Indexed Labelsfor Loop Iteration Dependent Costs

Paolo Tranquilli

DISI (Dipartimento di Informatica — Scienza e Ingegneria)
Universita di Bologna Alma Mater

tranquil@cs.unibo.it

We present an extension to the labelling approach, a teghrfior lifting resource consumption
information from compiled to source code. This approachictvlis at the core of the annotating
compiler from a large fragment of C to 8051 assembly of the30eproject, loses preciseness when
differences arise as to the cost of the same portion of cottether due to code transformation
such as loop optimisations or advanced architecture fesieng.cache). We propose to address this
weakness by formally indexing cost labels with the iteragiof the containing loops they occur in.
These indexes can be transformed during the compilatiahywdoen lifted back to source code they
produce dependent costs.

The proposed changes have been implemented in CerCo’sstettrprototype compiler from a
large fragment of C to 8051 assembly.

1 Introduction

Recent years have seen impressive advancements in theffieldnal description and certification of
software components. In the fields of compilers a well-doented example is CompCert, a project
which has spawned the proof of correctness of a compiler fixdarge fragment of C to assembly [9].
The success of this endeavour is also supported by a compavith other compilers as to the number
of bugs found with testing tools [14].

The CerCo project [2] strives to add a significant aspect égibture: certified resource consump-
tion. More precisely our aim is to build a certified C compiiemgeting embedded systems that produces,
apart from object code functionally equivalent to the inmmtannotationof the source code which is
a sound and precise description of the execution cost of dhgpited code. Time and stack are the
immediate resources on which the method can be applied.

The current state of the art in commercial products thatyaeateaction time or memory usage
of programs installed in embedded systemg(Scade([8] or AbsInt[[1]) is that the estimate is based
upon an abstract interpretation of the object code that ragyire explicit and untrusted annotations
of the binaries stating how many times loops are iterated €sg [13]). Our aim, on the other hand,
is to lift cost information of small fragments of object cod® that these bits of information may be
compositionally combined at the source level, abstradingy the specifics of the architecture and only
having to reason about standard C semantics the programithieedamiliar with. This information can
be used to decide complexity assertions either with pemdl@aper or with a tool for automated and
formal reasoning about C programs such as Framig-C [3].

The theoretical basis of the CerCo compiler has been odtliyeAmadioet al [6], where in partic-
ular the labelling approach is described. Summarisingptbgosal consists in ‘decorating’ the source
code by inserting labels at key points. These labels areepred as compilation progresses, from one
intermediate language to another. Once the final object isopi@duced, such labels should correspond

*This work is funded by the CerCo FET-Open EU Project.

© Paolo Tranquilli
This work is licensed under the
Creative Commoris Attribution License.

L. Bortolussi and H. Wiklicky (Eds.): QAPL 2013
EPTCS 117, 2013, pp. 19433, ¢0i:10.4204/EPTCS.117.2

http://dx.doi.org/10.4204/EPTCS.117.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

20 Indexed Labels for Loop Iteration Dependent Costs

to the parts of the compiled code that have a constant cos.cbkt can then be assigned to blocks of
source code.

Two properties must hold of any cost estimate given to bladkode. The first property, paramount
to the correctness of the method ssundness-the actual execution cost must be bounded by the esti-
mate. In the labelling approach, this is guaranteed if el@g in the control flow of the compiled code
passes through at least one cost label. Were it not the ¢esepst of the loop would be taken in charge
by a label external to it, so that any constant cost assighmeunld be invalidated by enough iterations
of the loop. The second property, optional but desirablprésiseness-the estimates the actual cost.
This is of particular importance for embedded real-timdesys, where in particular situations we may
care that a code runs fat leastsome clock cycles. In the labelling approach, this is truéoif every
label, every possible execution of the compiled code si@ftiom such a label yields the same cost be-
fore hitting another one. In simple architectures such a8851 micro-controller which is targeted by
the current stage of the CerCo project, this can be guariigplacing labels at the start of any branch
in the control flow, and by ensuring that no labels are dufdita

The reader should note that the above mentioned requireratie properties that must hold for the
code obtaineat the endof the compilation chain. Even if one is careful about injegtthe labels at
suitable places in the source code, the requirements ntilitiais because of two main obstacles.

e The compilation process might introduce important chamgése control flow, inserting loops or
branches. This might happen for example when replacingatipes that are unavailable in the
target architecture, such as generic shift and multi-bitisidn in the 8051 architectdle

e Even when the compiled codmes—as far as the the syntactic control flow graph is concerned—
respect the conditions for soundness and precisenesspghefdlocks of instructions might not
be independent of context and thus not compositional, sodiffarent passes through a label
might have different costs. This becomes a concern if onbesiso apply the approach to more
complex architectures, for example one with caching orljisy.

Even if we solved the problem outlined in the first point for @aurrent compilation chain, the point
remains a weakness of the current labelling approach whemies to some common code transforma-
tions. In particular, modbop optimisationshange the control flow graph duplicating code and adding
or changing the branches. An example optimisation of thisl k§ loop peeling where a first iteration

of the loop is hoisted out of and before its body. This optatian is employed by compilers in order
to trigger other optimisations, such as dead code elin@nadr invariant code motion. Here, the hoisted
iteration might possibly be assigned a different cost tlader literations.

The second point above highlights another weakness. Biffapols allow to predict up to a certain
extent the behaviour of cache. For example,diietool [1] allows the user to estimate the worst-case
execution time taking into account advanced features dhtiget architecture. While such atool is not fit
for a compositional approach which is central to CerCo’$qu, aiT's ability to produce tight estimates
of execution costs would still enhance the effectivenedh®fCerCo compiler.g. by integrating such
techniques in its development. A typical case where cachysin yields a difference in the execution
cost of a block isin loops: the first iteration will usuallyistble upon more cache misses than subsequent
iterations.

If one looks closely, the source of the two weaknesses ofiipalar labelling approach ofl[6] outlined
above is common: the inability to state different costs ffecent occurrences of labels in the execution

1The reader might see the work outlined|ih [5] to get a graspaf We tackle this problem in CerCo’s compiler.
23iT assumes the cache is empty at the start of computation, eais #ach procedure call separately, unrolling a great part
of the control flow.

Paolo Tranquilli 21

X,Y,... (identifiers) ef,... (expressions)
PST,...:=skip|st]|if ethen Selse T | while edo s|x:=e (statements)

Figure 1: The syntax dinp.

trace. The difference in cost might be originated by labeladp duplicated along the compilation, or by
the costs being sensitive to the current state of execution.

The work we present here addresses this weakness by initngdemst labels that are dependent on
which iteration of its containing loops it occurs in. Thisaishieved by means d@fidexed labelsall cost
labels are decorated with formal indexes coming from th@domntaining such labels. These indexes
allow us to rebuild, even after multiple loop transformatip which iterations of the original loops in
the source code a particular label occurrence belongs tongthe annotating stage, this information is
presented to the user by meanslependent costs

Here we concentrate on integrating the labelling approdtihtwo loop transformationsdeop peel-
ing andloop unrolling They will be presented for a toy languagé_in Sectibn 2, Foega information
on compiler optimisations (and loop optimisations in auttr) we refer the reader to the vast literature
on the subjectd.g.[12,[11]).

The proposed changes have been implemented in CerCo’'statmrototype compiler available on
CerCo’s homepaEe For lack of space the present work will not delve into thailef the implemen-
tation.

Whilst we cover only two loop optimisations in this paper, argue that the work presented herein
poses a good foundation for extending the labelling apgroacrder to cover more and more common
optimisations, as well as gaining insight into how to intggradvanced cost estimation techniques, such
as cache analysis, into the CerCo compiler. Moreover loatimitself has the fortuitous property of
enhancing and enabling other optimisations. Experimematvith CerCo’s untrusted prototype com-
piler, which implements constant propagation and parégdundancy eliminatior [10, 12], show how
loop peeling enhances those other optimisations.

Outline. We will present our approach on a minimal ‘toy’ imperativadaage Jmp with gotos, which
we present i Sectiod 2 along with formal definitions of thepldransformations. This language already
presents most of the difficulties encountered when dealiitp @, so we stick to it for the sake of
this presentation. 1o _Sectioh 3 we summarize the labellijmgr@ach as presented inl [6]._Sectidn 4
presentsndexed labelsour proposal for dependent labels which are able to despriécise costs even
in the presence of the various loop transformations we densiogether with a more detailed example
(Subsection 415). Finally Sectioh 5 speculates on furth@kwn the subject.

2 Theminimal imperative language Imp

We briefly outline the toy language, the minimalist impemtianguagdmp. Its syntax is presented
in[Figure 1. We may omit thelse clause of a conditional if it leads toskip statement. The precise
grammar for expressions is not particularly relevant so aeat give one in full. We will use the notation
(SK,s) — (S,K’,d) for Imp’s small-step semantics of which we skip the unsurprisinfind®n. Sis

%http://cerco.cs.unibo.it/

http://cerco.cs.unibo.it/

22 Indexed Labels for Loop Iteration Dependent Costs

(while b do
S;
if b then

if b then
S: <i(while b do S)— S

while b do S

if b then
S

- J

Figure 2: Loop peeling (left) and loop unrolling (right).

the statement being executédjs a continuationi(e. a stack of statements to be executed é&jeands
is the storei(e. a map from variables to integers).

Further down the compilation chain. We abstract over the rest of the compilation chain. We pbsit t
existence, for every languadefurther down the compilation chain, of a suitable notion sgduential
instructions’, wherein each instruction has a single resmccessor. To these sequential instructions we
can add our own.

Loop transformations. We present the loop transformations we deal with in Figlir&2ese trans-
formations are locali.e. they target a single loop and transform it. Which loops argetad may be
decided by somad hocheuristic. However, the precise details of which loops argdted and how is
not important here.

As already mentioned in the introduction, loop peeling tsiesn preceding the loop with a copy
of its body, appropriately guarded. This is usually doneigger further optimisations. Integrating this
transformation into the labelling approach would alsowallm the future, the integration of a common
case of cache analysis, as predicting cache hits and misse8ts from a form ofirtual loop peeling([7].

Loop unrolling consists of the repetition of several coppéshe body of the loop inside the loop
itself (inserting appropriate guards, or avoiding thenogdther if enough information about the loop’s
guard is available at compile time). This can limit the numbke(conditional or unconditional) jumps
executed by the code and trigger further optimisationsinigalith pipelining, if appropriate for the
architecture. Notice that we present unrolling in a wiljutigive version. On the one hand usually less
general loops and more well-behaving loops are targetetiieoother hand, conditionals are seldom used
to cut up the body of the unrolled loop. However we are maintgrested in the changes to the control
flow the transformation does. The problem this transforomapioses to CerCo’s labelling approach are
independent of the sophistication of the actual transftiona

We decided to apply transformations in the front-end in ptdeonly target loops explicitly written
by the programmer. This is because we need to output soudseamotations that are meaningful to
the user, and in order to do so we only transform loops thag¢ weplicitly written as so.

Example 1. In we show a program (a wilfully inefficient compinat of the sum of the firsh
factorials) and a possible combination of transformatimnglied to it (again for the sake of presentation
rather than efficiency).

Paolo Tranquilli

Figure 3: An example of loop transformations. Blocks arénliétd by indentation.

3 Labdling: aquick sketch of the previous approach

Plainly labelled/Imp is obtained by adding to the codest labels(with metavariablesx, 3,...), and
cost-labelled statements:

STi=--]a:S

s:=0;)
=0 |
if i<n then A
p:=1;
j=1;
while j<i do
pi=j*p;
j=i+1;
S:=S+p;
B e o S BN
while i<n do A
p:=1;
=1y o
e ~N if j<i then A
i:=0; p:=_j*p:
while.i<r.l do Ji;:jj;il’then
p:=1,; i
e s i
Wh"e,‘§' G_'° while j<ido g 3
p:=1]*p; 5 . c o)
jim 1 p=i=pi |3 2
s:=s+p; =gt = c
=il if j<ithen @] (3
. ’ Jo j=i+1:])%) 2
S:=s+p g
i=i+1;
if i<n then
p:=1;
,,,,,,,,,,,,, j=1
while j<i do
pi=]*p; =
j=j+1; 3
if j<i do =
p:=jxp Q
,,,,,,,,,,,,,,,,,,,,, Je=j+1r
si=s+p
,,,,,,,,,,,,, L:i:ﬁ:,l,,,,,,,,,,,,,,,),,,,,,,2,,J

23

Cost labels allow us to track some program points along thepdation chain. For further details we
refer to [6].

The small step semantics turns into a labelled transitistesy and a natural notion of tradee(lists
of labels) arises. The small-step ruledap remain as unlabelled steps, while adding the rule

(a:SK,s) 5 (SK,9)

24 Indexed Labels for Loop Iteration Dependent Costs

Cost labels are thus emitted by cost-labelled statemem@.dNe then write™* for the transitive closure
of the small step semantics which produces by concatentitetraceA .

Labelling. Given anlmp programP its labelling in /Imp is defined bya : . (P), putting cost labels
after every branching statement, at the start of both bes)cind a cost label at the beginning of the
program. The relevant recursive cases for the definitio®0P) are

Z(if ethen Selse T) =if ethen a : Z(S) else B : . Z(T)
Z(while edo S) = (while edo a : Z(9)); B : skip

wherea, 3 are fresh cost labels. In all other cases the definition jass@s to substatements. Notice
that labelling enjoys soundness (a label is added inside leap) and preciseness (there is a label at all
branches, included the loop-exiting one).

Labelsin therest of thecompilation chain. All languages further down the chain get a new sequential
statemenemit a whose effect is to be consumed in a labelled transition wkeleping the same state.
All other instructions guard their operational semantied do not emit cost labels.

Preservation of semantics throughout the compilationgs®ds restated, in rough terms, as:

starting state oP Ay halting state<—> starting state o%’(P) A halting state @

HereP is a program of a language along the compilation chain,istpeind halting states depend on the
language, an@’ is any of the compilation pas&sThis must in particular be true for any optimisation
pass the compilation undergoes.

Instrumentations. Let ¥ be the whole compilation froMimp to the labelled version of some low-
level languagd.. Supposing such compilation has not introduced any new dwdganching, we have
that:

e every loop contains at least a cost label;

e every branching has different labels for the two branches.

With these two conditions, we have that each and every cbst la ' (P) for any P corresponds to
a block of sequential instructions, to which we can assigru)raastantcos. As we have explained
in the[infroductioh, the two properties above enssmendnessnd precisenes®f this cost estimate
respectively. We therefore may assume the existencecostmapping<p from cost labels to natural
numbers, assigning to each cost labbehe cost of the block containing the single occurrence .of

Given any cost mapping, we can enrich a labelled program so that a particular frestable (the
cost variable § keeps track of the summation of costs during the executi®e. call this procedure
instrumentatiorof the program, and it is defined recursively by:

F(a:9=c:=c+k(a);7(S

In all other cases the definition passes to substatemenéesc&rthen reason on the instrumented version
of the code like he would on any program, asserting statesradraut complexity by inspectirg

4In the general case, because of the conditional ternanatieany evaluation of expressions can emit cost labels too

5The case of divergent computations needs to be addressedilsm the requirement can be weakened by demanding a
weaker form of equivalence of the traces than equality. Bbothese issues are beyond the scope of this presentation.

6This in fact requires the machine architecture to be ‘sinepleugh’, or for some form of execution analysis to take place

Paolo Tranquilli 25

The problem with loop optimisations. Let us take loop peeling, and apply it to the labelling of a
program without any prior adjustment:

(while edo a : S); 3 : skip +— (if bthen a : Swhilebdo a : S); 3 : skip

What happens is that the cost labek duplicated with two distinct occurrences. If these twowcences
correspond to different costs in the compiled code, the thestcost mapping can do is to take the
maximum of the two, preserving soundneis. the cost estimate still bounds the actual one) but losing
preciseness.g. the actual cost could be strictly less than its estimate).

4 Indexed labels

This section presents the core of the new approach. In buiefgit amounts to the following:

4.1l Enrich cost labels with formal indexes stating, for eactploontaining the label in the source code,
what iteration it occurs in.

Each time a loop transformation is applied and a cost lakedglit in different occurrences, each of
these will be reindexed so that every time they are emitteat gosition in the original loop will be
reconstructed.

Along the compilation chain, alongside thait instruction we add other instructions updating the
indexes, so that iterations of the original loops can beilte@iuthe operational semantics level even
when the original structure of loops is lost.

4.4 The machinery computing the cost mapping will still workf basigning costs to indexed cost labels,
rather than to cost labels as we wish. Howedependent costsan be calculated, where dependency
is on which iteration of the containing loops we are in.

4.1 Indexingthe cost labels

Formal indexes and 1/lmp. Letig,i1,... be a sequence of distinguished fresh identifiers that will be
used as loop indexes. simple expressiois an affine arithmetical expression in one of these indexes,
that isaxix + b with a,b,k € N. Simple expressions; = a; ik + by ande, = ay xix + b, in the same
index can be composed—substitutiagin the iy of e; we havee; o e := (ayap) * ik + (a1bz + bs), and
this operation has an identity elementit + 0 (which we will denote simply byy). Constants can be
expressed as simple expressions, so that we identify aahatwith O iy + C.

An indexing(with metavariabled, J, ...) is a list of transformations of successive formal iete
dictated by simple expressions, that is a maﬂ)ing

lo+—+apg*ip+bo,... Ik 1k 1*ik1+bk 1

An indexed cost labdimetavariable#\, B, .. .) is the combination of a cost labgland an indexing
I, writtena(l). The cost label underlying an indexed one is calleéiitsn

Imp with indexed labels (from now orfImp) is defined by having loops with a formal index attached
to them and by allowing statements to be labelled by indeabdls:

ST,...::=---ix:whileedo S| A: S

"Here we restrict each mapping to be one from an index to a simressiomn the same indexThis might not be the
case if more loop optimisations are accounted for (for exanipterchanging two nested loops could give rise to anximde
like io = i17i1 = io).

26 Indexed Labels for Loop Iteration Dependent Costs

Notice that unindexed loops may still exist in the languati@ugh it does not concern this simple toy
example, they would correspond to multi-entry loops whighignored by indexing and optimisations
in a scenario with gotos.

We will discussi /Imp’s semantics later, in_ Subsection4.3.

Indexed labelling. In order to compute thendexed labelling?”" of a program, we need to keep track
of the nesting of indexed loops as we visit the program atissyntax tree.

Let Idk be the indexing of lengtk made from identity simple expressions. the sequence) —
ig,...,Ik—1+ ik—1. We define the tiered indexed labellidg' (S k) by recursion setting:

Z"(while bdo T,k) := i : while bdo a{ldxs1) : 2" (T,k+1)); B(Id) : skip
Z'(if bthen Ty else T, k) :=if bthen a{ldy) : Z'(Ta,k) else B(Idk) : Z' (T, k)

Here, as usualy andf3 are fresh cost labels, and other cases just keep makingdhesige calls on the
substatements. Thedexed labellingf a progran® is then defined ag () : .-£'(P,0), i.e. a further fresh
unindexed cost label is added at the start, and we start feah 0.

In plainer words: each loop is indexed kywherek is the number of other loops containing this one,
and all cost labels under the scope of a loop indexedk laye indexed by all indexds, ..., ik, without
any transformation.

4.2 Indexed labelsand loop transformations

We define theeindexinga (I) o (ix — f) as an operator on indexed labels by seﬂing

aip — €0,...,ik > &,...,in = € o (ik —) := alip — €,...,ik — &o f,....in — &).

We extend this definition to statements:iéimp by applying the above transformation to all indexed
labels contained in a statement.

We can now finally redefine loop peeling and loop unrollingjng into account indexed labels. The
attentive reader will notice that no assumptions will be enasl to the labelling of the statements that are
involved. This ensures that the transformation can be tegesnd composed at will. Also, notice that
after erasing all labelling information.€. indexed cost labels and loop indexes) we recover exactly the
same transformations presented in Section 2. The tranafwmns are presented|in Figurie 4.

As can be expected, in loop peeling the peeled iterationeotitibp gets reindexed with 0, as it always
correspond to the first iteration of the loop. The iteratiohthe remaining loop are shifted by 1. Notice
that this transformation can lower the actual depth of saopd, however their index is left untouched.
In loop unrolling each copy of the unrolled body has its irekeremapped so that when they are executed,
the original iteration of the loop to which they corresporah be recovered.

Fact 2. Loop peeling and unrolling preserve the following invatiamhich we callnon-overlap of in-
dexed labelsfor all labelsa (1) anda (J) such that # J, the first different simple expressions of the two
are disjoint,i.e. they always evaluate to different constants. Moreoveryereloopiy : while edo Sand
labela(l) in S no label outside the loop with the same atom can share the peefix up toi.

81f mappings are not restricted to only depend on the indemdbeiapped, reindexing should be substituted in each occur-
rence ofiy.

Paolo Tranquilli 27

Gk: while b do S]|—>[if b then So(ix—0); ix: while b do so(ikmk+1)]

(ik: while b do)

So(ikl—> n*ik);
if b then

(i: while b do S)i So ik = nxik+1);

if b then
So(ik»—m*ik-i—n—l)/

N

Figure 4: Loop peeling and loop unrolling in the presencendeiked labels. In loop unrolling is the
number of times the loop is unrolled.

4.3 Semantics and compilation of indexed labels

In order to make sense of loop indexes, one must keep tradkeof talues in the state. Aonstant
indexing (metavariable<C, ...) is an indexing which employs only constant simple expoessi The
evaluation of an indexed labAlin a constant indexin@, denotedA|c, is defined by:

Aligsco....ii 101 = Ao (i Cp) o0 (ik-1 > Ck-1)

Here, we are using the definition efo — given in[Subsection 4.1 at page| 25. We consider the above
defined only if the the resulting indexing of the label is dans to 5.

Constant indexings will be used to keep track of the exaudtitns of the original code that the emit-
ted labels belong to. We thus define two basic actions to epatatstant indexing<C[ix1] increments
the value ofix by one, ancC[ix] 0] resets it to O.

We are ready to explain how the operational semantics ofxegdléabelledimp updates the one
of plain Z/imp. The emitted cost labels will now be ones indexed by congtateéxings. We add to
continuations a special indexed loop construgtomwhile b do Sthen K.

The difference between the regular stack concatenatiowhile b do S- K and the new constructor
is that the latter indicates the loop is the active one in Wwhie already are, while the former is a loop
that still needs to be start&H

The state will now be a 4-tupls K, s,C) which adds a constant indexing to the triple of the regular
semantics. The small-step rules for all but cost-labelled indexed loop statements remain the same,
without touching theC parameter. The new cases are:

(A:SK,50) 2% (sK,50)

(S/ik : while b do Sthen K,s,CJix)0]) if (b,s){v#0,
(skip,K,s,C) otherwise,
(Sik : while b do Sthen K,s,CJikt]) if (b,s) | v#0,
(skip,K,s,C) otherwise.

(ix : while bdo S K,C) — {

(skip, ik : while b do Sthen K,C) — {

Here(b,s) | v means that expressidrevaluates to valuein memory states. Some explanations are in
order. We can see that emitting a label always instantiateithi the current indexing, and that hitting an

9For examplgig— 2xig,i1 — i1+ 1)]i,—2 is undefined, butio — 2xig,i1 — 0)|iy—2 =io+— 4,i1 — 0, isindeed a constant
indexing, even if the domain of the original indexing is novered by the constant one.
191 the presence afontinue andbreak statements active loops need to be kept track of in any case.

28 Indexed Labels for Loop Iteration Dependent Costs

indexed loop the first time initializes the correspondingeixto 0. Continuing the same loop increments
the index as expected.

The starting state with stossfor a programP is (P, €,s, (ip — 0, ...,in—1 — 0) whereg is the empty
stack andy,...,in_1 cover all loop indexes .

Compilation. Further down the compilation chain the loop structure isallgyartially or completely
lost. We cannot rely on it any more to keep track of the origsmairce code iterations. We therefore add,
alongside theemit instruction, two other sequential instructioimal _reset k andind_inc k whose only
effect is to reset to 0 (resp. increment by 1) the loop ingeXhese instructions will keep track of points
in the code corresponding to loop entrances and contimsatEspectively.

The first step of compilation from/Imp consists of prefixing the translation of an indexed loop
ik - while b do Swith ind_reset k and postfixing the translation of its bo@with ind_inc k. Later in the
compilation chain we must propagate the instructions dgaliith cost labels.

We would like to stress the fact that this machinery is onlgdeal to give a suitable semantics of
observables on which preservation proofs can be done. Byemnsare the added instructions and
the constant indexing in the state meant to change the gi¢tials say denotational) semantics of the
programs. In this regard the two new instructions have daimole as themit one. A forgetful mapping
of everything (syntax, states, operational semanticsyuan be defined erasing all occurrences of cost
labels and loop indexes, and the result will always be a eegrsion of the language considered.

Stating the preservation of semantics. In fact, the statement of preservation of semantics does not
change at all, if not for considering traces of evaluatedxed cost labels rather than traces of plain

ones. So every pass will still need to enjoy property (1).

4.4 Dependent costsin the source code

The task of producing dependent costs from constant cadis@u by indexed labels is quite technical.
Before presenting it here, we would like to point out that &mmotations produced by the procedure
described in this subsection, even if correct, can be enasraad unreadable. The prototype compiler
employs simplifications that will not be documented here tiigaite this problem.

Upon compiling the indexed labelling” (P) of animp programP, we may still apply the machinery
described in[6] and sketchedin Sectidn 3 and get a staticathputed cost mapping fromdexedabels
to naturals.

As we need to annotate the source code, we want a way to exgrdssompute the costs of cost
labels. In order to do so, we have to group the costs of singlexied labels with the same atom. In order
to do so we introducedependent costs

Let us suppose that for the sole purpose of annotation, we &exilable in the language C-like
conditional ternary expressions of the foaf? f1 : fo, and that we have access to common operators on
integers such as equality, order and modulus.

Simpleconditions. First, we need to shift frortransformationsof loop indexes ta@onditionson them.
We identify a set of conditions on natural numbers which &fe o express the image of any composi-

11For a program which is the indexed labelling oflarp one this corresponds to the maximum nesting of single-énorys.
We can also avoid computing this value in advance if we dedifig0] to extendC’'s domain as needed, so that the starting
constant indexing can be the empty one.

Paolo Tranquilli 29

tion of simple expressionsSimple conditionare of three possible forms:
p =ik =nl|ix > njixmoda=bAix>n

Given a simple conditiom and a constant indexirg we can easily define whemholds forC (writ-
ten p|c): it suffices to substitute the formal indexes with theiruealnC. A dependent cost expression
is an expression built solely out of integer constants antatg expressions with simple conditions at
their headj.e. K::=n| p ?Kj : K. Given a dependent cost expressionvhere all of the loop indexes
appearing in it are in the domain of a constant indexingve can easily define the vallgc € N by
evaluating the heads of all ternary expressionS.in

Every simple expressioacorresponds to a simple conditignie) which expresses the set of values
thate can take. Following is the definition of such a relalfin

p(Oxix+b) = (ik=Db) p(1xix+b):= (ik > b)
p(axix+b) := (ix moda="b' Aix >b) if a>1, wherell =b moda.

The fact that this mapping has sense is stated by the foltpfeict.
Fact 3. For every expressiogonik, p(€)| . iff there is a constand such that|;,,,q) = C.

From indexed costs to dependent ones. Suppose we are given a mappikdgrom indexed labels to
natural numbers. We must transform it to a mapping (idedtifig abuse of notation, with the same sym-
bol k) from atoms to dependent expressions. The reader uniteédrgsthe technical details explained
below can get a grasp of how this is done by going through thengie i Subsection 4.5.

We will allow indexings to start from other index variabldsahig. Let S be the set of sets of
indexings with fixed domain. Formally:

S:={S|SC{inh+ en,...,ik— & Hor someh < kandg’s },

For every seB e S, we are in one of the following three mutually exclusive case
e S=10.
e S={¢}, i.e.asingleton of the empty indexing.

e There isin — e such thatS can be decomposed i — €)S + S’, with S # 0 and none of the
sequences i8’ start withe. Here(i,, — €)S denotes prependirig — eto all elements o8, while
+ is disjoint union.
The above classification can serve as the basis of a defififiaacursion om-+ S wheren is the
size of indexings irBandSis its cardinality. Indeed in the third caseSithe size of indexings decreases
strictly (and cardinality does not increase) while ithe size of tuples remains the same but cardinality
strictly decreases. The expressmaf the third case can be chosen as minimal for some totalfStder
We first define the auxiliary functior,”, parametrized by atoms and 0-based indexings, and going
from S to dependent expressions, using the previous classificatielements irS.
k1(0):=0 kX({e}) :=k(a(L)) KX ((ih—e)S+S') :=pe) 2k . (S): k(S

L(ix—e)

12\\e recall that in this development, loop indexes are alwagppad to simple expressions over the same index. If it was
not the case, the condition obtained from an expressionldghmmion the mapped index, not the indeterminate of the simple
expression. We leave all generalisations of what we prdsmetfor further work

13The specific order used does not change the correctnessmrbitedure, but different orders can give more or less rdadab
results. An empirically “good” order is the lexicographieey withaxiy+b < a xiy+b' if a<a ora=a andb < b'.

30 Indexed Labels for Loop Iteration Dependent Costs

Finally the wanted dependent cost mapping is defined by
k(a):=kZ({L|a(L) appears in the compiled cotlp 2

where one must notice that the set of indexings of an atomaaipyein the code inhabitS because the
domain of all indexings is fixed by the number of nested loophé source code.

The correctness of the above formula, which is a consequefiféact 3, can be stated as the follow-
ing.
Fact 4. If there is no overlap (sde Fadt 2), aadl)|c = a (D) for a(l) occurring in the compiled code,
thenk(a)|p = k(a(l)).

The no overlap hypothesis ensures that if we are in the thiséi¢” (i — €)S + S’) of the formula
above and = L,J with J € S, thenp(e)|p does not hold.

Indexed instrumentation. Theindexed instrumentatiogeneralises the instrumentation as presented
in [6] and sketched ih_Section 3. We described above how tostsacan be mapped to dependent costs.
The indexed instrumentatio' must also insert code dealing with loop indexes. As instntaten is
done on the code produced by the labelling phase, all cosislaoe indexed by identity indexings. The
relevant cases of the recursive definition (supposiiggthe cost variable) are then:

F'(a(ldy):S) =c:=c+k(a); 7 (9
S (ix : while bdo S) = iy := O;while bdo (&' (S);ik:=ik+1)

This means that instrumentation internalises an inder €tais the actual values of variablgs. . .,
and when a cost must be registered it adds to the global coablethe value<(a)|c using the current
index state.

Suppose we guarantee the semantic correctness of the atiorpdnd the fact that we never produce
overlapping indexed labels (Fadt 2 for loop transformatjdmivial for other passes). The correctness
of the instrumentation then follows from Fadt 4. Indeed & $ource code emits(C), by semantic
correctness we have the corresponding point in the execafithe compiled code emitting the same,
which means that we have encounteredd) under index stat® such thata (1)|p = a(C). Moreover
the index state in the labelled source&isas all indexings are identities. It follows that when eadilng
the instrumentatiorw := c+ kK (a), we add to the cost variable the amoutitr)|c = k(a(l)), which is
correct if the static analysis correctly analysed the cost.

45 A detailed example
Take the program ip Figure 3. Its initial labelling is showfFigure 5. Supposing for examptes= 3

the trace of the program will be
a()B(0) 6(0) B(1) ¥(1,0) 5(1) B(2) y(2,0) ¥(2,1) 5(2) &()

Now let us apply the transformations [of Figufe 3 with the iddal information detailed ifi Figurg 4.
The result is shown ip Figure bb. One can check that the wemsfd code leaves the same trace when

executed.
Let us compute the dependent cosyp$upposing no other loop transformations are done. Omglerin
its indexings we have the list jn Figure|6a. If we denote wétb,...,g the integer costs statically

Paolo Tranquilli

b

a():s:=0;
i:=0;
ip: while i<n do
Blig): p:=1;
ji=1;
i1: while j<i do
y(io,i1) 1 pi=j*p;
j=i+1;
O(ig) :s:=5+p;
i=i+1;
\E<>: skip
(@)

Figure 5. The result of indexed labeling and reindexing ld@msformations on the program in
A singleskip after thed label has been suppressed, and we are writifep, ..., &) for

Figure 3.

a{ig+ €p,...,Ik > &).

-

i:=0;

B{0):

0(0) :

\£<>: skip

a():s:=0;

if i<n then

p:=1;

ji=1
i1: while j<i do

y(0,i1) : pi=j*p;
=i+
s:=s+p;

i=i+1;
io: while i<n do

B(2xig+1):p:=1;
j=1;
if j<i then
y(2xig+1,0): p:=j*p;
j=i+1;
if j<i then
Y(2xig+1,1) 1 pi=j*p;
ji=i+1;
i1: while j<i do
y(2xig+1,2%i1+2): p:i=j*p;
j=i+1;
if j<i then
y(2xig+1,2%i1+3): p:=jxp;
j=i+1;
0(2xig+1):s:=s+p;
i=i+1;
if i<n then
B(2xig+2):p:=1;
j=1;
i1: while j<i do
y(2xig+2,2%i1) i pi=j*p;
ji=i+1;
if j<i do
y(2xig+2,2xi1+1): p:i=j*p;
j=i+1;
0(2xip+2):s:=s5+p;
i=i+1;

(b)

31

computed from the compiled code for each of the indexed oenues ofy in the compiled code in

[Figure 5b, we obtain, usirfg equation|(2) and the order ofximdgs in[Figure 6@, the depedent cost in
[Figure 6b. Applying some simplifications that are not docotee here but that are implemented in

CerCo’s untrusted prototype, we obtain the equivalent ddget cost in Figure 6c.

One should keep in mind that the example was wilfully congiéd, in practice the cost expressions

produced have rarely more clauses than the number of negips tontaining the annotation.

32 Indexed Labels for Loop Iteration Dependent Costs

(io=0)? -
(ip>0)?a:0: (Ioa—.O)?
i =1Ai ? :
_ ('O(Fm_doz) - 1Nio= 1) (io mod 2= 1) 2
0,'1 1b— H (|l:0) 2
2xig+1,0 (ih=1)? b)
2xip+1,1 c: (i1=1)7
. . : : c:
= ?
;ﬂo—i—i,z*fﬁ-i (IldmodZ 0NipL>2)7 (i mod 2= 0)2d e
*lg+1,2%11+ . . _ of -
paic 2 2ei (iz mod 2= 1Ai1 > 3) 7€ 0: (inmod2=0)?f:g
oot (iomod 2=0Aip>2)? (c) The dependent cost of as
2xio+2,2xi1+1 (iy mod 2=0Ai; >0) ? simplified by a procedure not
(@) The indexings f: described in this work but im-
of y in[Figure 5b. (ip mod 2=1Ai1>1)?g:0: plemented in CerCo’s compiler.
0 Further simplifications would be

possible if any of the constants

(b) The dependent cost of as given by turm out to be equal.

[equation ().
Figure 6: The dependent costpin the program df Figure|3, as transformedl in Figurk 5b.

5 Futurework

For the time being, indexed labels are only implementederutitrusted Ocaml compiler, while they are
not present yet in the code on which the computer assistexf pam be carried out (in case of CerCo’s
project, the tool used is Matital[4]). Porting them shouldeoo significant problem. Once ported, the
task of proving properties about them in Matita can begin.

Because most of the executable operational semantics tdrigaages across the front end and the
back end are oblivious to cost labels, it should be expedtatithe bulk of the semantic preservation
proofs that still needs to be done will not get any harder beeaf indexed labels. The only trickier
point that we foresee would be in the translatiorCtght to Cminor (the first pass of CerCo’s compiler’s
front-end), where we pass from structured indexed loopsaimia instructions on loop indexes.

An invariant which should probably be proved and provablgserved along the compilation chain
is the non-overlap of indexings for the same atom. Then, @sipg cost correctness for the unindexed
approach, the indexed one will just need to amend the prosfdiing

VC constant indexing/a (1) appearing in the compiled codea)|,. = k(a(l)).

Here,C represents a snapshot of loop indexes in the compiled cokié iw C is the corresponding
snapshot in the source code. Semantics preservation gilirerthat when, with snapshGt we emit
a(l) (that is, we havex (I oC) in the trace),a must also be emitted in the source code with indexing
| oC, so the cosk(a)o (I oC) applies.

Aside from carrying over the proofs, we would like to extehd approach to more loop transforma-
tions. Important examples are loop inversion (where a fopls reversed, usually to make iterations
appear to be truly independent) or loop interchange (whecenested loops are swapped, usually to
have more loop invariants or to enhance strength reductibimls introduces interesting changes to the
approach, where we would have indexings such as:

io—~N—ig or io'—)il,i1'—>io.

Paolo Tranquilli 33

In particular dependency over actual variables of the codeldventer the frame, as indexings would
depend on the number of iterations of a well-behaving gubloiep (then in the first example).

Finally, as stated in the introduction, the approach shailtev some integration of techniques for
cache analysis, a possibility that for now has been put asdbe standard 8051 target architecture for
the CerCo project lacks a cache. Two possible developmentkis line of work present themselves:

1. One could extend the development to some 8051 variantghioh some have been produced with
a cache.

2. One could make the compiler implement its own cache: thimot apply toRAM accesses of
the standard 8051 architecture, as the difference in coatoéssing the two types &am is
only one clock cycle, which makes any implementation of eacbunterproductive. So for this
proposal, we could either artificially change the accessigg ofRAM of the model just for the
sake of possible future adaptations to other architectorastherwise model access to an external
memory by means of the serial port of the microcontroller.

References

[1] Absint Angewandte Informatildvailable athttp://www.absint.com/.

[2] Certified Complexity (CerCo), FET-Open EU Projedvailable athttp://cerco.cs.unibo.it/.
[3] Frama-C software analyzergwailable athttp: //frama-c. com/.

[4] Matita. Available athttp://matita.cs.unibo.it/.

[5] Roberto M. Amadio, Nicolas Ayache, Yann Régis-Gianas Ronan Saillard (2010): Proto-
type implementatian Deliverable 2.2 of Project FP7-ICT-2009-C-243881 CerQwailable at
http://cerco.cs.unibo.it/.

[6] Nicholas Ayache, Roberto M. Amadio & Yann Régis-Giar{2812): Certifying and Reasoning on Cost
Annotations in C Programgn Mariélle Stoelinga & Ralf Pinger, editor&MICS, Lecture Notes in Computer
Sciencer437, Springer, pp. 32—-46, d0i:10.1007/978-3-642-32A89-

[7] Christian Ferdinand & Reinhard Wilhelm (199%fficient and Precise Cache Behavior Prediction for Real-
TimeSystemsReal-Time Systl7, pp. 131-181, di:10.1023/A:1008186323068.

[8] Xavier Fornari:Understanding how SCADE suite KCG generates safe C.c@ftdte paper, Esterel Tech-
nologies. Available et tp://www.esterel-technologies.com/technology/WhitePapers/.

[9] Xavier Leroy (2009): Formal verification of a realistic compiler Commun. ACM52(7), pp. 107-115,
doi{10.1145/1538788.1538&14.

[10] E. Morel & C. Renvoise (1979)Global optimization by suppression of partial redundasci€€ommun.
ACM 22, pp. 96-103, d0i:10.1145/359060.3590609.

[11] Robert Morgan (1998Building an Optimizing CompilerDigital Press.

[12] Steven S. Muchnick (1997fdvanced Compiler Design and Implementatibforgan Kaufmann.

[13] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahi]ad Holsti, Stephan Thesing, David B. Whalley,
Guillem Bernat, Christian Ferdinand, Reinhold Heckmanuljka Mitra, Frank Mueller, Isabelle Puaut,
Peter P. Puschner, Jan Staschulat & Per Stenstrom (ZD@8)worst-case execution-time problem - overview
of methods and survey of tooldCM Trans. Embedded Comput. Sy$(3), doi:10.1145/1347375.1347389.

[14] Xuejun Yang, Yang Chen, Eric Eide & John Regehr (20EHnding and understanding bugs in C compilers
In Mary W. Hall & David A. Padua, editors?LDI, ACM, pp. 283-294, di:10.1145/1993498.1995532.

http://www.absint.com/
http://cerco.cs.unibo.it/
http://frama-c.com/
http://matita.cs.unibo.it/
http://cerco.cs.unibo.it/
http://dx.doi.org/10.1007/978-3-642-32469-7_3
http://dx.doi.org/10.1023/A:1008186323068
http://www.esterel-technologies.com/technology/WhitePapers/
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1145/359060.359069
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1145/1993498.1993532

	1 Introduction
	2 The minimal imperative language Imp
	3 Labelling: a quick sketch of the previous approach
	4 Indexed labels
	4.1 Indexing the cost labels
	4.2 Indexed labels and loop transformations
	4.3 Semantics and compilation of indexed labels
	4.4 Dependent costs in the source code
	4.5 A detailed example

	5 Future work

