inC.

Every simple expressione corresponds to a simple conditionp(e) which expresses the set of values
thatecan take. Following is the definition of such a relation12:

p(0∗ ik+b) := (ik = b) p(1∗ ik+b) := (ik ≥ b)

p(a∗ ik+b) := (ik moda= b′∧ ik ≥ b) if a> 1, whereb′ = b moda.

The fact that this mapping has sense is stated by the following fact.

Fact 3. For every expressioneon ik, p(e)|(ik 7→c) iff there is a constantd such thate|(ik 7→d) = c.

From indexed costs to dependent ones. Suppose we are given a mappingκ from indexed labels to
natural numbers. We must transform it to a mapping (identified, by abuse of notation, with the same sym-
bol κ) from atoms to dependent expressions. The reader uninterested in the technical details explained
below can get a grasp of how this is done by going through the example in Subsection 4.5.

We will allow indexings to start from other index variables than i0. Let S be the set of sets of
indexings with fixed domain. Formally:

S := {S| S⊆ { ih 7→ eh, . . . , ik 7→ ek}for someh≤ k andei ’s},

For every setS∈ S, we are in one of the following three mutually exclusive cases:

• S= /0.

• S= {ε}, i.e.a singleton of the empty indexing.

• There isih 7→ e such thatS can be decomposed in(ih 7→ e)S′ +S′′, with S′ 6= /0 and none of the
sequences inS′′ start withe. Here(ih 7→ e)S′ denotes prependingih 7→ e to all elements ofS′, while
+ is disjoint union.

The above classification can serve as the basis of a definitionby recursion onn+ ♯Swheren is the
size of indexings inSand♯Sis its cardinality. Indeed in the third case inS′ the size of indexings decreases
strictly (and cardinality does not increase) while forS′′ the size of tuples remains the same but cardinality
strictly decreases. The expressioneof the third case can be chosen as minimal for some total order13.

We first define the auxiliary functionκα
I , parametrized by atoms and 0-based indexings, and going

from S to dependent expressions, using the previous classification of elements inS.

κα
L (/0) := 0 κα

L ({ε}) := κ(α〈L〉) κα
L ((ih 7→ e)S′+S′′) := p(e) ?κα

L(ik 7→e)(S
′) : κα

L (S
′′)

12We recall that in this development, loop indexes are always mapped to simple expressions over the same index. If it was
not the case, the condition obtained from an expression should be on the mapped index, not the indeterminate of the simple
expression. We leave all generalisations of what we presenthere for further work

13The specific order used does not change the correctness of theprocedure, but different orders can give more or less readable
results. An empirically “good” order is the lexicographic one, witha∗ ik+b≤ a′ ∗ ik+b′ if a< a′ or a= a′ andb≤ b′.

30 Indexed Labels for Loop Iteration Dependent Costs

Finally the wanted dependent cost mapping is defined by

κ(α) := κα
ε ({L | α〈L〉 appears in the compiled code}) (2)

where one must notice that the set of indexings of an atom appearing in the code inhabitsS because the
domain of all indexings is fixed by the number of nested loops in the source code.

The correctness of the above formula, which is a consequenceof Fact 3, can be stated as the follow-
ing.

Fact 4. If there is no overlap (see Fact 2), andα〈I〉|C = α〈D〉 for α〈I〉 occurring in the compiled code,
thenκ(α)|D = κ(α〈I〉).

The no overlap hypothesis ensures that if we are in the third caseκα
L ((ih 7→ e)S′+S′′) of the formula

above andI = L,J with J ∈ S′′, thenp(e)|D does not hold.

Indexed instrumentation. The indexed instrumentationgeneralises the instrumentation as presented
in [6] and sketched in Section 3. We described above how cost atoms can be mapped to dependent costs.
The indexed instrumentationI ι must also insert code dealing with loop indexes. As instrumentation is
done on the code produced by the labelling phase, all cost labels are indexed by identity indexings. The
relevant cases of the recursive definition (supposingc is the cost variable) are then:

I
ι(α〈Idk〉 : S) = c := c+κ(α);I ι(S)

I
ι(ik : while b do S) = ik := 0;while b do (I ι(S); ik := ik+1)

This means that instrumentation internalises an index stateC as the actual values of variablesi0, . . .,
and when a cost must be registered it adds to the global cost variable the valueκ(α)|C using the current
index state.

Suppose we guarantee the semantic correctness of the compilation and the fact that we never produce
overlapping indexed labels (Fact 2 for loop transformations, trivial for other passes). The correctness
of the instrumentation then follows from Fact 4. Indeed if the source code emitsα〈C〉, by semantic
correctness we have the corresponding point in the execution of the compiled code emitting the same,
which means that we have encounteredα〈I〉 under index stateD such thatα〈I〉|D = α〈C〉. Moreover
the index state in the labelled source isC, as all indexings are identities. It follows that when evaluating
the instrumentationc := c+κ(α), we add to the cost variable the amountκ(α)|C = κ(α〈I〉), which is
correct if the static analysis correctly analysed the cost.

4.5 A detailed example

Take the program in Figure 3. Its initial labelling is shown in Figure 5a. Supposing for example,n= 3
the trace of the program will be

α〈〉β 〈0〉δ 〈0〉β 〈1〉γ〈1,0〉δ 〈1〉β 〈2〉γ〈2,0〉γ〈2,1〉δ 〈2〉ε〈〉

Now let us apply the transformations of Figure 3 with the additional information detailed in Figure 4.
The result is shown in Figure 5b. One can check that the transformed code leaves the same trace when
executed.

Let us compute the dependent cost ofγ , supposing no other loop transformations are done. Ordering
its indexings we have the list in Figure 6a. If we denote witha,b, . . . ,g the integer costs statically

Paolo Tranquilli 31

α〈〉 : s := 0 ;
i := 0 ;
i0 : wh i l e i < n do

β 〈i0〉 : p := 1 ;
j := 1 ;
i1 : wh i l e j ≤ i do

γ〈i0, i1〉 : p := j ∗ p ;
j := j +1 ;

δ 〈i0〉 : s := s+ p ;
i := i+1 ;

ε〈〉 : s k i p

(a)

α〈〉 : s := 0 ;
i := 0 ;
i f i < n then

β 〈0〉 : p := 1 ;
j := 1 ;
i1 : wh i l e j ≤ i do

γ〈0, i1〉 : p := j ∗ p ;
j := j +1 ;

δ 〈0〉 : s := s+ p ;
i := i+1 ;
i0 : wh i l e i < n do

β 〈2∗ i0+1〉 : p := 1 ;
j := 1 ;
i f j ≤ i then

γ〈2∗ i0+1,0〉 : p := j ∗ p ;
j := j +1 ;
i f j ≤ i then

γ〈2∗ i0+1,1〉 : p := j ∗ p ;
j := j +1 ;
i1 : wh i l e j ≤ i do

γ〈2∗ i0+1,2∗ i1 +2〉 : p := j ∗ p ;
j := j +1 ;
i f j ≤ i then

γ〈2∗ i0+1,2∗ i1 +3〉 : p := j ∗ p ;
j := j +1 ;

δ 〈2∗ i0+1〉 : s := s+ p ;
i := i+1 ;
i f i < n then

β 〈2∗ i0+2〉 : p := 1 ;
j := 1 ;
i1 : wh i l e j ≤ i do

γ〈2∗ i0+2,2∗ i1〉 : p := j ∗ p ;
j := j +1 ;
i f j ≤ i do

γ〈2∗ i0+2,2∗ i1 +1〉 : p := j ∗ p ;
j := j +1 ;

δ 〈2∗ i0+2〉 : s := s+ p ;
i := i+1 ;

ε〈〉 : s k i p

(b)

Figure 5: The result of indexed labeling and reindexing looptransformations on the program in
Figure 3. A singleskip after theδ label has been suppressed, and we are writingα〈e0, . . . ,ek〉 for
α〈i0 7→ e0, . . . , ik 7→ ek〉.

computed from the compiled code for each of the indexed occurrences ofγ in the compiled code in
Figure 5b, we obtain, using equation (2) and the order of indexings in Figure 6a, the depedent cost in
Figure 6b. Applying some simplifications that are not documented here but that are implemented in
CerCo’s untrusted prototype, we obtain the equivalent dependent cost in Figure 6c.

One should keep in mind that the example was wilfully complicated, in practice the cost expressions
produced have rarely more clauses than the number of nested loops containing the annotation.

32 Indexed Labels for Loop Iteration Dependent Costs

0, i1
2∗ i0+1,0

2∗ i0+1,1

2∗ i0+1,2∗ i1+2

2∗ i0+1,2∗ i1+3

2∗ i0+2,2∗ i1
2∗ i0+2,2∗ i1+1

(a) The indexings
of γ in Figure 5b.

(i0 = 0) ?
(i1 ≥ 0) ?a : 0 :
(i0 mod 2= 1∧ i0 ≥ 1) ?
(i1 = 0) ?

b :
(i1 = 1) ?

c :
(i1 mod 2= 0∧ i1 ≥ 2) ?

d :
(i1 mod 2= 1∧ i1 ≥ 3) ?e : 0 :

(i0 mod 2= 0∧ i0 ≥ 2) ?
(i1 mod 2= 0∧ i1 ≥ 0) ?

f :
(i1 mod 2= 1∧ i1 ≥ 1) ?g : 0 :

0

(b) The dependent cost ofγ as given by
equation (2).

(i0 = 0) ?
a :
(i0 mod 2= 1) ?
(i1 = 0) ?

b :
(i1 = 1) ?

c :
(i1 mod 2= 0) ?d : e :

(i1 mod 2= 0) ? f : g

(c) The dependent cost ofγ as
simplified by a procedure not
described in this work but im-
plemented in CerCo’s compiler.
Further simplifications would be
possible if any of the constants
turn out to be equal.

Figure 6: The dependent cost ofγ in the program of Figure 3, as transformed in Figure 5b.

5 Future work

For the time being, indexed labels are only implemented in the untrusted Ocaml compiler, while they are
not present yet in the code on which the computer assisted proof can be carried out (in case of CerCo’s
project, the tool used is Matita [4]). Porting them should pose no significant problem. Once ported, the
task of proving properties about them in Matita can begin.

Because most of the executable operational semantics of thelanguages across the front end and the
back end are oblivious to cost labels, it should be expected that the bulk of the semantic preservation
proofs that still needs to be done will not get any harder because of indexed labels. The only trickier
point that we foresee would be in the translation ofClight toCminor (the first pass of CerCo’s compiler’s
front-end), where we pass from structured indexed loops to atomic instructions on loop indexes.

An invariant which should probably be proved and provably preserved along the compilation chain
is the non-overlap of indexings for the same atom. Then, supposing cost correctness for the unindexed
approach, the indexed one will just need to amend the proof bystating

∀C constant indexing.∀α〈I〉 appearing in the compiled code.κ(α)|IC = κ(α〈I〉).

Here,C represents a snapshot of loop indexes in the compiled code, while I ◦C is the corresponding
snapshot in the source code. Semantics preservation will ensure that when, with snapshotC, we emit
α〈I〉 (that is, we haveα〈I ◦C〉 in the trace),α must also be emitted in the source code with indexing
I ◦C, so the costκ(α)◦ (I ◦C) applies.

Aside from carrying over the proofs, we would like to extend the approach to more loop transforma-
tions. Important examples are loop inversion (where a for loop is reversed, usually to make iterations
appear to be truly independent) or loop interchange (where two nested loops are swapped, usually to
have more loop invariants or to enhance strength reduction). This introduces interesting changes to the
approach, where we would have indexings such as:

i0 7→ n− i0 or i0 7→ i1, i1 7→ i0.

Paolo Tranquilli 33

In particular dependency over actual variables of the code would enter the frame, as indexings would
depend on the number of iterations of a well-behaving guarded loop (then in the first example).

Finally, as stated in the introduction, the approach shouldallow some integration of techniques for
cache analysis, a possibility that for now has been put asideas the standard 8051 target architecture for
the CerCo project lacks a cache. Two possible developments for this line of work present themselves:

1. One could extend the development to some 8051 variants, ofwhich some have been produced with
a cache.

2. One could make the compiler implement its own cache: this cannot apply toRAM accesses of
the standard 8051 architecture, as the difference in cost ofaccessing the two types ofRAM is
only one clock cycle, which makes any implementation of cache counterproductive. So for this
proposal, we could either artificially change the accessingcost ofRAM of the model just for the
sake of possible future adaptations to other architectures, or otherwise model access to an external
memory by means of the serial port of the microcontroller.

References

[1] AbsInt Angewandte Informatik. Available athttp://www.absint.com/.

[2] Certified Complexity (CerCo), FET-Open EU Project. Available athttp://cerco.cs.unibo.it/.

[3] Frama-C software analyzers. Available athttp://frama-c.com/.

[4] Matita. Available athttp://matita.cs.unibo.it/.

[5] Roberto M. Amadio, Nicolas Ayache, Yann Régis-Gianas &Ronan Saillard (2010): Proto-
type implementation. Deliverable 2.2 of Project FP7-ICT-2009-C-243881 CerCo.Available at
http://cerco.cs.unibo.it/.

[6] Nicholas Ayache, Roberto M. Amadio & Yann Régis-Gianas(2012): Certifying and Reasoning on Cost
Annotations in C Programs. In Mariëlle Stoelinga & Ralf Pinger, editors:FMICS, Lecture Notes in Computer
Science7437, Springer, pp. 32–46, doi:10.1007/978-3-642-32469-7 3.

[7] Christian Ferdinand & Reinhard Wilhelm (1999):Efficient and Precise Cache Behavior Prediction for Real-
TimeSystems. Real-Time Syst.17, pp. 131–181, doi:10.1023/A:1008186323068.

[8] Xavier Fornari:Understanding how SCADE suite KCG generates safe C code. White paper, Esterel Tech-
nologies. Available athttp://www.esterel-technologies.com/technology/WhitePapers/.

[9] Xavier Leroy (2009): Formal verification of a realistic compiler. Commun. ACM52(7), pp. 107–115,
doi:10.1145/1538788.1538814.

[10] E. Morel & C. Renvoise (1979):Global optimization by suppression of partial redundancies. Commun.
ACM 22, pp. 96–103, doi:10.1145/359060.359069.

[11] Robert Morgan (1998):Building an Optimizing Compiler. Digital Press.

[12] Steven S. Muchnick (1997):Advanced Compiler Design and Implementation. Morgan Kaufmann.

[13] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David B. Whalley,
Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut,
Peter P. Puschner, Jan Staschulat & Per Stenström (2008):The worst-case execution-time problem - overview
of methods and survey of tools. ACM Trans. Embedded Comput. Syst.7(3), doi:10.1145/1347375.1347389.

[14] Xuejun Yang, Yang Chen, Eric Eide & John Regehr (2011):Finding and understanding bugs in C compilers.
In Mary W. Hall & David A. Padua, editors:PLDI, ACM, pp. 283–294, doi:10.1145/1993498.1993532.

http://www.absint.com/
http://cerco.cs.unibo.it/
http://frama-c.com/
http://matita.cs.unibo.it/
http://cerco.cs.unibo.it/
http://dx.doi.org/10.1007/978-3-642-32469-7_3
http://dx.doi.org/10.1023/A:1008186323068
http://www.esterel-technologies.com/technology/WhitePapers/
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1145/359060.359069
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1145/1993498.1993532

	1 Introduction
	2 The minimal imperative language Imp
	3 Labelling: a quick sketch of the previous approach
	4 Indexed labels
	4.1 Indexing the cost labels
	4.2 Indexed labels and loop transformations
	4.3 Semantics and compilation of indexed labels
	4.4 Dependent costs in the source code
	4.5 A detailed example

	5 Future work

