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Quantitative information flow analyses measure how much information on secrets is leaked by pub-
licly observable outputs. One area of interest is to quantify and estimate the information leakage of
composed systems. Prior work has focused on running disjoint component systems in parallel and
reasoning about the leakage compositionally, but has not explored how the component systems are
run in parallel or how the leakage of composed systems can be minimised. In this paper we consider
the manner in which parallel systems can be combined or scheduled. This considers the effects of
scheduling channels where resources may be shared, or whether the outputs may be incrementally
observed. We also generalise the attacker’s capability, ofobserving outputs of the system, to consider
attackers who may be imperfect in their observations, e.g. when outputs may be confused with one
another, or when assessing the time taken for an output to appear. Our main contribution is to present
how scheduling and observation effect information leakageproperties. In particular, that scheduling
can hide some leaked information from perfect observers, while some scheduling may reveal secret
information that is hidden to imperfect observers. In addition we present an algorithm to construct a
scheduler that minimises the min-entropy leakage and min-capacity in the presence of any observer.

1 Introduction

Preventing the leakage of confidential information is an important goal in research of information secu-
rity. When some information leakage is unavoidable in practice, the next step is to quantify and reduce
the leakage. Recently theories and tools on quantitative information flow have been developed using
information theory to address these issues [17, 7, 23, 12, 25, 8, 16, 15]. The common approach is to
model systems asinformation-theoretic channelsthat receive secret input and returns observable output.

One area of interest is to quantify and estimate the information leakage of composed systems. When
composing systems the manner of reasoning about their behaviour is non-trivial and is complicated by
many factors. One of the first approaches is to consider the(disjoint) parallel composition, that is, simply
running the component systems independently and regardingthem as a single composed system. This
approach provides some general behaviour and reasoning about the whole composed system, as shown
in the research of quantitative information flow with different operational scenarios of attack [5, 19,
20]. However, the parallel composition approach is coarse-grained and abstracts many of the channels’
behaviours that may lead to changes in information leakage.Although this approach provides useful
results on the bounds of possible leakage, it does so under the assumption that the component channels
are executed independently and observed separately. That is, their outputs can always be linked to the
disjoint component channels, and that both their outputs are observed simultaneously and without any
interleaving or reflection of how the component channels achieved their outputs.
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Here we take a more fine-grained approach where we consider that channels may provide a sequence
of observable actions. Thus, a channel may be observed to output a sequence of actions, or the passage
of time may be observed to pass between the initiation of the channel and a final output. This captures
more mechanics of real world systems and allows for greater refined reasoning about their behaviour.

Such sequences of observable actions also allow a more subtle approach to combining channels in
parallel. Rather than simply taking both outputs to appear together at the termination of their operations,
observations can be made of the sequence in which the outputsappear. Such a combination of channels
becomes parametrised by ascheduler, that informs on how to combine the observable sequences of ac-
tions into a single sequence. This can then represent very direct behaviour such as scheduling properties
of a shared CPU, or abstract behaviours such as routing properties, vote counting, etc.

The other novel approach presented here is the refinement of the attacker’s capability of observing the
outputs of systems. We model attackers that may have imperfect observability: they may not accurately
detect differences in outputs, or may do so only probabilistically. This captures, for example, the situation
where the attacker may be blind to some internal behaviour that other agents can detect. In this paper
such imperfect observations are modeled using what we callobserver channels. This formalisation
enables us to consider a large class of observers, includingprobabilistic observers, which have never
been considered in the previous studies on quantitative information flow.

These refinements to composing information-theoretic channels allow us to reason about behaviours
that may be obvious, but not captured by previous approaches. In this paper we present three kinds of re-
sults regarding the effect of leakage properties due to the considering of schedulers and observers. First,
since scheduled composition can alter the leakage relativeto the parallel composition, we present theo-
rems for detecting when a scheduled composition does not alter the relative information leakage. This
means some preliminary analysis may be sufficient to determine when scheduled composition may be
worthy of further consideration. Second, scheduled composition can leak more or less information than
the parallel composition depending on the properties of thechannels and the power of the observer. Al-
though the potential effect on leakage is dependent upon many factors, we present results that determine
an upper bound for the leakage of a schedule-composed channel. Third, we present results for finding a
scheduler that minimises the min-entropy leakage and min-capacity in the presence of any observer. We
present how to construct such a scheduler by solving a linearprogramming problem.

In addition we evaluate our model and results with some simple yet intuitive examples, such as mix
networks for voter anonymity, and side-channel attacks against cryptographic algorithms. We provide
an implementation that can be used to calculate the behaviours of information-theoretic channels, sched-
ulers, and observers as presented here. The implementationis available online [1], which requires the
librariesleakiEst tool [14] and the linear programming systemlp solve [2].

The rest of the paper is structured as follows. Section 2 recalls the definitions of information-theoretic
channels and measures of information leakage. Section 3 defines traces, systems and channel compo-
sitions, and shows examples of schedulers. Section 4 introduces the notion of generalised observers
and defines the observed leakage. Section 5 presents our mainresults in a general manner. Section 6
applies these results to well known problems. Section 7 discusses some related work. Section 8 draws
conclusions and discusses future work. All proofs can be found in [21].

2 Preliminaries
2.1 Information-Theoretic Channel

Systems are modeled asinformation-theoretic channelsto quantify information leakage using informa-
tion theory. A channelK is defined as a triple(X ,Y ,C) consisting of a finite setX of secret input
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values, a finite setY of observable output values, and achannel matrix Ceach of whose row represents
a probability distribution; i.e., for allx∈ X andy∈ Y , 0≤C[x,y] ≤ 1 and∑y′∈Y C[x,y′] = 1. For each
x∈X andy∈Y , C[x,y] is a conditional probabilityp(y|x) of observingy when the secret of the system
is x. We assume some secret distributionπ onX , which is also called aprior. Given a priorπ onX , the
joint distribution of having a secretx∈ X and an observabley∈ Y is defined byp(x,y) = π[x]C[x,y].

2.2 Quantitative Information Leakage Measures

In this section we recall the definitions of two popular quantitative information leakage measures.
Mutual information is a leakage measure based on the Shannonentropy of the secret distribution.

Definition 1 Given a priorπ on X and a channelK = (X ,Y ,C), themutual informationI (π,K )
w.r.t. π andK is defined by:

I (π,K ) = ∑
x∈X ,y∈Y

π[x]C[x,y] log

(

C[x,y]

∑y′∈Y C[x,y′]

)

.

Then theShannon’s channel-capacityS C (K ) of a channelK is given by max
π

I (π,K ) whereπ
ranges over all distributions onX .

Min-entropy leakage quantifies information leakage under single-attempt guessing attacks [9, 25].

Definition 2 Given a priorπ on X , and a channelK = (X ,Y ,C), theprior vulnerability V(π) and
theposterior vulnerability V(π,K ) are defined respectively as

V(π)= max
x∈X

π[x] and V(π,K )= ∑
y∈Y

max
x∈X

π[x]C[x,y].

Then themin-entropy leakageL (π,K ) and themin-capacityMC (K ) are defined by:

L (π,K )= − logV(π)+ logV(π,K ) and MC (K )= sup
π

L (π,K ).

3 Information Leakage of Scheduler-Dependent Systems

3.1 Traces and Systems

In general the output of an information-theoretic channel can be defined in many different ways. In this
work we consider traces, or sequences of actions, as observable values. Assume a countable set ofnames
denotedm,m′,m1,m2, . . . and a countable set ofvalues v,v1,v′, . . .. We define anaction by µ ,α ,β ::=
τ | m〈v〉 . Hereτ denotes the traditionalsilent or internal action that contains no further information.
The outputactionm〈v〉 can be considered to exhibit some valuev via some named mechanismm. In
concurrency theory the output action typically refers to the the named mechanism as achannel name,
which is distinct from the notion of information-theoreticchannel used here. Here the output action is
used in a more general sense, in thatm〈v〉 exhibits some valuev such as runtime measured via mechanism
m. For example,v could be runtime, electronic power usage or other value determined by the input, and
m could be via direct communication/circuitry, indirect side effects, or any other means.

A traceis defined to be a sequence of actions of the formµ1.µ2. . . . .µi . The notationα ∈ µ1.µ2. . . . .µi

denotes that there exists aj ∈ {1,2, . . . , i} such thatµ j = α . Similarly a sequence ofi actionsµ can be
denotedµ i, and an empty sequence of actions by /0. Asystemis modeled as an information-theoretic
channel(X ,Y ,C) where|X | is finite and the setY of observables is a finite set of traces.
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Figure 1: Parallel composition and scheduled composition

3.2 Scheduled Composition

In this section we model scheduler-dependent systems by introducing the notion of ascheduled compo-
sition of information-theoretic channels, which interleaves outputs from different channels.

In [20] the parallel compositionK1 ×K2 of two component channelsK1 andK2 is defined as a
channel that outputs ordered pairs consisting of the outputs of the two component channels. That is,
given two component channelsK1 = (X1,Y1,C1) andK2 = (X2,Y2,C2), the outputs of their parallel
composition range over the ordered pairs(y1,y2) for all y1 ∈ Y1 andy2 ∈ Y2. This composition can be
modeled using a scheduler that allowsK1 to perform the whole sequencey1 of actions and some action
sep6∈ Y1∪Y2 (for separatingy1 from y2) beforeK2 performs the actions iny2.1 In this setting we can
recognise which component channel each output of the composed channel came out of.

In this paper we consider more fine-grained schedulers that may allowK2 to perform some actions
beforeK1 completes the whole sequence of actions. To model such schedulers, we define the set of
possible interleaving of two traces that preserves the orders of occurrences of actions in the traces.

Definition 3 (Interleaving of traces) Let us consider two tracesy1 of the form α1.α2. . . . .αk and y2

of the formβ1.β2. . . . .βl . The interleaving Int(y1,y2) of y1 andy2 is the set of all traces of the form
µ1.µ2. . . . .µk+l s.t., for two sequences of distinct integers 1≤ i1 < i2 < .. . < ik ≤ k+ l and 1≤ j1 < j2 <
.. . < j l ≤ k+ l , we haveµim = αm for all m= 1,2, . . . ,k andµ jm = βm for all m= 1,2, . . . , l .

Definition 4 For two setsY1,Y2 of observables, theinterleaving Int(Y1,Y2) overY1 andY2 is defined
by Int(Y1,Y2) =

⋃

y1∈Y1,y2∈Y2
Int(y1,y2). The definition of interleaving is extended from two traces ton

traces as follows:Int(y1,y2, . . . ,yn) =
⋃

y′∈Int(y2,...,yn) Int(y1,y′). Forn setsY1,Y2, . . . ,Yn of observables,
the interleavingInt(Y1,Y2, . . . ,Yn) is defined analogously.

Although the interleaving defines all possible combinations of the sets of traces, they do not define
the probability of their appearance. To reason about this, we define a scheduler that takes two sets of
traces and probabilistically schedules their actions to form each possible trace in their interleaving.

Definition 5 (Scheduler) A schedulerS onY1 andY2 is a function that, given two tracesy1 ∈ Y1 and
y2 ∈ Y2, produces a probability distribution over all the possibleinterleavingInt(y1,y2). We denote by
S (y1,y2)[y] the conditional probability of having an interleaved tracey giveny1 andy2.

We define a deterministic scheduler as one that produces the same output for any given two traces.

Definition 6 (Deterministic scheduler) A schedulerS is deterministicif for any two tracesy1 andy2,
there existsy∈ Int(y1,y2) such thatS (y1,y2)[y] = 1.

This provides the basis for composing channels in general, however this requires some delicacy
since the interleaving of different traces may produce the same result. For example, giveny1 = τ .m〈s〉
andy2 = τ then one of the possible traces produced isτ .τ .m〈s〉. However, giveny3 = m〈s〉 andy4 = τ .τ
then the same traceτ .τ .m〈s〉 could also be produced.

1Formally, we introduceKsep= ({sep},{sep},(1)) to consider the sequential execution ofK1, KsepandK2 in this order.
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observable
m1〈0〉 τ.m1〈0〉 m1〈1〉 τ.m1〈1〉

0 0.5 0 0 0.5
secret

1 0 0.5 0.5 0

Table 1: Channel matrixC1

observable
m2〈0〉 τ.m2〈0〉 m2〈1〉 τ.m2〈1〉

0 0 0.5 0.5 0
secret

1 0.5 0 0 0.5

Table 2: Channel matrixC2

Let p(y1,y2) be the joint probability that two component channels outputtwo tracesy1 and y2.
Then the probability thatS produces an interleaved tracey is given by: p(y) = ∑y1∈Y1,y2∈Y2

p(y1,y2) ·
S (y1,y2)[y]. By [20] we obtainC1[x1,y1]C2[x2,y2] = p(y1,y2|x1,x2). Hence we can define scheduled
composition of channels as follows.

Definition 7 (Scheduled composition of channels)Thescheduled composition oftwo channelsK1 =
(X1,Y2,C1) and K2 = (X2,Y2,C2) with respect toa schedulerS is define as the channel(X1 ×
X2, Int(Y1,Y2),C) where the matrix element forx1 ∈ X1, x2 ∈ X2 andy∈ Int(Y1,Y2) is given by:
C[(x1,x2),y] = ∑y1∈Y1,y2∈Y2

C1[x1,y1]C2[x2,y2]S (y1,y2)[y].

We denote this scheduled composition byCompS (K1,K2). Note that the scheduled composition ofn
channels can be defined by adapting the schedulerS to operate overn traces in the obvious manner.

3.3 Examples of Scheduled Composition

This section presents some example channels and schedulersthat illustrate the main results of this paper.
For simplicity they shall all limit their secrets to the setXB = {0,1}, and their outputs to the setYm =
{m〈0〉,τ .m〈0〉,m〈1〉,τ .m〈1〉} for a parameterm.

Consider the channelK1 = (XB,Ym1,C1) whereC1 is given by Table 1. This channel can be consid-
ered as one that half the time simply outputs the secret viam1〈s〉 and half the time outputs the exclusive-or
⊕ of the secret with 1 as inτ .m1〈s⊕1〉, with theτ representing the calculation effort. Note that this chan-
nel leaks 100% of the information about the secret. Also consider the channelK2 = (XB,Ym2,C2) where
C2 is given by Table 2. This channel is similar toK1, except that the internal actionτ is observable when
disclosing the secret rather than its exclusive-or. Again this channel leaks all the secret information.

When combining channels the rôle of the scheduler is very significant with respect to the information
leakage. This section defines three types of simple schedulers for illustrating the results here.

The simplest scheduler is one that outputs the first and second observable outputs concatenated,
i.e. giveny1 andy2 outputsy1.y2.

Definition 8 The(left-first) deterministic sequential schedulerSDS is defined as follows:SDS(y1,y2)[y]
is 1 if y= y1.y2 and 0 otherwise wherey1 ∈ Y1, y2 ∈ Y2 andy∈ Y .

Example 1 The scheduled composition CompSDS
(K1,K2) w.r.t. SDS has the same information leakage

as the parallel compositionK1×K2. This can be shown since it follows from the definition ofSDS that,
for each y∈ Y , SDS uniquely identifies a pair(y1,y2) of outputs. For instance, let us consider the prior
distribution π onX1×X2 defined by(0.15,0.20,0.30,0.35). Then, for both of the composed channels,
the mutual information is about1.926and the min-entropy leakage is about1.515.

Next is thefair sequential schedulerSFS that fairly chooses between the first or second observable
and produces that in its entirety before producing the other.

Definition 9 Thefair sequential schedulerSFS is defined by
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SFS(y1,y2)[y]
def
=











1 if y1 = y2∧y= y1.y2

0.5 if y1 6= y2∧ (y= y1.y2∨y= y2.y1)

0 otherwise.

Similar to the deterministic sequential scheduler, the information leakage can be proven to be equal to
that of the parallel composition of channels for this example.

Example 2 The scheduled composition CompSFS
(K1,K2) w.r.t. SFS has the same information leakage

as the parallel compositionK1×K2. This can be shown similarly to Example 1.

Note that the leakage preservation doesnot hold in general as illustrated in the following example.

Example 3 Consider whenY1 = {τ ,τ .τ} andY2 = {m〈0〉,τ .m〈0〉}. The observed outputτ .τ .m〈0〉 can
arise fromS (τ ,τ .m〈0〉) and S (τ .τ ,m〈0〉), whereS can beSDS or SFS. Thus, both the schedulers
SDS andSFS may allow less information leakage than the parallel composition.

The third example scheduler is thefair interleaving schedulerSFI that evenly chooses the next action
from the two observables.

Definition 10 Thefair interleaving schedulerSFI is recursively defined as

SFI (y1,y2)[y]
def
=































0.5SFI (y′1,y2)[y′] if y=α.y′∧ y1=α.y′1∧ y2=β .y′2∧ α 6=β
0.5SFI (y1,y′2)[y

′] if y=β .y′∧ y1=α.y′1∧ y2=β .y′2∧ α 6=β
0.5SFI (y′1,y2)[y′]+0.5SFI(y1,y′2)[y

′] if y=α.y′∧ y1=α.y′1∧ y2=α.y′2
1 if (y= y1∧ y2 = /0)∨ (y= y2∧ y1 = /0)

0 otherwise.

The fair interleaving schedulerSFI turns out to often have impact on the leakage compared to the parallel
composition of channels. This can occur in a variety of ways and shall be explored in detail later.

Example 4 The scheduled composition CompSF
(K1,K2) w.r.t. SFI has less information leakage than

the parallel compositionK1×K2. This can be shown by considering when the output y is of the form
τ .m1〈0〉.m2〈0〉, which can arise from bothSFI(τ .m1〈0〉,m2〈0〉) andSFI(m1〈0〉,τ .m2〈0〉). Since y does
not uniquely identify the outputs y1 and y2, SFI could allow less leakage than the parallel composition.
For instance, for the prior(0.15,0.20,0.30,0.35), the mutual information of the scheduled composition
w.r.t. SFI is 1.695. This is less than those of the parallel composition and scheduled composition w.r.t.
SDS in Example 1 (both1.926), thus the scheduler here alone is responsible for reducingthe leakage.

4 Information Leakage to Observers
4.1 Observers

Many kinds of capabilities of observing systems have been considered; e.g. an observer for strong bisim-
ulation∼s can recognise the internal action:τ .m〈v〉 6∼s m〈v〉, while one for weak bisimulation∼w cannot:
τ .m〈v〉 ∼w m〈v〉. To model different kinds of capabilities of observation, we define anobserver’s views
Z as the set of values recognised by the observer. For example,τ .m〈v〉 andm〈v〉 fall into two different
views to an observer for strong bisimulation, but to the sameview to an observer for weak bisimulation.

We formalise the notion of an observer using a matrix that defines relationships between observ-
able outputs of systems and the observer’s views. In particular, we allow for probabilistic accuracy in
observation; that is the observer may not be perfectly accurate in identifying an output.
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Definition 11 (Generalised observer)An observerO is defined as a triple(Y ,Z ,Obs) consisting of a
finite setY of observables, a finite setZ of observer’s views and anobserver matrix Obseach of whose
row represents a probability distribution; i.e., for ally ∈ Y we have∑z∈Z Obs[y,z] = 1. Each matrix
elementObs[y,z] represents the probability that the observer has the viewzwhen the actual output isy.

The observation matrixObsdescribes the capability of the attacker to distinguish between traces.
This capability of observation has been formalised as an equivalence relation between states of a system
in prior work [6]. In fact, an equivalence relation∼ between traces characterises a class of observers.

Definition 12 (∼-observer) Given an equivalence relation∼ on Y , an observer(Y ,Z ,Obs) is called
a∼-observerif, for all y1,y2 ∈ Y , y1 ∼ y2 is logically equivalent toObs[y1,z] = Obs[y2,z] for all z∈ Z.

For instance, we can consider the∼s-observer for strong bisimulation∼s and the∼w-observer for
weak bisimulation∼w. Observe that∼s is the identity relation on traces here. Further, note that for every
observerO, there exists an equivalence relation∼ between traces such thatO is a∼-observer. This

equivalence relation∼ is defined by the following:∼
def
= {(y1,y2) ∈ Y ×Y | for all z∈ Z, Obs[y1,z] =

Obs[y2,z]}. On the other hand, the observation matrix isnot uniquely determined by the equivalence
relation and therefore can express a wider range of observers’ capabilities than the equivalence relation.

Among∼-observers, we often consider observers that always have the same view on the same trace.

Definition 13 (Deterministic observer) We say that an observer(Y ,Z ,Obs) is deterministicif each
probability inObsis either 0 or 1; i.e., for ally∈ Y , there exists a uniquez∈ Z such thatObs[y,z] = 1.

For any deterministic∼-observer(Y ,Z ,Obs) and anyy1,y2 ∈ Y , we havey1 ∼ y2 iff, for all
z∈ Z , we haveObs[y1,z] = Obs[y2,z] ∈ {0,1}. Then this observer always detects the equivalence class
[y]∼ of the outputy from any given viewz. For this reason, when defining a deterministic∼-observer,
we typically take the setZ of views as the quotient set ofY by ∼, and for anyy ∈ Y andz∈ Z ,
Obs[y,z] = 1 iff z= [y]∼. For example, consider the deterministic observers corresponding to∼s.

Example 5 (Deterministic∼s-observer) A deterministic∼s-observer(Y ,Z ,Obs) satisfies the prop-
erty that, for any distincty1,y2 ∈Y , there exists az∈Z such that eitherObs[y1,z] = 0 andObs[y2,z] = 1
or Obs[y1,z] = 1 andObs[y2,z] = 0. Therefore this observer always detects the outputy of the channel
from any given viewz. For this reason we call a deterministic∼s-observer aperfect observer.

Various kinds of bisimulations, or relations on observables, have been proposed and can be repre-
sented by various deterministic observers. Indeed, other kinds of relations can also be represented; con-
sider an observer that cannot distinguish which sourcemi a value is output upon. This can be formalised
by using the equivalence relation∼ch on traces that cannot distinguishesm1 from m2.

The last example observer here effectively ensures no leakage by seeing all outputs as the same:

Example 6 (Unit observer) An observerO = (Y ,Z ,Obs) is called aunit observerif Z is a singleton.
It has the same view regardless of the outputs of the channel,thus can detect no leakage of the channel.

4.2 Observed Information Leakage

The amount of observed information leakage depends on the capability of the observer. To quantify this
we introduce the notion ofobserved information leakage.

Definition 14 (Observed information leakage)LetK =(X ,Y ,C) be a channel andO =(Y ,Z ,Obs)
be an observer. For each leakage measureL ∈ {I ,L } and any priorπ on X , we defineobserved
information leakageby LO(π,K ) = L(π,K ·O) whereK ·O = (X ,Z ,C ·Obs) is the cascade com-
position [18] ofK andO. Similarly, for eachL ∈ {S C ,MC }, we defineLO(K ) = L(K ·O).
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We present properties of observed information leakage as follows. The first remark is that, for each
equivalence relation∼ on traces, all deterministic∼-observers give the same observed leakage values.
Proposition 1 Let π be any prior onX and K = (X ,Y ,C) be any channel. For any equivalence
relation∼ on Y and any two deterministic∼-observersO1, O2, we have LO1(π,K ) = LO2(π,K ) for
L ∈ {I ,L } and LO1(K ) = LO2(K ) for L ∈ {S C ,MC }.

The following states that the deterministic∼s-observers and unit observers respectively have the
maximum and minimum capabilities of distinguishing traces. That is, the deterministic∼s-observer can
detect every behaviour of the channel accurately and does not alter the leakage of the channel in any
manner, while the unit observers cannot detect any leakage of the channel.
Proposition 2 For each L∈ {I ,L }, 0 ≤ LO(π,K ) ≤ L(π,K ). For each L∈ {S C ,MC }, 0 ≤
LO(K )≤ L(K ). In these inequations, the left equalities hold whenO is a unit observer, and the right
ones hold whenO is a deterministic∼s-observer.

Next we compare the capabilities of generalised observers.Recall the composition-refinement rela-
tion ⊑◦ on channels [3, 24]: A channelK1 is composition-refinedby anotherK2, written asK1 ⊑◦ K2,
iff there exists a channelK ′ such thatK1 = K2 ·K

′. Since the generalised observers are also channels,
we can consider this ordering⊑◦ on observers. For example, the unit observer is composition-refined
by ∼w-observers, and the deterministic∼w-observer is by the deterministic∼s-observer. For another
example, any probabilistic∼a-observer is composition-refined by the deterministic∼a-observer:
Proposition 3 Given any equivalence relation∼a onY let O1 = (Y ,Z ,Obs1) andO2 = (Y ,Z ,Obs2)
be two∼a-observers. IfO2 is deterministic thenO1 ⊑◦ O2.

The composition-refined observer will observe less information leakage.
Theorem 4 LetO1 andO2 be two observers such thatO1 ⊑◦ O2. Then, for any priorπ and any channel
K , we have LO1(π,K )≤ LO2(π,K ) for L ∈ {I ,L } and LO1(K )≤ LO2(K ) for L ∈ {S C ,MC }.

These results imply that no probabilistic∼-observer detect more leakage than deterministic ones.

4.3 Examples of Deterministic Observers

Theorem 4 implies that the deterministic∼s-observer does not observe less information leakage than the
deterministic∼w-observer.

Example 7 Let us consider the scheduled compositions in Examples 1 and2 in Section 3.3. Both the
composed channels leak all secrets without considering observers; i.e., they do so in the presence of
∼s-observer. On the other hand, they leak no secrets to a weakly-bisimilar observer. For example,
for each i∈ {1,2}, we define the deterministic∼w-observerOi as ({mi〈0〉,τ .mi〈0〉,mi〈1〉,τ .mi〈1〉},
{[mi〈0〉]∼w, [mi〈1〉]∼w},Obs) where Obs is the matrix given in Table 3. Applying the∼w-observerOi to
bothK1 andK2 yields the same matrix presented in Table 4. Then both channels leak no information to
the∼w-observer. Therefore, the deterministic∼s-observer observes more information leakage than the
deterministic∼w-observer also in this example.

The scheduled composition can also leak more information than the parallel composition (and even
than each component channel) in the presence of imperfect observers.

Example 8 (Observer dependent)Consider the scheduled composition of the channelsK1 and K2

w.r.t. the fair interleaving schedulerSFI . By Example 4, the leakage of the scheduled composition w.r.t.
SFI is less than that of the parallel composition in the presenceof the deterministic∼s-observer.

However, the leakage of the scheduled composition is more than that of the parallel composition
(and even than that of each component channel) when the∼w-observerO is being considered; e.g.,
LO(π,CompSFI

(K1,K2))= 0.215> 0=LO (π,K1×K2)=LO(π,K1) for π =(0.15,0.20,0.30,0.35).
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view
[mi〈0〉]∼w [mi〈1〉]∼w

mi〈0〉 or τ.mi〈0〉 1 0output
mi〈1〉 or τ.mi〈1〉 0 1

Table 3: Observer matrixObs

view
[mi〈0〉]∼w [mi〈1〉]∼w

0 0.5 0.5secret
1 0.5 0.5

Table 4: Composed matrixCi ·Obs

4.4 Example of Probabilistic Observers

The notion of deterministic∼-observers is useful to model various observers, but they may not cover
all realistic settings. For example, when the internal action τ represents time to perform internal com-
putation, observers may recognise it only probabilistically, for instance with probability 0.7. Then such
probabilistic observerscannot be modeled as deterministic observers but as generalised observers, which
quantify the capabilities of probabilistic observation. As far as we know, no previous work on quantita-
tive information flow analyses have considered probabilistic observers.

Example 9 Consider a probabilistic observerO that can recognise a single internal actionτ only prob-
abilistically but two or more consecutiveτ ’s with probability 1. For instance,O recognises the trace
(τ .mi〈0〉.mi〈1〉) correctly with probability0.7 and confuses it with either(mi〈0〉.mi〈1〉), (mi〈0〉.τ .mi〈1〉)
or (mi〈0〉.mi〈1〉.τ) each with probability0.1. Consider the schedule-composed channel CompSFI

(K1,K2)
from Example 4. The observed mutual information is0.783under the probabilistic observerO, which is
between0.090and1.695as observed under the deterministic∼w-observer and∼s-observer.

5 Relationships between Scheduling and Observation

This section generalises the previous examples to show three kinds of results. First, we identify con-
ditions on component channels under which leakage cannot beeffected by the scheduled composition.
Second, we show that scheduled composition can leak more or less information than the parallel com-
position, including results on the bounds of the information leaked. Third, we present an algorithm for
finding a scheduler that minimises the min-entropy leakage/min-capacity under any observer

5.1 Information Leakage Independent of Scheduling

This section presents results for determining when the leakage is independent of the scheduler. Regard-
less of the scheduler and observer, the leakage of the scheduled composition is equivalent to that of the
parallel composition under certain conditions on component channels that are detailed below.

Theorem 5 LetK1 = (X1,Y1,C1) andK2 = (X2,Y2,C2) be channels. Assume that, for any y1,y′1 ∈Y1

and y2,y′2 ∈Y2, if Int(y1,y2)∩ Int(y′1,y
′
2) 6= /0 then y1 = y′1 and y2 = y′2. Then, for every schedulerS and

observerO, the leakage of the scheduled composition is the same as thatof the parallel composition.

By adding a stronger requirement to Theorem 5, we obtain the following corollary.

Corollary 6 LetK1 = (X1,Y1,C1) andK2 = (X2,Y2,C2) be channels. Assume that, for all(y1,y2) ∈
Y1×Y2, α ∈ y1 andβ ∈ y2, we haveα 6= β . Then, for every schedulerS and observerO, the leakage
of the scheduled composition is the same as that of the parallel composition.
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5.2 Schedulers for Altering Information Leakage

This section considers when schedulers can alter the leakage of a scheduled composition. This is distinct
from prior results where it has been shown that the composition cannot leak more information than the
component channels [5, 19, 20], since here more informationcan be leaked to imperfect observers.

In general scheduled composition can yield more or less leakage than the individual component
channels or their parallel composition. This is illustrated by Example 8. Unfortunately heuristics for
determining when more information is leaked end up being rather complicated and dependent on many
relations between traces, interleavings, equivalences, and then subject to generalities about both sched-
ulers and observers. Ultimately it is easier to show by examples that, for some channels, prior, and
∼-observer, there is a scheduler by which the scheduled composition leaks strictly more information
than the parallel composition. Since this clearly holds by example, we consider a class of schedulers
under which the scheduled composition does not leak more information than the parallel composition.

To define this we extend an equivalence relation∼ on traces to probability distributions of traces:
We say that two distributionsD andD′ on a setY are∼-indistinguishable(written asD ∼ D′) if the
deterministic∼-observer cannot distinguishD from D′ at all, i.e., for all equivalence classt ∈ Y /∼, we
have∑y∈t D[y] = ∑y∈t D′[y]. Using∼-indistinguishability we define a scheduler that does not leak any
behaviour of the system that the∼-observer cannot detect.

Definition 15 Let∼ be an equivalence relation onY1∪Y2∪ Int(Y1,Y2). A schedulerS onY1 andY2

is a∼-blind schedulerwhen, for any two pairs(y1,y2),(y′1,y
′
2) ∈ Y1×Y2, we havey1 ∼ y′1 andy2 ∼ y′2

iff we haveS (y1,y2)∼ S (y′1,y
′
2).

For instance, the deterministic sequential schedulerSDS and the fair sequential schedulerSFS are∼w-
blind while the fair interleaving schedulerSFI is not. Note that∼-blind schedulers do not leak any
behaviour that would not be visible to the deterministic∼-observers. Thus they do not gain more infor-
mation from the scheduled composition w.r.t.∼ than the parallel composition.

Theorem 7 Let π be a prior,K1 andK2 be two channels,O be a deterministic∼-observer, and S be
a ∼-blind scheduler. For each L∈ {I ,L } we have LO(π,CompS (K1,K2)) ≤ LO(π,K1×K2). For
each L∈ {S C ,MC } we have LO(CompS (K1,K2)) ≤ LO(K1×K2). WhenS is also deterministic,
the leakage relations become equalities.

For instance, sinceSDS andSFS are∼w-blind schedulers, the deterministic∼w-observers do not
gain more information from the scheduled composition w.r.t. ∼w than the parallel composition. In fact,
they have the same leakage in Example 7.

The following result is about a heuristic for when leakage can be changed by the properties of the
scheduler. This is presented here to clarify the properties.

Theorem 8 Let K1 = (X1,Y1,C1) and K2 = (X2,Y2,C2) be two channels. Assume that there exist
y1,y′1 ∈ Y1 and y2,y′2 ∈ Y2 such that Int(y1,y2)∩ Int(y′1,y

′
2) 6= /0. Then it is possible for the scheduled-

composition ofK1 andK2 to alter the mutual information and min-entropy leakage forsome prior.

5.3 Schedulers for Minimising Information Leakage

This section presents results for finding a scheduler that minimises the min-entropy leakage and min-
capacity in the presence of any observer.

Theorem 9 Given any priorπ, two channelsK1, K2 and any observerO, there is an algorithm that
computes a schedulerS that minimises the observed min-entropy leakageLO(π,CompS (K1,K2)) of
the scheduled composition.
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Proof: To find a schedulerS that minimises the observed min-entropy leakageLO(π,CompS (K1,K2)),
it is sufficient to findS that minimises the observed posterior vulnerabilityV(π,CompS (K1,K2) ·O).

For(x1,x2)∈X1×X2 and(y1,y2)∈Y1×Y2, let p(x1,x2,y1,y2)= π[x1,x2](C1×C2)[(x1.x2),(y1,y2)].
For eachz∈ Z let vz =max(x1,x2)∈X1×X2 ∑y1,y2,y p(x1,x2,y1,y2)S (y1,y2)[y]Obs[y,z] where(y1,y2) and
y range overY1×Y2 andInt(Y1,Y2) respectively. LetPos(y1,y2)[y] be the(|Y1|× |Y2|, |Int(Y1,Y2)|)-
matrix defined by the following:Pos(y1,y2)[y] = 1 if y can be obtained by interleavingy1 andy2, and
Pos(y1,y2)[y] = 0 otherwise.

To find a scheduler matrixS that minimises the observed posterior vulnerability, it suffices to solve
the linear program that minimises∑z∈Z vz, subject to

• for each(x1,x2,z)∈X1×X2×Z , ∑y1,y2,y p(x1,x2,y1,y2)S(y1,y2)[y]Obs[y,z]≤ vz

• for each(y1,y2) ∈ Y1×Y2, ∑y Pos(y1,y2)[y]S (y1,y2)[y] = 1.

Note that the second constraint means that each row of the scheduler matrixS must sum to 1. In this
linear program, the scheduler matrix elementS (y1,y2)[y] for each(y1,y2)∈Y1×Y2 andy∈ Int(Y1,Y2)
andvz for eachz∈Z are variables. We can solve this problem using the simplex method or interior point
method. (In practice, we can efficiently solve it using a linear programming solver such aslp solve [2].)
Hence we obtain a scheduler matrixS that minimises∑z∈Z vz. ✷

In the above linear program the number of variables is|Y1| × |Y2| × |Int(Y1,Y2)|+ |Z |, and the
number of constraints is|X1|× |X2|× |Z |+ |Y1|× |Y2|. Since the number of interleaved traces grows
exponentially in the number of traces, the time to compute a minimising scheduler is exponential in the
number of component traces. When the observerO is imperfect enough for|Z | to be very small, then
the computation time improves significantly in practice. Onthe other hand, when the number of traces is
very large, we may heuristically obtain a scheduler with less leakage by results in the previous section.

To obtain a scheduler that minimises the worst-case leakagevalue, it suffices to consider a scheduler
that minimises the min-capacity.

Corollary 10 Given two channelsK1, K2 and any observerO, there is an algorithm that computes a
schedulerS that minimises the observed min-capacity of the scheduled composition.

These two results give the minimum amount of leakage that is possible for any scheduling.

Example 10 Consider the channelsK1,K2 defined in Section 3.3. By Theorem 9, the minimum observed
min-entropy leakage w.r.t. the prior(0.15,0.20,0.30,0.35) is 1.237under the deterministic∼s-observer,
and0.801under the probabilistic observer defined in Example 9. By Corollary 10, the minimum observed
min-capacity is1.585under the deterministic∼s-observer, and1.138under the probabilistic observer.

Since the channel capacity will not exceed the min-capacity[26], the minimum observed min-
capacity obtained by the above algorithm gives an upper bound on the minimum channel capacity.

6 Case Studies
6.1 Sender Anonymity

In e-votingsender anonymitycan be summarised as the issue of collecting votes from a number of voters
and being able to expose the aggregate vote information while revealing as little as possible about how
each voter voted. This can be solved by a general applicationof a mix network [13] where all the votes
are sent via mixing systems that output the votes in a manner that should not reveal how each voter voted.
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Figure 2: Structure of composed channels for voters

This can be represented here by each voter being an information-theoretic channel that outputs their
vote. For example, consider a simple voting in which possible votes are 0 and 1 and each voter outputs
the chosen vote viam〈0〉 or m〈1〉, respectively. Then each voter (indexed byi) can be represented by the
channelKi = ({0,1},{m〈0〉,m〈1〉},Ci) whereCi[k,m〈k〉] = 1 for k ∈ {0,1} and each voter has a prior
πi on{0,1}. Observe that each such voter channel alone fully reveals the prior for the channel.

The scheduled composition of the voters represents the mix network with the schedulers representing
the mixing algorithm and thus providing the ability to reason over their effect on information leakage.
Consider the following problem with five votersK1 to K5. As illustrated in Figure 2, the ballot of each
voter is sent via intermediate severs (schedulers)KA, KB, KS1 that mix the order of ballots. The final
systemKS2 combinesKS1 andKB to output all the votes according to some mixing.

Using the deterministic sequential schedulerSDS for all compositions reveals all information on how
each voter voted. That is, the leakage is considered to be 5-bits (as each vote is 0 or 1). On the other hand,
using the fair sequential schedulerSFS for all compositions leaks less information thanSDS. Whenπ
is uniform andK is the composed channel in Figure 2 with the appropriate scheduling, we obtain
L (π,K ) = 3.426 andI (π,K ) = 2.836. Observe that here the third voter’s output can only appear
in the 1st, 3rd, or 5th position in the final trace. This is repaired by using the fair interleaving scheduler
SFI for all compositions that leaks even less information:L (π,K ) = 2.901 andI (π,K ) = 2.251.

A more interesting case is when different compositions use different schedulers. Since the votes do
not contain any information about the system they came from,let alone voter. Using the fair sequential
scheduler forKA andKB, and the fair interleaving scheduler forKS2, along with a specially constructed
scheduler forKS1 can reduce the information leakage to a minimum. Then the min-entropy leakage is
2.824 and the mutual information is 2.234. Note that when there is only one scheduler that receivesall 5
ballots, the minimum min-capacity of the composed system (over all possible schedulers) is 2.585.

The example can be extended further by addingτ steps before votes to indicate time taken for some
parts of the process. For a simple example, consider when voters 1 and 2 have aτ step before their
vote to represent the time taken, e.g. as indicative of voting order, or the time taken for the extra mixing
step. In the presence of all fair interleaving schedulers, the observed min-entropy leakage and the mutual
information are respectively 3.441 and 2.785 under the perfect observer. However, these shift to 3.381
and 2.597, respectively, under the deterministic∼w-observer.

6.2 Side-Channel Attacks

Consider the small program shown in Figure 3, where an observable action is repeated in a loop. This
program captures, for instance, some aspects of decryptionalgorithms of certain cryptographic schemes,
such as RSA. Intuitively,X[ ] is the binary array representing a 3-bit secret (e.g.011), which corresponds
to secret decryption keys. The timing of the algorithm’s operation reveals which bit of the secret key is
1, since the observable-operationm〈1〉 can be detected, perhaps as power consumption, response time,
or some other side-effect of the algorithm [22]. We denote byK the channel defined by this program.
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for(i = 0; i < 3; i++) {
tau;
if(X[i] = 1) {

m<1>; //observable-operation
}

}
Figure 3: Decryption algorithm

view
τ m〈1〉 /0

τ 0.8 0.1 0.1output
m〈1〉 0.05 0.9 0.05

Figure 4: Probabilistic observer matrix

Consider composition ofK with itself, e.g., when applying the algorithm to differentparts of the
message in parallel. Clearly if the parallel composition istaken then both instances ofK will leak all
their information about the key. On the other hand, the scheduled composition may have less leakage.

We first consider the case each instance of the component channel K receives a different secret bit
string independently drawn from the uniform prior. This captures the situation in which each decryption
operation uses different secret keys. When the fair interleaving scheduler mixes the two traces, the
min-entropy leakage and the mutual information are respectively 4.257 and 3.547 in the presence of the
perfect observer, and 2.807 and 2.333 in the presence of the deterministic∼w-observer.

Next we consider the case where both instances ofK share the same secret key which has been
drawn from the uniform prior. When the fair interleaving scheduler mixes the two traces, the min-
entropy leakage and the mutual information are respectively 3.000 and 3.000 (all 3 bits of the secret key
are leaked) under the perfect observer, and 2.000 and 1.811 under the deterministic∼w-observer.

More interesting is to consider the case where the observer is only able to detect approximate infor-
mation through the side-channel. Consider the observerO that only probabilistically observes actions
according to the matrix in Figure 4. Here /0 indicates that nothing is detected by the attacker not even aτ .
For example, applying this observer to the traceτ .τ .τ may yieldτ .τ when oneτ is not observed (repre-
sented /0 in the matrix). Such an observer is less effective even when applied to the parallel composition
of channels. However, this applies even further when applied to any scheduled composition since the loss
of information through poor detection cannot even be limited to one channel or the other. Thus, a trace
of length 5, even from a leaky scheduler such as the (left-first) sequential scheduler, would leak less than
the parallel composition (since it would be clear which composite channel had been poorly observed).

For instance, let us consider the case each instance ofK independently receives a secret from the
uniform prior and the fair interleaving scheduler is used. Then the min-entropy leakage and the mutual
information are respectively 3.306 and 1.454 under this probabilistic observer. If we consider the case
both instances ofK shares the same secret, then the leakage values are respectively 2.556 and 1.924.

7 Related Work

Regarding schedulers there are a variety of studies on relationships between schedulers and information
leakage [11, 4]. In [10] the authors consider atask-schedulerthat is similar to our schedulers, albeit
restricted to the form of our deterministic scheduler. The schedulers in this paper are also similar to the
admissible schedulersof [4]. Both are defined to depend only upon the observable outputs, that is the
traces they schedule. This avoids the possibility of leakage via the scheduler being aware of the intended
secret directly and so leaking information. Differently toadmissible schedulers, here the scheduler can
be probabilistic, which is similar in concept to the probabilistically defined (deterministic) schedulers of
[27], although they explore scheduling and determinism of Markov Chains and not information leakage.

Most work on schedulers has focused on preventing any leakage at all, indeed the problem is typically
defined to prevent any high/secret information leaking. This in turn sets extremely high requirements
upon the scheduler, and so proves to be difficult to achieve, or even impossible. Here we take an approach
to scheduling that allows for probabilistic schedulers andso reasoning about the quantitative information



Y. Kawamoto & T. Given-Wilson 61

leakage, rather than total leakage. Thus we permit schedulers that can be daemonic or angelic, as well as
many in between that may closer resemble the behaviour of real world systems.

Regarding observers there is little prior work in quantitative information flow and quantifying the
capability of the observer. [6] has some similarity where they formalise an equivalence of system states
similar in style to the deterministic∼-observers here. However, this does not model observers as part of
information-theoretic channels, hence does not allow the probabilistic behaviour of observers.

8 Conclusions and Future Work

We have introduced the notion of the scheduled composition of channels and generalised the capabili-
ties of the observers to reason about more systems. Then we have presented theories that can be used
as heuristics to detect when scheduled composition may havean effect on the information leakage.
This determines when scheduled composition is a potential risk/benefit to a scheduler-dependent sys-
tem. Scheduling can both leak more information, or less information to an observer depending on many
factors, while some leakage bounds can be obtained for schedule-composed channels. Further, we have
shown an algorithm for finding a scheduler that minimises theleakage of the scheduled composition.

The work here provides a foundation for continuing researchinto concurrent behavior, including
interactive systems. Here we have limited the systems to finite sets of secrets and observables since
this aligns with the discrete version of leakage calculations. By shifting to continuous domains we can
investigate some systems with infinite secrets or observables. Similarly the schedulers here assume finite
traces and are typically defined over the entire possible traces. However, many do not require this,
and can be defined only upon the next action in the trace. This allows for alternate definitions without
changing the results, and easier applicability to infinite settings.
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