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Individual-based hybrid modelling of spatially distributed systems is usually expensive. Here, we
consider a hybrid system in which mobile agents spread over the space and interact with each other
when in close proximity. An individual-based model for this system needs to capture the spatial
attributes of every agent and monitor the interaction between each pair of them. As a result, the cost
of simulating this model grows exponentially as the number of agents increases. For this reason,
a patch-based model with more abstraction but better scalability is advantageous. In a patch-based
model, instead of representing each agent separately, we model the agents in a patch as an aggrega-
tion. This property significantly enhances the scalability of the model. In this paper, we convert an
individual-based model for a spatially distributed network system for wild-life monitoring, ZebraNet,
to a patch-based stochastic HYPE model with accurate performance evaluation. We show the ease
and expressiveness of stochastic HYPE for patch-based modelling of hybrid systems. Moreover,
a mean-field analytical model is proposed as the fluid flow approximation of the stochastic HYPE
model, which can be used to investigate the average behaviour of the modelled system over an infinite
number of simulation runs of the stochastic HYPE model.

1 Introduction

Spatially distributed systems are encountered in a variety of natural and engineering scenarios. Individual-
based modelling of such systems suffers from its low level scalability as the cost of analysing these mod-
els depends on the number of entities in the system. Thus, patch-based modelling in which entities are
grouped according to their physical positions can be superior. More specifically, in a patch-based model,
the space is divided into discrete patches (locations, cells, islands, etc.), the entities within a patch are
assumed to share similar attributes. As a result, there is no need to capture the attributes of every indi-
vidual. The cost of analysing the model is dependent on the number of patches instead of entities in the
system. This property significantly improves the scalability of the model.

In this paper, we present a patch-based stochastic HYPE model for a spatially distributed system
which is originally analysed by an individual-based simulation program. The modelling language,
stochastic HYPE [9, 2], is a process algebra, meaning that it is equipped with a formal interpretation
in terms of an underlying mathematical model and equivalence relations. We will show the ease and ex-
pressiveness of stochastic HYPE in patch-based hybrid modelling through the introduction of the model.

The example system which we consider is ZebraNet [16], a sensor network deployed in central Kenya
to collect data on zebras for biological research. In ZebraNet, zebras are fitted with collars which collect
and transmit data about zebras’ movements, temperatures, etc. Zebras are naturally distributed over a
large area. Whenever two zebras are in close proximity, they exchange all their stored data (relating to
themselves and other zebras) with each other (using a flooding protocol). Periodically, a mobile base
station circulates to collect data from zebras for further biological research. The reason why we choose
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ZebraNet as our case study is because there is a well-described existing individual-based simulation
program, ZNetSim [16] (written in C) for ZebraNet. In ZNetSim, each zebra’s behaviour is simulated
explicitly and separately. This approach is not suitable for analysing the system when the number of
zebras in the system is large. Thus, we build a patch-based stochastic HYPE model for ZebraNet in
which the map is represented by patches and the zebras’ movement is captured in terms of going from
one patch to another. We assume that all zebras within a patch share data and therefore we can think in
terms of the data of that patch. We use the age of data to denote the length of time since the last time
the mobile base station or other patches received fresh data from a particular patch and use it to compute
the success rate of data delivery to the mobile base station. The patch-based HYPE model is suitable for
analysing the system with an arbitrary number of zebras, and can give accurate performance evaluation,
which is validated by comparing our simulation results with ZNetSim.

In addition, a mean-field analytical model is presented to describe the stochastic HYPE model for
ZebraNet by a set of ordinary differential equations (ODEs). In the mean-field model, we treat the
evolution of all the variables in the stochastic HYPE model as fluid flows. The mean-field model reveals
the average value of the variables in the stochastic HYPE model over an infinite number of simulation
runs. It can give a computationally efficient way for evaluating the average behaviour of the underlying
modelled system.

The paper is structured as follows. After introducing the background of ZebraNet and HYPE in
more detail, we present the patch-based stochastic HYPE model for ZebraNet. We evaluate the model
and compare our experiment result with the original simulation program ZNetSim [16] in Section 4.
Section 5 presents the mean-field analytical model. Finally, Sections 6 and 7 discuss related work, future
research and draw final conclusions.

2 Background

2.1 ZebraNet

ZebraNet is an opportunistic sensor network that is deployed in central Kenya to collect data on zebras
for biological research. In the original simulation program ZNetSim, 50 zebras wearing special collars,
as well as 10 water sources, are randomly placed across a 20km×20km map. Zebras have three move-
ment patterns, which are grazing, grazing-walking and fast-moving. Different movement patterns mean
different moving speed and frequency of turning angles. Zebras also get thirsty once each day. When
they get thirsty, they head to their nearest water source directly using constant speed. After they reach the
water source, they move randomly on the map as usual1. The collars collect data on zebras every three
minutes. Moreover, zebras will flood their stored data for themselves and others to all neighbours when
they are discovered within the 100 meters peer discovery range. A mobile base station, which follows
a rectangular route, will periodically collect data from zebras. More specifically, the zebras transmit
all their stored data to the mobile base station when they are within the radio range of the mobile base
station.

The rate of successful data delivery to the mobile base station is one of the most important perfor-
mance metrics in ZNetSim. It is strongly related to the radio range of the mobile base station. The larger
the radio range is, the higher rate of data collection that can be achieved. However, larger radio range also
means more battery power consumption of zebra collars. Thus, achieving a high rate of data collection
with a radio range that is as small as possible, is the key design issue of ZebraNet. Due to limited space,

1A detailed introduction of zebras’ movement patterns can be found in [16]
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we are only interested in the rate of data delivery to the mobile base station in this work; other aspects
such as bandwidth and storage issues are disregarded.

2.2 HYPE

HYPE is a process algebra designed to capture the behaviour of hybrid systems [9]. A hybrid system
is one in which both discrete and continuous behaviour are exhibited. In HYPE, the behaviour of a
system is represented by interacting components which may consist of discrete events and continuous
flows. Continuous flows are values in the system that change continuously over time whereas discrete
events are actions that only take place when their activation conditions are satisfied. Once the events
are activated, they can reset the value of some variables within the system. In [2], stochastic event
conditions are introduced into HYPE so that discrete events can be activated at a rate that is governed
by an exponential distribution. We will show how this stochastic property makes HYPE suitable for
patch-based modelling through the definition of the patch-based HYPE model in this paper.

In our earlier modelling work on ZebraNet [8], we build an individual-based HYPE model which
captures the dynamics of each zebra in the system. The expressiveness of HYPE can be seen from
the script size of the resulting HYPE model which consists of 440 lines of definition, compared with
ZNetSim which has 5941 lines of code in C. Unfortunately, the individual-based HYPE model suffers
from flow and event explosion. For example, suppose there are n zebras in the system, the resulting
model needs O(n2) number of continuous flows (transmission of data) and discrete events (activation of
peer data exchange) to capture the data exchange between each pair of zebras. Consequently, when the
number of zebras is large, it is extremely expensive to simulate the model in the simulation tool, SimHyA
[3]. This motivates us to build a patch-based model for ZebraNet which is able to model an arbitrary
number of zebras.

3 The patch-based stochastic HYPE Model

In this section, we present the patch-based stochastic HYPE model for ZebraNet.

3.1 Division of ZebraNet Map into Patches

The first step is to divide the ZebraNet map into patches. As zebras get thirsty and go to their nearest
water source on each day, we infer that if there was only one water source, the distance between a zebra
and the water source should follow a stationary distribution. In order to validate our inference, we wrote
a simulation program (in Java) with only one zebra and one water source on the map and recorded the
distance between the zebra and the water source over a long period. The zebra’s movement pattern in
our simulation program is consistent with [16]. Due to limited space, we do not introduce the zebras’
movement pattern in detail in this paper.

Figure 1 illustrates the probability distribution of the distance between the zebra and the water source
in two separate simulation runs, which confirms our inference. According to the unique movement
pattern of zebras, we divide the 20km×20km ZebraNet map into 10 patches based on the position of the
water sources. More specifically, each point in the map belongs to the patch of its nearest water source.
For instance, the map will be divided into patches as is shown in the Voronoi digram[1] in Figure 2.
The positions of water sources tagged with stars are the Voronoi seeds; the solid black lines denote the
rectangular route of the mobile base station.
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Figure 1: The probability distribution of the distance between the zebra and the water source of two
separate simulation runs.

3.2 Key Parameters

Some key parameters need to be calculated for the patch-based model of ZebraNet. They are:

• α i: a zebra’s contact rate with the mobile base station in the ith patch.

• β i
j: the peer contact rate between a zebra in the ith patch and a zebra in the jth patch.

• γ i
j: the rate at which a zebra in the ith patch moves to the jth patch.

We wrote a Java simulation program to obtain these parameters. In the simulation, we put the 10 water
sources and the mobile base station in the map. There is only one zebra placed in each patch. The
movement of zebras and the mobile base station is simulated following the movement pattern described
in [16]. Contact events between a zebra and the mobile base station are activated when the zebra is within
the radio range of the base station. Zebras’ peer contact events take place when the zebras in the ith and
jth patches are within the peer contact range2. Patch move events occur when a zebra in the ith patch
moves towards the water source of jth patch. In the next day, we put this zebra migrating from the ith
patch to the jth patch back to a random position in the ith patch again to make sure that there is always
one zebra in each patch at the start of a day. As there are only 10 zebras in this simulation program, the
simulation cost is quite low. More specifically, it only costs about 30 seconds to run a simulation for 10
years’ simulation time length on a dual CORE i5 machine with 2GB RAM.

3.3 Variables

Next, we present the discrete and continuous variables in the patch-based stochastic HYPE model:

• Ni: the current number of zebras in the ith patch.

2To make the contact events countable, the contact event (between two zebras or a zebra and the mobile base station) is
prohibited for 30 minutes after a contact event occurs.
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Figure 2: The patch-based map of ZebraNet.

• Ai: the current age of data at the mobile base station for the ith patch. It indicates the length of
time since the last time the mobile base station received fresh data (directly or indirectly) from the
ith patch.

• Ai
j: the current age of data at the jth patch for the ith patch. It indicates the length of time since

the zebras in the jth patch received fresh data from the ith patch.

Note that within our model, we assume that each zebra shares all data in its current patch so that the age
of data at the mobile base station for the ith patch can be captured by a single variable Ai, which is similar
for Ai

j. This assumption is validated by a similar simple simulation program with only one water source
and two zebras. The simulation result shows that there are 23,793 out of 36,500 days that these two
zebras have at least one chance to contact each other. According to the flooding protocol, the frequency
that one zebra gets fresh data from another zebra will increase when the number of zebras grows. As a
result, it is reasonable that we treat data of zebras within one patch as an aggregation.

3.4 Main Ingredients of the HYPE Model

The main ingredients of a HYPE model are: a) the subcomponents which consist of continuous flows
and discrete events, b) the event conditions which presents the activation conditions for each event, c) the
controllers which indicate the constraints on events, d) the uncontrolled system which is the combination
of subcomponents, e) the controlled system which is constructed by synchronization of the uncontrolled
system and controllers. We will present these ingredients for the patch-based HYPE model for ZebraNet
one by one later in this section.

3.4.1 Subcomponents

Continuous flows are represented by subcomponents in a HYPE model. There are two types of contin-
uous flows in the model. The first one is the increasing of the age variables Ai, whereas the second one
is the increasing of the age variables Ai

j. We give the definition of the subcomponents for these flows as
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follows:

IncAi
def
= init :(Ai,1,const).IncAi i ∈ (0,1, . . . ,n)

IncAi
j

def
= init :(Ai

j,1,const).IncAi
j i, j ∈ (0,1, . . . ,n), i 6= j

where n is a parameter equals to 9, which is always the case hereinafter in this paper. A subcomponent
is made up of prefixes. Each prefix consists of two actions. Events are actions which happen either
stochastically or deterministically according to their activation conditions. In the above subcomponents,
the event is init, which is the default initialisation event. Activities are flows which influence the evolution
of the continuous part of the system. An activity is defined as a tuple, α(X) = (ι ,r, I(X)) which consists
of an influence name ι , a rate of change (or influence strength) r and an influence type name I(X) which
indicates how that rate is to be applied to the variable involved. In the above definition, there is only one
distinct activity in each subcomponent. The influence names are the variables Ai and Ai

j respectively. The
influence strength is 1. The influence type name is the function const3. This means that the age variables
Ai and Ai

j increases constantly from the beginning of the simulation. More specifically, dAi
dt = 1×1 and

dAi
j

dt = 1×1, where t is the inherent time variable in the simulation.

3.5 Event Conditions

Event conditions capture the discrete behaviour of the system. Each event condition consists of an
activation condition and several variable resets. An activation condition can be either stochastic or de-
terministic. A deterministic activation condition is a positive boolean formula containing equalities and
inequalities on system variables whereas a stochastic activation condition is a rate that is governed by an
exponential distribution. A variable reset is a conjunction of equality predicates on variables V and V ′

where V ′ denotes the new value that V will have after the reset, whereas V denotes the previous value
before reset.

In this model, three series of event conditions are required to capture the discrete dynamics of the
system.

First of all, we need event conditions to represent the contact events between the mobile base station
and the zebras in a patch. Thus, for 0≤ i≤ n, for Patch i we have

ec(BaseContact i) =(αi×Ni, A′i = 0∧A′j = min(A j
i ,A j)∧ . . .) j ∈ (0,1, . . . ,n), j 6= i

in which the overline denotation means that the corresponding event is activated stochastically. Here, as
the rate of contact between a patch and the mobile base station depends on the current number of zebras
within the patch, the event BaseContact i will be activated at a rate of αi×Ni governed by an exponential
distribution. On firing, the event will set the age of data for the ith patch at the base station to 0, which
means that the zebras in this patch transfer all their own data to the base station. Moreover, the age of
data for other patches at the base station will also be updated if the age of data for that patch at the ith
patch is smaller than the age of data at the base station. This captures that the zebra will transfer its stored
data for other patches to the base station if it is fresher than the corresponding data at the base station.

Several event conditions are also required to represent the peer contact events between zebras in
different patches. For example, for i ∈ (0,1, . . . ,n−1), j ∈ (1,2, . . . ,n) and i < j, the peer contact events

3[const] = 1
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between the zebras in Patch i and Patch j can be denoted by the following definition:

ec(PeerContact i j) =(β i
j×Ni×N j, A j′

i = 0∧Ai′
j = 0∧Ak′

i = min(Ak
i ,A

k
j)∧Ak′

j = min(Ak
i ,A

k
j)

∧ . . .) k ∈ (0,1, . . . ,n),k 6= i,k 6= j

Note that this is also a stochastic event governed by an exponential distribution. The activation rate is
β i

j×Ni×N j as it depends on the current number of zebras in both patches. Once the peer contact event
between Patch i and j is activated, the zebras in these two patches will exchange their data. Therefore,
the age of data at the ith patch for the jth patch and the age of data at the jth patch for the ith patch will
be set to 0. Meanwhile, according to the flooding protocol, the zebras will also exchange their data for
other patches. Hence, the age of data for other patches at both patches will be updated to the smaller one
between them.

Lastly, zebras will occasionally move to their neighbouring patches. Thus, for i ∈ (0,1, . . . ,n), j ∈
(0,1, . . . ,n) and i 6= j, movement of a zebra from the ith patch to the jth patch is captured by the event
condition shown below:

ec(PatchMove i j) =(γ i
j×Ni, N′i = Ni−1∧N′j = N j +1∧Ai′

j = 0∧Ak′
j = min(Ak

j,A
k
i )∧ . . .)

k ∈ (0,1, . . . ,n),k 6= i,k 6= j

PatchMove i j is also a stochastic event with activation rate γ i
j×Ni, as the rate is dependent of the current

number of zebras in the ith patch. Clearly, when a zebra moves from the ith patch to the jth patch, the
number of zebras in the ith patch will decrease by one and the number of zebras in the jth patch will
increase by one. Moreover, the zebra will bring its data from the ith patch to the jth patch. Thus, the age
of data for the ith patch at the jth patch will be set to 0. Additionally, the age of data for other patches in
the jth patch will also be updated if it is larger than its counterpart in the ith patch.

3.6 Controllers

Controllers are used to impose causal or temporal constraints on events in HYPE. The controllers in this
model are quite straightforward. They only guarantee that the events in the model take place in parallel.
We give their definition below:

Conbci
def
= BaseContact i.Conbci i ∈ (0,1, ...,n)

Conpci
j

def
= PeerContact i j.Conpci

j
i ∈ (0, ..,n−1), j ∈ (1, ..,n), i < j

Conpmi
j

def
= PatchMove i j.Conpmi

j
i ∈ (0,1, ...,n), j ∈ (0,1, ...,n), i 6= j

Con def
= ...Conbci ...||...Conpc j

i
...||...Conpm j

i
...

where Con is the overall controller, which is the parallel combination of all the controllers in the model.

3.7 Controlled System

A HYPE model consists of the uncontrolled system in cooperation with controllers. We get the uncon-
trolled system by synchronizing the subcomponents in the system:

Sys def
= ...IncAi...BCinit

...IncA j
i ... i ∈ (0,1, ..,n), j ∈ (0,1, ..,n), i 6= j

Finally, the controlled system of the model is described by:

ZebraNetCtrl def
= Sys BC

∗
init.Con
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4 Evaluation of the patch-based HYPE Model

The evaluation of the patch-based stochastic HYPE model for ZebraNet is based on four aspects. The
first aspect is the scalability of the model. One can easily find that the model size of the patch-based
model will stay almost invariant as the number of zebras grows, which means that the scalability of
the patch-based model is largely enhanced compared with the individual-based model. As mentioned
previously, the model size is mostly decided by the number of patches in the model. According to our
test, currently the simulation tool for HYPE, SimHyA can load and simulate the ZebraNet model with at
most 35 patches. The second aspect is the ease of building the model. This can be seen through the model
definition, in which different kinds of continuous flows and discrete events are modelled separately, and
are composed to capture the dynamics of the whole system. The third aspect is the generality of the
model. We believe the framework of our patch-based stochastic HYPE model can be used to model
many systems with similar spatial features. For example, in the field of opportunistic networks [13],
systems such as DakNet [15], SNC [7] and SWIM [17] can also be modelled in a similar way. The last
aspect is the accuracy of the model in terms of performance evaluation of the modelled system. In this
model, the measure of interest is the rate of data delivery, i.e. the proportion of data collected which is
successfully transferred to the mobile base station. We will explain how this measure is computed from
the patch-based HYPE model later in this section. Furthermore, we will also validate the simulation
result of the patch-based HYPE model by comparing it with ZNetSim.

4.1 Rate of Data Delivery

As mentioned above, we are interested in the rate of data collection in this model. Assume that each
zebra generates k amount of data every time unit, then the total amount of data generated by the zebras in
the whole system is N×k× t, in which N is the total number of zebras in the system, t is the time length
of the simulation. For Patch i, Ai indicates the length of time since the last time the base station received
fresh data from this patch. In other words, Ai denotes for how long the base station has not received any
fresh data from the ith patch. Hence, there is Ni×k×Ai amount of data that has not been collected from
the ith patch at a given moment. Therefore, the total success rate of data collection by the mobile base
station is:

R = 1− ∑
n
i=0 Ni× k×Ai

N× k× t

Clearly, the patch-based HYPE model contains enough information to compute the rate of data collection
by the mobile base station. Moreover, although Ai

j is not very meaningful in the context of ZebraNet, it
might also be very useful in other contexts where the data delivery between patches is of interest.

4.2 Simulation Result

The simulation tool that is used to run HYPE models is called SimHyA, which was introduced in [3]. In
our simulation, we set the time length of each simulation run to 3 months, and the number of zebras in
the model to 50, to keep it consistent with ZNetSim. The radio range of the mobile base station is set
between 1,000 meters and 10,000 meters in 10 steps. The parameter αi for each radio range is obtained
by the simulation program mentioned in Section 3.2. The rate of data delivery to the mobile base station
for each radio range is obtained from the simulation of the patch-based HYPE model. For each radio
range, we take the average over 20 simulation runs (each simulation run costs about 30 seconds) with
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different random positions of water sources and random initial positions of zebras (in terms of which
patch the zebras are initially in). Figure 3 shows our simulation result compared with ZNetSim. As can
be seen from the figure, our simulation result is well matched with ZNetSim. This shows the accuracy
of the patch-based HYPE model for ZebraNet.

Figure 3: Rate of data collection by the mobile base station

5 The Patch-based Mean-field Model

As getting performance metrics from stochastic models often requires to simulate the model a large
number of times and calculate the mean, thus, it is advantageous to represent the stochastic HYPE model
by an analytical model, and draw performance metrics from the analytical model which needs much
smaller computation cost. In this section, we show how to use a mean-field analytical model to represent
the patch-based stochastic HYPE model for ZebraNet. In the mean-field model, we capture the expected
evolution of the data age for patches and the movement of zebras across patches over time as a set of
ODEs.

First of all, the value of variables can be updated both in the continuous flows (the activity tuples of
subcomponents) and the discrete events (the variable resets of event conditions) in the stochastic HYPE
model. Thus, by searching the appearance of a variable in all the continuous flows and discrete events
(more specifically, the influence name in the activity tuples and the left side of reset equations) in the
stochastic HYPE model, we can summarize how this variable evolves globally in the model. We capture
this information in the evolution matrix of the variable.

Here, we illustrate the evolution matrices of variable Ni, Ai and Ai
j in the stochastic HYPE model for

ZebraNet in Table 1, 2, 3 respectively. The type of change or influence type indicates how the value of the
variables is updated by the influence of the discrete events or continuous flows in the stochastic HYPE
model respectively, whereas the rate of change denotes the occurrence rate of the stochastic events or
the influence strength of the continuous flows on the variable. If we treat the evolution of the variables
caused by the discrete events in the stochastic HYPE model as continuous fluid flows, then, the evolution
matrices can be used to generate ODEs that describe the evolution of variables in the stochastic HYPE
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Event or flow name Type of change or Influence type Rate of change
PatchMove i j Ni = Ni−1 γ i

j×Ni

PatchMove j i Ni = Ni +1 γ
j

i ×N j

Table 1: The evolution matrix of Ni

model. More specifically, if we denote type of change by x = x+ e, the influence type by e, the rate of
change by r, then, the influence of a discrete event or continuous flow on the variable x can be denoted
by e× r. Therefore, the ODE to describe the evolution of variable x can be obtained by summing up all
the influence of the continuous flows and discrete events on x, which can be represented by dx

dt = ∑e× r.

For example, the evolution of variables in the patch-based stochastic HYPE model for ZebraNet can
be described by the following ODEs, which can be readily derived from the evolution matrices in Table
1, 2, 3 respectively.

dNi

dt
= ∑

j 6=i
γ

j
i ×N j−∑

j 6=i
γ

i
j×Ni i ∈ (0,1, ..,n) (1)

dAi

dt
= 1−αi×Ni×Ai−∑

j 6=i
α j×N j×

|Ai−Ai
j|+Ai−Ai

j

2
i ∈ (0,1, ..,n) (2)

dAi
j

dt
= 1−β

i
j×Ni×N j×Ai

j− γ
i
j×Ni×Ai

j− ∑
k 6=i, j

β
j

k ×N j×Nk×
|Ai

j−Ai
k|+Ai

j−Ai
k

2

− ∑
k 6=i, j

γ
k
j ×Nk×

|Ai
j−Ai

k|+Ai
j−Ai

k

2
i ∈ (0,1, ..,n), j ∈ (0,1, ..,n), i 6= j (3)

The ODE for Ni consists of two parts. The first part captures zebras moving from other patches to
Patch i (PatchMove j i), whereas the second part captures zebras moving from Patch i to other patches
(PatchMove i j).

The ODE for Ai consists of three terms. The first term is a constant which describes the rate of
age growth over time (IncAi). The second term denotes the zebras in Patch i directly transmitting data
to the base station (BaseContact i). The third term denotes zebras in other patches sending their data
for Patch i to the base station if their data for Patch i is fresher than the counterpart at the base station
(BaseContact j).

The ODE for Ai
j is made up by five parts. The first part is also a constant describing the rate of

age growth over time (IncAi
j). The second part denotes zebras in the ith patch having peer contact with

zebras in Patch j (PeerContact i j). The third part denotes zebras moving from Patch i to Patch j, and
bringing their data to Patch j (PatchMove i j). The fourth part denotes zebras in the kth patch having
peer contact with zebras in the jth patch (k 6= i,k 6= j), and the zebras in the kth patch have fresher data
for Patch i, thus they transfer their fresher data to the zebras in the jth patch (PeerContact k j). The last
part denotes zebras move from the kth patch to the jth patch (k 6= i,k 6= j), and the zebras from the kth
patch have fresher data for Patch i than the counterpart at the jth patch, thus they bring their data for
Patch i to the jth patch (PatchMove k j).
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Event or flow name Type of change or Influence type Rate of change
IncAi 1 1

BaseContact i Ai = 0 (Ai = Ai−Ai) αi×Ni

BaseContact j Ai = min(Ai
j,Ai) (Ai = Ai−

|Ai−Ai
j|+Ai−Ai

j
2 ) α j×N j

Table 2: The evolution matrix of Ai

Event or flow name Type of change or Influence type Rate of change
IncAi

j 1 1
PeerContact i j Ai

j = 0 (Ai
j = Ai

j−Ai
j) β i

j×Ni×N j

PatchMove i j Ai
j = 0 (Ai

j = Ai
j−Ai

j) γ i
j×Ni

PeerContact k j Ai
j = min(Ai

k,A
i
j) (Ai

j = Ai
j−
|Ai

j−Ai
k|+Ai

j−Ai
k

2 ) β
j

k ×N j×Nk

PatchMove k j Ai′
j = min(Ai

j,A
i
k) (Ai

j = Ai
j−
|Ai

j−Ai
k|+Ai

j−Ai
k

2 ) γ k
j ×Nk

Table 3: The evolution matrix of Ai
j

5.1 Analysis of the Mean-Field Model

The mean-field model is the fluid flow approximation of the stochastic HYPE model. It treats the evo-
lution of the variables caused by the discrete events in the stochastic HYPE model as fluid flows. As a
result, the mean-field model gives the expected average value of the variables in the stochastic HYPE
model over an infinite number of simulation runs. Figure 4 compares the trajectories of the average value
of A0, A1, A2, A3 generated by the stochastic HYPE model over different numbers of simulation runs with
the corresponding trajectories generated by the mean-field model. It is clear that with more simulation
runs, the trajectories generated by the stochastic HYPE model become closer to the trajectories from the
mean-field model. Thus, the mean-field model provides an efficient approach to analyse the expected
average behaviour of the modelled system.

6 Related Works

There has been some previous work which adopted a similar approach to model spatially distributed
systems. For instance, in [14], the authors use the modelling framework asCSL [5] to characterize delay
in a generic Delay-Tolerant network comprising a mixture of fixed and mobile nodes, in which they also
aggregate nodes as patches (islands). In [6], a patch-based mean-field model is developed for a gossip
network system in which data aging using real data collected from cabs in the San Francisco Bay area
is studied. The region is divided into 15 regular patches in a grid with a sixteenth patch representing
the rest of the world. In this work, the authors also use the age of data to measure the efficiency of
information dissemination in the network system. Our work is distinguished from the previous works
by the modelling language we used to model the system, the process algebra stochastic HYPE. By using
stochastic HYPE, the patch-based model of the complex spatially distributed system can be constructed
intuitively and compositionally, which significantly reduces the burden on the modeller.

The mean-field model, which is the fluid flow approximation of the stochastic HYPE model, is
inspired by the work in [12], where the author presented a systematic approach to translate discrete PEPA
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(a) 1 simulation run compared with mean-field analysis. (b) average value of 10 simulation runs compared with
mean-field analysis.

(c) average value of 50 simulation runs compared with
mean-field analysis.

(d) average value of 100 simulation runs compared with
mean-field analysis.

Figure 4: The trajectory of the average value of age of data for Patch 0,1,2,3 at the mobile base station
over multiple number of simulation runs of the patch-based stochastic HYPE model compared with the
mean-field analysis.
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models to fluid flows described by ODEs. The modelling framework, Markovian Agents (MAs), which
has been widely used to model spatially distributed wireless sensor networks [10, 4], is also able to derive
patch-based mean-field analytical model for the spatially distributed systems. In the MA formalism, each
agent is described by a CTMC. Agents have their location attributes and can interact with other agents
both locally and in other locations by message passing. The ODEs are derived to describe the evolution
of the agent populations in the same states and locations, in which fluid analysis method is also used.
More recently, a process algebra, MASSPA, has been defined for this formalism in [11]. In this work, we
adopt a similar approach to derive fluid analysis for a hybrid model in which not only discrete behaviour,
but also continuous behaviour is captured.

7 Conclusion and Future Work

We have shown how to use the process algebra, stochastic HYPE to build a patch-based hybrid model
for a spatially distributed system, ZebraNet. The merit of the model is that it significantly improves
the scalability of the model but without significant loss of accuracy, compared with the individual-based
simulation model, ZNetSim. The expressiveness of stochastic HYPE for patch-based hybrid modelling
can be seen through the definition of the model, in which various continuous flows and discrete events
are defined separately and are easily composed to capture the dynamics of the whole system.

Additionally, we use the evolution matrices of the variables to derive a mean-field analytical model
to represent the patch-based stochastic HYPE model for ZebraNet. The mean-field model is the fluid
flow approximation of the stochastic HYPE model. It can give efficient analysis of the expected average
behaviour of the modelled system over infinite simulation runs. As the mean-field model is efficient yet
accurate in many cases, it is advantageous to design approaches to derive mean-field models from the
definition of stochastic HYPE models systematically. We will aim to formally define this derivation and
add it as a new feature of the SimHyA tool for analysing stochastic HYPE models in the near future.
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