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Quantitative information flow analyses measure how muabrinftion on secrets is leaked by pub-
licly observable outputs. One area of interest is to qugiatifd estimate the information leakage of
composed systems. Prior work has focused on running diggoimponent systems in parallel and
reasoning about the leakage compositionally, but has rgibesd how the component systems are
run in parallel or how the leakage of composed systems cariienised. In this paper we consider
the manner in which parallel systems can be combined or stddThis considers the effects of
scheduling channels where resources may be shared, oravtieéhoutputs may be incrementally
observed. We also generalise the attacker’s capabiliphsérving outputs of the system, to consider
attackers who may be imperfect in their observations, elggnaoutputs may be confused with one
another, or when assessing the time taken for an output EeapPur main contribution is to present
how scheduling and observation effect information leakaggerties. In particular, that scheduling
can hide some leaked information from perfect observergewbme scheduling may reveal secret
information that is hidden to imperfect observers. In additve present an algorithm to construct a
scheduler that minimises the min-entropy leakage and mpacity in the presence of any observer.

1 Introduction

Preventing the leakage of confidential information is andngmt goal in research of information secu-
rity. When some information leakage is unavoidable in pecactthe next step is to quantify and reduce
the leakage. Recently theories and tools on quantitatifi@nration flow have been developed using
information theory to address these issues [17, 7| 23, 128,286,[15]. The common approach is to
model systems aaformation-theoretic channelhat receive secret input and returns observable output.

One area of interest is to quantify and estimate the infaondéakage of composed systems. When
composing systems the manner of reasoning about their lzeindas non-trivial and is complicated by
many factors. One of the first approaches is to considgidibint) parallel compositionthat is, simply
running the component systems independently and regatidarg as a single composed system. This
approach provides some general behaviour and reasoning @igowhole composed system, as shown
in the research of quantitative information flow with diffet operational scenarios of attack [5) 19,
[20]. However, the parallel composition approach is cogrséied and abstracts many of the channels’
behaviours that may lead to changes in information leakag#ough this approach provides useful
results on the bounds of possible leakage, it does so une@sgumption that the component channels
are executed independently and observed separately. S hheir outputs can always be linked to the
disjoint component channels, and that both their outpidsoaserved simultaneously and without any
interleaving or reflection of how the component channelsexell their outputs.
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Here we take a more fine-grained approach where we consitesttannels may provide a sequence
of observable actions. Thus, a channel may be observed patcusequence of actions, or the passage
of time may be observed to pass between the initiation of tlamel and a final output. This captures
more mechanics of real world systems and allows for greafarad reasoning about their behaviour.

Such sequences of observable actions also allow a more agygtoach to combining channels in
parallel. Rather than simply taking both outputs to appegether at the termination of their operations,
observations can be made of the sequence in which the oappésar. Such a combination of channels
becomes parametrised byseheduler that informs on how to combine the observable sequences-of a
tions into a single sequence. This can then represent vegtdiehaviour such as scheduling properties
of a shared CPU, or abstract behaviours such as routing nhiese/ote counting, etc.

The other novel approach presented here is the refinemedre aftacker’'s capability of observing the
outputs of systems. We model attackers that may have ingafservability: they may not accurately
detect differences in outputs, or may do so only probalaéifly. This captures, for example, the situation
where the attacker may be blind to some internal behaviairdther agents can detect. In this paper
such imperfect observations are modeled using what weotakrver channels This formalisation
enables us to consider a large class of observers, inclymoigabilistic observerswhich have never
been considered in the previous studies on quantitatigerndtion flow.

These refinements to composing information-theoretic wblarallow us to reason about behaviours
that may be obvious, but not captured by previous approathdsis paper we present three kinds of re-
sults regarding the effect of leakage properties due todhsidering of schedulers and observers. First,
since scheduled composition can alter the leakage refatitree parallel composition, we present theo-
rems for detecting when a scheduled composition does resttak relative information leakage. This
means some preliminary analysis may be sufficient to determihen scheduled composition may be
worthy of further consideration. Second, scheduled coiitipascan leak more or less information than
the parallel composition depending on the properties othanels and the power of the observer. Al-
though the potential effect on leakage is dependent upoly faators, we present results that determine
an upper bound for the leakage of a schedule-composed dhdimirel, we present results for finding a
scheduler that minimises the min-entropy leakage and mpacity in the presence of any observer. We
present how to construct such a scheduler by solving a lipregramming problem.

In addition we evaluate our model and results with some gmpt intuitive examples, such as mix
networks for voter anonymity, and side-channel attacksnagaryptographic algorithms. We provide
an implementation that can be used to calculate the belravidinformation-theoretic channels, sched-
ulers, and observers as presented here. The implemenistmailable online[[1], which requires the
librariesleakiEst tool [14] and the linear programming systémsolve [2].

The rest of the paper is structured as follows. Se¢fion 2lsdte definitions of information-theoretic
channels and measures of information leakage. Section Bedetfiaces, systems and channel compo-
sitions, and shows examples of schedulers. Setlion 4 intesdthe notion of generalised observers
and defines the observed leakage. Sedflon 5 presents ouresaits in a general manner. Sectidn 6
applies these results to well known problems. Sedflon 7udises some related work. Section 8 draws
conclusions and discusses future work. All proofs can badano [21].

2 Preliminaries
2.1 Information-Theoretic Channel

Systems are modeled agormation-theoretic channel® quantify information leakage using informa-
tion theory. A channel? is defined as a triplé2",%/,C) consisting of a finite se2” of secret input
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values, a finite se¥” of observable output values, an@l@annel matrix Gecach of whose row represents
a probability distribution; i.e., for ak € 2" andy € %, 0< C[x,y] < 1 andy . C[x,y] = 1. For each
xe Z andy € %, C[x,y] is a conditional probabilityp(y|x) of observingy when the secret of the system
is x. We assume some secret distributimon 2", which is also called grior. Given a priorrron 27, the
joint distribution of having a secrete 2" and an observablgc % is defined byp(x,y) = mx|C[X,Y].

2.2 Quantitative Information Leakage Measures

In this section we recall the definitions of two popular gitative information leakage measures.
Mutual information is a leakage measure based on the Shasmicopy of the secret distribution.

Definition 1 Given a priorrron 2" and a channel?” = (2°,%/,C), themutual information.s (rm, %)
w.r.t. rand.7 is defined by:

) oyl
j(m%) B xeZ ye¥ T[[X]C[XJ] |09 <ZY’€@C[X’y/]> .

Then theShannon’s channel-capacity’4’(.#") of a channel’#” is given by n;axﬁ(n,ji/) where
ranges over all distributions oft".

Min-entropy leakage quantifies information leakage undegls-attempt guessing attacks [9] 25].

Definition 2 Given a priorrron 27, and a channel?” = (27,%/,C), the prior vulnerability V() and
the posterior vulnerability (71, .#") are defined respectively as

V(m)= maxmx and V(%)= maxrix|C[X, Y.
XeZ ye XeX

Then themin-entropy leakage? (m,.%# ) and themin-capacity.# ¢ (.¢) are defined by:
ZL(mx )= —logV(m) +logV(m,#) and Z€¢ (%)= supZ(m.x).

T

3 Information Leakage of Scheduler-Dependent Systems

3.1 Traces and Systems

In general the output of an information-theoretic chanrel lbe defined in many different ways. In this
work we consider traces, or sequences of actions, as obsemalues. Assume a countable sehafmes
denotedm,n’, my,m,, ... and a countable set @hlues w,,V,.... We define aractionby u,a,B ::=

T | M(v) . Heret denotes the traditionalilent or internal action that contains no further information.
The outputactionm(v) can be considered to exhibit some valueia some named mechanism In
concurrency theory the output action typically refers te the named mechanism aslzannel name
which is distinct from the notion of information-theoretthannel used here. Here the output action is
used in a more general sense, in tmég) exhibits some value such as runtime measured via mechanism
m. For exampley could be runtime, electronic power usage or other valueraéned by the input, and

m could be via direct communication/circuitry, indirect sieffects, or any other means.

A traceis defined to be a sequence of actions of the faimi,. .. .. L. The notatiora € .. . ... i
denotes that there existsja {1,2,...,i} such thaiu; = a. Similarly a sequence ofactionsu can be
denotedy’, and an empty sequence of actions by 0systemis modeled as an information-theoretic
channel(2",% ,C) where|.2"| is finite and the se¥” of observables is a finite set of traces.
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CixCo Comp,(C41,Cy)
X1 Y1 X1 Y1
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(a) Parallel composition (b) Observation of a scheduled composition

Figure 1: Parallel composition and scheduled composition

3.2 Scheduled Composition

In this section we model scheduler-dependent systems imdinting the notion of acheduled compo-
sition of information-theoretic channels, which interleavespoitss from different channels.

In [20] the parallel composition#; x .#, of two component channel¥; and.#5 is defined as a
channel that outputs ordered pairs consisting of the ositpfithe two component channels. That is,
given two component channelg; = (21, #1,C1) and %, = (22,%,,Cy), the outputs of their parallel
composition range over the ordered paiys y») for all y; € %1 andy, € #%5. This composition can be
modeled using a scheduler that allow to perform the whole sequenge of actions and some action
sepg %1 U % (for separating/; from y») before 7, performs the actions iylzﬂ In this setting we can
recognise which component channel each output of the coedpddsannel came out of.

In this paper we consider more fine-grained schedulers thgtatiow 75 to perform some actions
before 71 completes the whole sequence of actions. To model such wengdwe define the set of
possible interleaving of two traces that preserves thersmafeoccurrences of actions in the traces.

Definition 3 (Interleaving of traces) Let us consider two traceg of the form ai.as..... ax andy,
of the form 3;1.5,.....3. Theinterleaving Intys,y») of y; andy, is the set of all traces of the form
Hi.Uo.. ... Uit S.t., for two sequences of distinctintegers i) <ir> < ... <ix<k+land 1< j1 < jo <
.. < Ji <k+I,we havey,, = anforallm=1,2,... kandy;, = Bnforallm=1,2,... 1.

Definition 4 For two sets%;, %, of observables, thmterleaving Int#4, %) over %; and % is defined
by Int(#41,%2) = Uy, ez y,e2 INt(Y1,¥2). The definition of interleaving is extended from two traces to
traces as followslnt(y1, Yz, ..., ¥n) = Uyeint(y, Int(y1,Y). Fornsets#,%, ...,%; of observables,
the interleavindnt(#4, %4, ..., %) is defined analogously.

Although the interleaving defines all possible combinatiofthe sets of traces, they do not define
the probability of their appearance. To reason about thesdefine a scheduler that takes two sets of
traces and probabilistically schedules their actions tmfeach possible trace in their interleaving.

Definition 5 (Scheduler) A schedulers on %4 and %5 is a function that, given two traces € #4 and
Y2 € %, produces a probability distribution over all the possibierleavingint(y;,y2). We denote by
7 (y1,Y2)[y] the conditional probability of having an interleaved trgagveny; andys,.

We define a deterministic scheduler as one that producesihe gutput for any given two traces.

Definition 6 (Deterministic scheduler) A scheduler? is deterministicif for any two tracesy; andys,,
there existy € Int(y1,y2) such that¥ (y1,y»)[y] = 1.

This provides the basis for composing channels in genemleter this requires some delicacy
since the interleaving of different traces may produce #mesresult. For example, given = 1.M(s)
andy, = 1 then one of the possible traces produced.ism(s). However, giverys = m(s) andy, = 7.T
then the same tracet.m(s) could also be produced.

Formally, we introduceZsep= ({sep, {sep, (1)) to consider the sequential execution’#f, #sepand.#z in this order.
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observable observable
| mi(0) Tm(0) mR(Y) T(L) | m5(0) TmB(0) mR(Y) T(L)
0|05 0 0 0.5 0|0 0.5 0.5 0
secret 110 0.5 05 0 secret 1105 0 0 05
Table 1: Channel matrig; Table 2: Channel matrig,

Let p(y1,y2) be the joint probability that two component channels outwd tracesy; and ys.
Then the probability that” produces an interleaved trageés given by: p(y) = 3y, e y,e2 P(Y1,Y2) -
Z(y1,¥2)[y]- By [20] we obtainCi[x1,y1]Cz[X2,Y2] = p(Y1,Y2|X1,%2). Hence we can define scheduled
composition of channels as follows.

Definition 7 (Scheduled composition of channels)he scheduled composition dfvo channels’7; =
(21,%5,C1) and 5 = (22,%5,C,) with respect toa schedulers is define as the chann¢l?; x
Z2,Int(#4,%5),C) where the matrix element fog € 27, Xo € 2, andy € Int(#4, %) is given by:
Cl(X1,%2), Y] = Yy,em yoems C1IX1, Y1]C2[X2, Y2l -7 (Y1, Y2) Y-

We denote this scheduled composition®ymp,, (.#1,.%#2). Note that the scheduled compositionrof
channels can be defined by adapting the scheddléo operate oven traces in the obvious manner.

3.3 Examples of Scheduled Composition

This section presents some example channels and schethaleikistrate the main results of this paper.
For simplicity they shall all limit their secrets to the ség = {0,1}, and their outputs to the sé&, =
{m(0), .m(0),m(1), 7.m(1)} for a parametem.

Consider the channe¥; = (Z£g, %n,,C1) whereC; is given by Tabléll. This channel can be consid-
ered as one that half the time simply outputs the secrétg) and half the time outputs the exclusive-or
@ of the secret with 1 as in.my (s® 1), with thet representing the calculation effort. Note that this chan-
nel leaks 100% of the information about the secret. Alsoicenshe channel?; = (Z2g, %m,,C2) where
C; is given by Tabl&R. This channel is similar.t6, except that the internal actiaris observable when
disclosing the secret rather than its exclusive-or. Adais ¢thannel leaks all the secret information.

When combining channels the rdle of the scheduler is vgmifstant with respect to the information
leakage. This section defines three types of simple schaddleillustrating the results here.

The simplest scheduler is one that outputs the first and decbgervable outputs concatenated,
i.e. giveny; andy, outputsy;.ys.

Definition 8 The(left-first) deterministic sequential schedulétsis defined as follows:#ps(y1,Y2)[Y]
is 1if y=y1.y» and 0 otherwise wheng € %1, y» € % andy € %'.

Example 1 The scheduled composition Co%g(jiﬁ,%) w.r.t. “ps has the same information leakage

as the parallel compositior##; x 2#5. This can be shown since it follows from the definition/gk that,

for each ye %', /ps uniquely identifies a paifys,y») of outputs. For instance, let us consider the prior
distribution 1T on 23 x 2> defined by0.15,0.20,0.30,0.35). Then, for both of the composed channels,
the mutual information is about 926 and the min-entropy leakage is abdub15.

Next is thefair sequential schedulet/s that fairly chooses between the first or second observable
and produces that in its entirety before producing the other

Definition 9 Thefair sequential schedule#tsis defined by
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g 1 ifyr=y2Ay=y1y>

ef .

Jrs(yny2)ly] = 05 ify1£YAY=Y1.Y2VY=Y2.1)
0 otherwise.

Similar to the deterministic sequential scheduler, therimfation leakage can be proven to be equal to
that of the parallel composition of channels for this exampl

Example 2 The scheduled composition Comp(.#1,.#2) W.r.t. #£s has the same information leakage
as the parallel compositior#; x #>. This can be shown similarly to Example 1.

Note that the leakage preservation doeshold in general as illustrated in the following example.

Example 3 Consider wher#; = {1,7.7} and%; = {m(0), 7.m(0) }. The observed outpatt.m(0) can
arise from. (1, 7.m(0)) and .~ (1.1,m(0) ), where. can be.’ps or .#¢s. Thus, both the schedulers
“ps and.“rs may allow less information leakage than the parallel conitpms

The third example scheduler is tfar interleaving scheduletf, that evenly chooses the next action
from the two observables.

Definition 10 Thefair interleaving scheduler7, is recursively defined as

0.57k1(y1,Y2) Y] if y=a.YAy1=0a.y1A Y2=B.Y,\ a#fB
wi | O5TROLY)Y] if y=BYAy1=0a.y; A Y2=B.Y,\ a#J
ZRYLY2)Y = 4 0550 (YL, Y2) Y]+ 059 (yi.Yo) Y] if y=a.Y A yi=a.y,A yo=a.y,
1 if (y=y1Ay2=0)V (y=Y2A y1=0)
0 otherwise.

The fair interleaving schedulery, turns out to often have impact on the leakage compared tcaitadiql
composition of channels. This can occur in a variety of wayg shall be explored in detail later.

Example 4 The scheduled composition Cogn71,.#2) wW.rt. . has less information leakage than
the parallel composition#; x .#>. This can be shown by considering when the output vy is of time fo
1.m(0).M;(0), which can arise from bottv (7.m7(0), mz(0)) and.#F (Mg (0), T.M;(0)). Since y does
not uniquely identify the outputs vnd v, .#F could allow less leakage than the parallel composition.
For instance, for the prior0.15,0.20,0.30,0.35), the mutual information of the scheduled composition
w.r.t. .7 is 1.695 This is less than those of the parallel composition and dgleel composition w.r.t.
ps in Exampld 1L (both.926), thus the scheduler here alone is responsible for reduttiedeakage.

4 Information Leakage to Observers
4.1 Observers

Many kinds of capabilities of observing systems have beesidered; e.g. an observer for strong bisim-
ulation~ can recognise the internal actionm(v) £sm(v), while one for weak bisimulatior.,, cannot:
7.m(v) ~ M(v). To model different kinds of capabilities of observatiore define arobserver’s views
Z as the set of values recognised by the observer. For exampig;) andm(v) fall into two different
views to an observer for strong bisimulation, but to the sai@@ to an observer for weak bisimulation.

We formalise the notion of an observer using a matrix thatnesfirelationships between observ-
able outputs of systems and the observer’s views. In péaticwe allow for probabilistic accuracy in
observation; that is the observer may not be perfectly ateun identifying an output.
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Definition 11 (Generalised observer)An observers is defined as a triplé?’, 2, Obs) consisting of a
finite set? of observables, a finite s&t’ of observer’s views and avbserver matrix Obsach of whose
row represents a probability distribution; i.e., for gle %" we havey ,. » Obgy,zl = 1. Each matrix
elementObgy, Z| represents the probability that the observer has the zigiven the actual output is

The observation matri®bsdescribes the capability of the attacker to distinguistwben traces.
This capability of observation has been formalised as aivelgmce relation between states of a system
in prior work [6]. In fact, an equivalence relation between traces characterises a class of observers.

Definition 12 (~-observer) Given an equivalence relation on %, an observe(?', 2°,0bs) is called
a~-observerif, for all y1,y, € %, y1 ~ y» is logically equivalent t@bdgy;,z] = Obgy,, 7 forall z€ Z.

For instance, we can consider thg-observer for strong bisimulations and the~,-observer for
weak bisimulation~,,. Observe that-s is the identity relation on traces here. Further, note thia¢very
observerd, there exists an equivalence relatienbetween traces such théat is a ~-observer. This

equivalence relation- is defined by the following:~%' {(y1,y2) € & x % | for all z€ Z, Obgyy,7 =

Obgy,,7]}. On the other hand, the observation matrinat uniquely determined by the equivalence

relation and therefore can express a wider range of obs2eagrabilities than the equivalence relation.
Among ~-observers, we often consider observers that always hawsathe view on the same trace.

Definition 13 (Deterministic observer) We say that an observé”’, 2, 0Obs) is deterministicif each
probability inObsis either 0 or 1; i.e., for aly € %, there exists a uniquec 2 such thaDbgy,z] = 1.

For any deterministicv-observer(%',%,0bs) and anyyi,y. € %, we havey; ~ y, iff, for all
ze Z, we haveObdyi, 7] = Obgy,, 7] € {0,1}. Then this observer always detects the equivalence class
[y~ of the outputy from any given viewz. For this reason, when defining a deterministiebserver,
we typically take the set” of views as the quotient set & by ~, and for anyy € # andze %,
Obgy,7] = 1 iff z=[y]... For example, consider the deterministic observers gooreting to~s.

Example 5 (Deterministic ~s-observer) A deterministic~s-observer(%', 2, Obs) satisfies the prop-
erty that, for any distincys,y, € %/, there exists a€ 2 such that eithe®bgy;,z] = 0 andObgy,,Z = 1
or Obgy1,7 = 1 andObgy,,7] = 0. Therefore this observer always detects the oumftthe channel
from any given viewz. For this reason we call a deterministig-observer gerfect observer

Various kinds of bisimulations, or relations on observapleave been proposed and can be repre-
sented by various deterministic observers. Indeed, ofheslof relations can also be represented; con-
sider an observer that cannot distinguish which soagca value is output upon. This can be formalised
by using the equivalence relatien, on traces that cannot distinguishes from n.

The last example observer here effectively ensures nodedia seeing all outputs as the same:

Example 6 (Unit observer) An observero = (%', % ,0bs is called aunit observeif 2 is a singleton.
It has the same view regardless of the outputs of the chattmsl,can detect no leakage of the channel.

4.2 Observed Information Leakage

The amount of observed information leakage depends on fiabiiy of the observer. To quantify this
we introduce the notion asbserved information leakage

Definition 14 (Observed information leakage) Let 7" = (2", %/,C) be a channel and = (%, 2°,0bs)
be an observer. For each leakage meature{.7, '} and any priorrt on 2", we defineobserved
information leakagdy L, (m, %) = L(m, ¢ - 0) wherez - 0 = (27, %,C-Obg is the cascade com-
position [18] of # and&. Similarly, for eachL € { /¢, # ¢}, we defineL (%) = L(% - 0).
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We present properties of observed information leakagellmsvi The first remark is that, for each
equivalence relatior on traces, all deterministis-observers give the same observed leakage values.
Proposition 1 Let 17 be any prior on.2” and 2 = (2°,%/,C) be any channel. For any equivalence
relation ~ on ¢ and any two deterministie--observersty, 0>, we have lg, (11, %) = Ly, (11,.%") for
Le{s,Z}and Ly, (%) =Ly, (%) forLe {SC, #F}.

The following states that the deterministic-observers and unit observers respectively have the
maximum and minimum capabilities of distinguishing tracEisat is, the deterministie-s-observer can
detect every behaviour of the channel accurately and daealteo the leakage of the channel in any
manner, while the unit observers cannot detect any leakidde channel.

Proposition 2 For each Le {.#,.%}, 0< Lg(m,.2") < L(m,¢"). For each Le {S/C, #%¢}, 0<
Lo(#) < L(#). In these inequations, the left equalities hold wlers a unit observer, and the right
ones hold whe® is a deterministic~gs-observer.

Next we compare the capabilities of generalised obsenresall the composition-refinement rela-
tion C, on channels [3, 24]: A channet; is composition-refinedby another#,, written asz; C, 75,
iff there exists a channe¥”’ such that#; = #5- #”. Since the generalised observers are also channels,
we can consider this orderirig, on observers. For example, the unit observer is composigbned
by ~w-0bservers, and the deterministig,-observer is by the deterministies-observer. For another
example, any probabilistic 3-observer is composition-refined by the deterministicobserver:
Proposition 3 Given any equivalence relation, on % let 01 = (%', 2°,0bs ) and 0, = (%, % ,0b3)
be two~4-0observers. |©05 is deterministic the; T, 0.

The composition-refined observer will observe less infdiomaleakage.

Theorem 4 Let ¢’; and 0> be two observers such thé&y =, 0. Then, for any priortand any channel
,we have lg, (1, 2") < Lg,(m, ¢ ) forLe {#, %} and Ly, (%) < Lg,(# ) for L e {SC, 4 € }.
These results imply that no probabilisticobserver detect more leakage than deterministic ones.

4.3 Examples of Deterministic Observers

Theoreni ¥ implies that the deterministig-observer does not observe less information leakage tiean th
deterministic~,-observer.

Example 7 Let us consider the scheduled compositions in Exaniples Plam®ectior 313. Both the
composed channels leak all secrets without consideringrebss; i.e., they do so in the presence of
~g-0bserver. On the other hand, they leak no secrets to a wmilyilar observer. For example,
for each ic {1,2}, we define the deterministis,-observerd; as ({m(0), .M (0),m (1), .M (1)},
{[M(0)]~,,, [M(1)]~,},Obs where Obs is the matrix given in Taljle 3. Applying thg-observerd; to
both_#1 and %3 yields the same matrix presented in Tdble 4. Then both ch&tesk no information to
the ~y-observer. Therefore, the deterministig-observer observes more information leakage than the
deterministic~,-observer also in this example.

The scheduled composition can also leak more informatian the parallel composition (and even
than each component channel) in the presence of imperfeenadrs.

Example 8 (Observer dependent)Consider the scheduled composition of the channélsand 7>
w.r.t. the fair interleaving schedule#s,. By Examplé&}4, the leakage of the scheduled compositian w.r.
“r is less than that of the parallel composition in the presesidhe deterministie-s-observer.

However, the leakage of the scheduled composition is mare ttiat of the parallel composition
(and even than that of each component channel) when-t@@bserver? is being considered; e.g.,
Lo (m,Compy,, (A1,.%2)) =0.215> 0= Ly (11, /1 x H2) = L (11, 0¢1) for m= (0.15,0.20,0.30,0.35).
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view view
| M., M, | MO M),
output m(0) or .M (0) 1 0 secret © 0.5 0.5
m(1) or T.m(1) 0 1 0.5 0.5
Table 3: Observer matri®bs Table 4. Composed matr@; - Obs

4.4 Example of Probabilistic Observers

The notion of deterministie--observers is useful to model various observers, but they moa cover
all realistic settings. For example, when the internalcgcti represents time to perform internal com-
putation, observers may recognise it only probabilisycdibr instance with probability @. Then such
probabilistic observersannot be modeled as deterministic observers but as geseerabservers, which
qguantify the capabilities of probabilistic observations far as we know, no previous work on quantita-
tive information flow analyses have considered probahilisbservers.

Example 9 Consider a probabilistic observe? that can recognise a single internal actigronly prob-
abilistically but two or more consecutives with probability 1. For instance,& recognises the trace
(t.m(0).m (1)) correctly with probability0.7 and confuses it with eithémy (0).m (1)), (M (0).7.m (1))
or (m(0).m(1).7) each with probabilityd.1. Consider the schedule-composed channel Canige1,.72)
from Exampl€}4. The observed mutual informatio. 3 under the probabilistic observe?, which is
betweerD.090and 1.695as observed under the deterministig,-observer and-s-observer.

5 Relationships between Scheduling and Observation

This section generalises the previous examples to show #inels of results. First, we identify con-
ditions on component channels under which leakage cannefféeted by the scheduled composition.
Second, we show that scheduled composition can leak moessiiiformation than the parallel com-
position, including results on the bounds of the informatieaked. Third, we present an algorithm for
finding a scheduler that minimises the min-entropy leakagetapacity under any observer

5.1 Information Leakage Independent of Scheduling

This section presents results for determining when thealgalis independent of the scheduler. Regard-
less of the scheduler and observer, the leakage of the deldectamposition is equivalent to that of the
parallel composition under certain conditions on compbrbhannels that are detailed below.

Theorem 5 Let.# = (21, %4,C1) and 7, = (22, %5,C,) be channels. Assume that, for anyyj € %
and y,Y, € %, if Int(y1,y2) NInt(y;,Y,) # 0then yf =y; and y» = y,. Then, for every schedule¥ and
observer?, the leakage of the scheduled composition is the same asefttia parallel composition.

By adding a stronger requirement to Theofdm 5, we obtainalh@fing corollary.

Corollary 6 Let.#; = (21,%1,C1) and 7, = (22,%5,C;) be channels. Assume that, for g, y-) €
Y x %, a €y; andf € yo, we havea # 3. Then, for every scheduler and observew, the leakage
of the scheduled composition is the same as that of the pacamposition.
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5.2 Schedulers for Altering Information Leakage

This section considers when schedulers can alter the leakaggscheduled composition. This is distinct
from prior results where it has been shown that the composdannot leak more information than the
component channels][5,119,120], since here more informatonbe leaked to imperfect observers.

In general scheduled composition can yield more or lessapakhan the individual component
channels or their parallel composition. This is illustchtsy Exampld B. Unfortunately heuristics for
determining when more information is leaked end up beingeratomplicated and dependent on many
relations between traces, interleavings, equivalenaabtteen subject to generalities about both sched-
ulers and observers. Ultimately it is easier to show by exasthat, for some channels, prior, and
~-0bserver, there is a scheduler by which the scheduled csitiggo leaks strictly more information
than the parallel composition. Since this clearly holds kgneple, we consider a class of schedulers
under which the scheduled composition does not leak mooentgtion than the parallel composition.

To define this we extend an equivalence relatiomon traces to probability distributions of traces:
We say that two distribution® andD’ on a set”? are ~-indistinguishable(written asD ~ D’) if the
deterministic~-observer cannot distinguigh from D’ at all, i.e., for all equivalence class %/ ~, we
havey . Dly] = 3y D'[y]. Using~-indistinguishability we define a scheduler that does nak lany
behaviour of the system that theobserver cannot detect.

Definition 15 Let ~ be an equivalence relation 6 U %, U Int(#4,%5). A scheduler? on %3 and%,
is a~-blind schedulemwhen, for any two pairgy1,y»), (Y},Y,) € %1 x %, we havey; ~y; andys ~ Y,
iff we have.” (y1,y2) ~ .7 (Y1, Y5)-

For instance, the deterministic sequential scheddlgg and the fair sequential schedulgfs are ~-
blind while the fair interleaving schedulerr, is not. Note that~-blind schedulers do not leak any
behaviour that would not be visible to the deterministiobservers. Thus they do not gain more infor-
mation from the scheduled composition w.xtthan the parallel composition.

Theorem 7 Let it be a prior, %1 and %> be two channels¢’ be a deterministie--observer, and S be
a ~-blind scheduler. For each k {.#,.#} we have lg(1,Comp, (1, #2)) < Lo (1, %1 x #3). For
each Le { 7€, .# %} we have lg(Comp, (#1,.42)) < Lg(#1 x #2). When is also deterministic,
the leakage relations become equalities.

For instance, since’ps and.%s are ~-blind schedulers, the deterministig,-observers do not
gain more information from the scheduled composition w-vf, than the parallel composition. In fact,
they have the same leakage in Exaniple 7.

The following result is about a heuristic for when leakaga ba changed by the properties of the
scheduler. This is presented here to clarify the properties

Theorem 8 Let 71 = (21,%,C1) and % = (22,%5,C,) be two channels. Assume that there exist
y1,¥; € %1 and y,Y, € % such that Infy1,y2) NInt(y;,Y,) # 0. Then it is possible for the scheduled-
composition of#; and %5 to alter the mutual information and min-entropy leakagegome prior.

5.3 Schedulers for Minimising Information Leakage

This section presents results for finding a scheduler thatmnises the min-entropy leakage and min-
capacity in the presence of any observer.

Theorem 9 Given any priorm, two channels’#;, %, and any observer’, there is an algorithm that
computes a scheduler’ that minimises the observed min-entropy leakagjg rr, Comp,, (#1, .#2)) of
the scheduled composition.
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Proof: To find a scheduler” that minimises the observed min-entropy leaka&fe( T, Comp,, (%1, .%2)),
it is sufficient to find.” that minimises the observed posterior vulnerabMiyr, Comp,, (¢, %#52) - 0).

For(x,x2) € 21 x Z2and(y1,Y2) € %1 x %2, let p(Xy, X2, Y1,Y2) = T{X1, 2] (C1 X C2)[(X1.X2), (Y1,Y2)]-
For eactz € 2 let v, =maXy, x,)c 21 x 25 S yiysy P(XL, X2, Y1, Y2)-7 (Y1, Y2) [Y|Obsly, Z] where(y1,y2) and
y range over#; x %, andInt(#1,%,) respectively. LePogyi,Y»)[y| be the(|#4| x |%5], |Int(#4,%5)|)-
matrix defined by the followingPogy1,y.)[y] = 1 if y can be obtained by interleaving andy,, and
Pogy1,Y2)]y] = 0 otherwise.

To find a scheduler matri¥” that minimises the observed posterior vulnerability, ffisas to solve
the linear program that minimis&s,. » V., subject to

o foreach(xy,x2,2) € Z1x 22X Z, Sy, v,y P(X1,X2,Y1,Y2)-7(y1,¥2)[y|Obgy,Z < v,
o for each(ys,y2) € %1 x %3, 5, Pogy1,Y2) [yl (y1,y2)[y] = L.

Note that the second constraint means that each row of tleslglgr matrix” must sum to 1. In this
linear program, the scheduler matrix elemefitys,y,)[y] for each(ys,y2) € %1 x % andy € Int(#4, %)
andv, for eachz e Z are variables. We can solve this problem using the simplehoaeor interior point
method. (In practice, we can efficiently solve it using adinprogramming solver such kssolve [2].)
Hence we obtain a scheduler matt& that minimisesy ,c » V;. |

In the above linear program the number of variablef#g x |%5]| x |Int(#4,%5)| + | 2|, and the
number of constraints is21| x | 22| x | 2|+ |#4]| x |#]|. Since the number of interleaved traces grows
exponentially in the number of traces, the time to computaéramising scheduler is exponential in the
number of component traces. When the obsetvés imperfect enough forZ’| to be very small, then
the computation time improves significantly in practice. tB@other hand, when the number of traces is
very large, we may heuristically obtain a scheduler witls leskage by results in the previous section.

To obtain a scheduler that minimises the worst-case leakage, it suffices to consider a scheduler
that minimises the min-capacity.

Corollary 10 Given two channels?i, %, and any observer, there is an algorithm that computes a
scheduler that minimises the observed min-capacity of the schedwdetposition.

These two results give the minimum amount of leakage thatssiple for any scheduling.

Example 10 Consider the channel¥, #> defined in Sectidn 3.3. By Theorem 9, the minimum observed
min-entropy leakage w.r.t. the prid.15,0.20,0.30,0.35) is 1.237 under the deterministie-s-observer,
and0.801under the probabilistic observer defined in Exaniple 9. Byolany [10d, the minimum observed
min-capacity isl.585under the deterministie-s-observer, and..138 under the probabilistic observer.

Since the channel capacity will not exceed the min-capd@6}, the minimum observed min-
capacity obtained by the above algorithm gives an upperdouarthe minimum channel capacity.

6 Case Studies
6.1 Sender Anonymity

In e-votingsender anonymitgan be summarised as the issue of collecting votes from a&uofilvoters
and being able to expose the aggregate vote informatiorewnealing as little as possible about how
each voter voted. This can be solved by a general applicafiamix network [13] where all the votes
are sent via mixing systems that output the votes in a mahaeshould not reveal how each voter voted.
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L AR Composed votes
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Figure 2: Structure of composed channels for voters

This can be represented here by each voter being an infamatiieoretic channel that outputs their
vote. For example, consider a simple voting in which possilgtes are 0 and 1 and each voter outputs
the chosen vote vim(0) or m(1), respectively. Then each voter (indexedipgan be represented by the
channel.# = ({0,1},{m(0),m(1) },C;) whereC;k,m(k)] = 1 for k € {0,1} and each voter has a prior
1t on{0,1}. Observe that each such voter channel alone fully revealpribr for the channel.

The scheduled composition of the voters represents the etnwank with the schedulers representing
the mixing algorithm and thus providing the ability to reasuver their effect on information leakage.
Consider the following problem with five voter#; to 75. As illustrated in Figuré&l2, the ballot of each
voter is sent via intermediate severs (schedulsfg) 7g, -#s that mix the order of ballots. The final
system.#s combines#g and.#g to output all the votes according to some mixing.

Using the deterministic sequential scheduléys for all compositions reveals all information on how
each voter voted. That is, the leakage is considered to lits $als each vote is 0 or 1). On the other hand,
using the fair sequential schedulef-s for all compositions leaks less information thafhs. Whenrt
is uniform and.#?" is the composed channel in Figure 2 with the appropriate dadimg, we obtain
ZL(m ) =3.426 and.s (m,.#") = 2.836. Observe that here the third voter's output can only appe
in the 1st, 3rd, or 5th position in the final trace. This is iggEhby using the fair interleaving scheduler
- for all compositions that leaks even less informatiofi(rr, ") = 2.901 and.# (m,.%#") = 2.251.

A more interesting case is when different compositions lferent schedulers. Since the votes do
not contain any information about the system they came ftetrglone voter. Using the fair sequential
scheduler forza and_#g, and the fair interleaving scheduler fétsy, along with a specially constructed
scheduler for#g can reduce the information leakage to a minimum. Then theemiropy leakage is
2.824 and the mutual information isZ34. Note that when there is only one scheduler that receil&s
ballots, the minimum min-capacity of the composed systever(all possible schedulers) i535.

The example can be extended further by addirsgeps before votes to indicate time taken for some
parts of the process. For a simple example, consider whemrsvdétand 2 have a step before their
vote to represent the time taken, e.g. as indicative of gatier, or the time taken for the extra mixing
step. In the presence of all fair interleaving scheduldies pbserved min-entropy leakage and the mutual
information are respectively.841 and 2785 under the perfect observer. However, these shift3813
and 2597, respectively, under the deterministig-observer.

6.2 Side-Channel Attacks

Consider the small program shown in Figlie 3, where an obbknaction is repeated in a loop. This
program captures, for instance, some aspects of decryagonithms of certain cryptographic schemes,
such as RSA. Intuitively%[ ] is the binary array representing a 3-bit secret (@101), which corresponds

to secret decryption keys. The timing of the algorithm’sragien reveals which bit of the secret key is
1, since the observable-operationl) can be detected, perhaps as power consumption, resporese tim
or some other side-effect of the algorithm[[22]. We denotediythe channel defined by this program.
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for(i =0; i <3; i++) {

Cau: view
if(X(i] = 1) { T m1) 0
nx1>; //observabl e-operation 7| 08 01 0.1
output
} m(1) | 0.05 0.9 0.05
Figure 3: Decryption algorithm Figure 4: Probabilistic observer matrix

Consider composition of#” with itself, e.g., when applying the algorithm to differgudrts of the
message in parallel. Clearly if the parallel compositiotaleen then both instances of” will leak all
their information about the key. On the other hand, the saleeldcomposition may have less leakage.

We first consider the case each instance of the componenhehn receives a different secret bit
string independently drawn from the uniform prior. This aps the situation in which each decryption
operation uses different secret keys. When the fair irdenhg scheduler mixes the two traces, the
min-entropy leakage and the mutual information are resmdgt4.257 and 347 in the presence of the
perfect observer, and&@7 and 2333 in the presence of the deterministig-observer.

Next we consider the case where both instancesfothare the same secret key which has been
drawn from the uniform prior. When the fair interleaving edhler mixes the two traces, the min-
entropy leakage and the mutual information are respegtB@00 and 3000 (all 3 bits of the secret key
are leaked) under the perfect observer, afd@ and 1811 under the deterministie,,~observer.

More interesting is to consider the case where the obsesvaily able to detect approximate infor-
mation through the side-channel. Consider the obsefvdrat only probabilistically observes actions
according to the matrix in Figufé 4. Here 0 indicates thahimg is detected by the attacker not even a
For example, applying this observer to the tracet may yield 7.7 when oner is not observed (repre-
sented 0 in the matrix). Such an observer is less effectiga @hen applied to the parallel composition
of channels. However, this applies even further when agpliény scheduled composition since the loss
of information through poor detection cannot even be lichii@ one channel or the other. Thus, a trace
of length 5, even from a leaky scheduler such as the (lef}-8eqjuential scheduler, would leak less than
the parallel composition (since it would be clear which cosife channel had been poorly observed).

For instance, let us consider the case each instanc€ aidependently receives a secret from the
uniform prior and the fair interleaving scheduler is usetieff the min-entropy leakage and the mutual
information are respectively.306 and 1454 under this probabilistic observer. If we consider theeca
both instances of#” shares the same secret, then the leakage values are nesgerf56 and 1924.

7 Related Work

Regarding schedulers there are a variety of studies onaréiips between schedulers and information
leakage [[111 14]. In[[10] the authors considetaak-schedulethat is similar to our schedulers, albeit
restricted to the form of our deterministic scheduler. Ttlgeslulers in this paper are also similar to the
admissible schedulersf [4]. Both are defined to depend only upon the observablputsit that is the
traces they schedule. This avoids the possibility of leakag the scheduler being aware of the intended
secret directly and so leaking information. Differentlyadmissible schedulers, here the scheduler can
be probabilistic, which is similar in concept to the proliakically defined (deterministic) schedulers of
[27], although they explore scheduling and determinism affdv Chains and not information leakage.
Most work on schedulers has focused on preventing any lesdizagl, indeed the problem is typically
defined to prevent any high/secret information leaking.sThiturn sets extremely high requirements
upon the scheduler, and so proves to be difficult to achieveyen impossible. Here we take an approach
to scheduling that allows for probabilistic schedulers smdeasoning about the quantitative information
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leakage, rather than total leakage. Thus we permit schedihiat can be daemonic or angelic, as well as
many in between that may closer resemble the behaviour biveld systems.

Regarding observers there is little prior work in quanitr&atinformation flow and quantifying the
capability of the observerl_[6] has some similarity whermytformalise an equivalence of system states
similar in style to the deterministie-observers here. However, this does not model observerarasfp
information-theoretic channels, hence does not allow thbabilistic behaviour of observers.

8 Conclusions and Future Work

We have introduced the notion of the scheduled compositiahannels and generalised the capabili-
ties of the observers to reason about more systems. Thenweephesented theories that can be used
as heuristics to detect when scheduled composition may aaveffect on the information leakage.
This determines when scheduled composition is a potensialbenefit to a scheduler-dependent sys-
tem. Scheduling can both leak more information, or lessrmé&iion to an observer depending on many
factors, while some leakage bounds can be obtained for stdtedmposed channels. Further, we have
shown an algorithm for finding a scheduler that minimiseddéh&age of the scheduled composition.

The work here provides a foundation for continuing reseamntt concurrent behavior, including
interactive systems. Here we have limited the systems ttefsets of secrets and observables since
this aligns with the discrete version of leakage calcutetioBy shifting to continuous domains we can
investigate some systems with infinite secrets or obsezgaldimilarly the schedulers here assume finite
traces and are typically defined over the entire possibleesra However, many do not require this,
and can be defined only upon the next action in the trace. Toissafor alternate definitions without
changing the results, and easier applicability to infini#isgs.

References

[1] htt p://ww. cs. bham ac. uk/resear ch/ proj ect s/i nf ot ool s/ | eaki est/ext/.
[2] Ip_solve version5.5htt p: //1 psol ve. sour cef orge. net/.

[3] Mario S. Alvim, Konstantinos Chatzikokolakis, Catis®alamidessi & Geoffrey Smith (2012{leasuring
Information Leakage Using Generalized Gain Functioms: Proc. of CSFIEEE, pp. 265-279, ddi0.
1109/ CSF. 2012. 26.

[4] Miguel Andres, E., Catuscia Palamidessi, Ana SokolovB&er Van Rossum (2011nformation Hiding
in Probabilistic Concurrent Systemd§ heor. Comp. Sci412(28), pp. 3072-3089, dab. 1016/ . tcs.
2011. 02. 045.

[5] Gilles Barthe & Boris Kopf (2011)Information-theoretic Bounds for Differentially Privaiéechanismsin:
Proc. of CSFIEEE, pp. 191-204, ddi0. 1109/ CSF. 2011. 20.

[6] Fabrizio Biondi, Axel Legay, Pasquale Malacaria & AndfzWasowski (2013): Quantifying In-
formation Leakage of Randomized Protocolsin: Proc. of VMCAI pp. 68-87, dot0. 1007/
978- 3- 642- 35873-9_7.

[7]1 Michele Boreale (2009)Quantifying information leakage in process calculif. Comput.207(6), pp. 699—
725, doi10. 1016/ . i c. 2008. 12. 007.

[8] Michele Boreale, Francesca Pampaloni & Michela Paq@11): Asymptotic Information Leakage under
One-Try AttacksIn: Proc. of FOSSACSp. 396—410, dol0. 1007/ 978- 3- 642- 19805- 2_27.

[9] Christelle Braun, Konstantinos Chatzikokolakis & Cstia Palamidessi (2009Quantitative Notions of
Leakage for One-try AttacksIn: Proc. of MFPS ENTCS 249, Elsevier, pp. 75-91, d&D. 1016/ j .
ent cs. 2009. 07. 085.


http://www.cs.bham.ac.uk/research/projects/infotools/leakiest/ext/
http://lpsolve.sourceforge.net/
http://dx.doi.org/10.1109/CSF.2012.26
http://dx.doi.org/10.1109/CSF.2012.26
http://dx.doi.org/10.1016/j.tcs.2011.02.045
http://dx.doi.org/10.1016/j.tcs.2011.02.045
http://dx.doi.org/10.1109/CSF.2011.20
http://dx.doi.org/10.1007/978-3-642-35873-9_7
http://dx.doi.org/10.1007/978-3-642-35873-9_7
http://dx.doi.org/10.1016/j.ic.2008.12.007
http://dx.doi.org/10.1007/978-3-642-19805-2_27
http://dx.doi.org/10.1016/j.entcs.2009.07.085
http://dx.doi.org/10.1016/j.entcs.2009.07.085

62

[10]

[11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]
[22]
[23]

[24]

[25]
[26]

[27]

Quantitative Information Flow for Scheduler-DependenstSimns

Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moseskov, Nancy A. Lynch, Olivier Pereira & Roberto
Segala (2008)Analyzing Security Protocols Using Time-Bounded TaskARIQDiscrete Event Dynamic
Systemd 8, pp. 111-159, ddi0. 1007/ s10626- 007- 0032- 1.

Konstantinos Chatzikokolakis & Catuscia Palamidé28D7):Making random choices invisible to the sched-
uler. In: Proc. of CONCUR’07Springer, pp. 42-58, ddi0. 1016/j . i c. 2009. 06. 006.

Konstantinos Chatzikokolakis, Catuscia Palamid&d8rakash Panangaden (2008nhonymity Protocols as
Noisy Channelsinf. Comput.206(2—-4), pp. 378-401, d&0. 1016/ .i c. 2007. 07. 003.

David Chaum (1981)Untraceable electronic mail, return addresses, and digitseudonyms Commun.
ACM 24(2), pp. 8490, dal0. 1145/ 358549. 358563.

Tom Chothia, Yusuke Kawamoto & Chris Novakovic (2013):Tool for Estimating Information Leakage
In: Proc. of CAV’13 doi:10. 1007/ 978- 3- 642- 39799- 8_47.

Tom Chothia, Yusuke Kawamoto & Chris Novakovic (2014gakWatch: Estimating Information Leakage
from Java Programs In: Proc. of ESORICS’14pp. 219-236, dol:0. 1007/ 978- 3- 319-11212-1
13.

Tom Chothia, Yusuke Kawamoto, Chris Novakovic & Davidrker (2013): Probabilistic Point-to-Point
Information Leakageln: Proc. of CSFIEEE, pp. 193-205, ddi0. 1109/ CSF. 2013. 20.

David Clark, Sebastian Hunt & Pasquale Malacaria (200Quantitative Analysis of the Leakage of
Confidential Data In: Proc. of QAPL'01 ENTCS59 (3), Elsevier, pp. 238-251, dbD. 1016/
S1571- 0661(04) 00290- 7.

Barbara Espinoza & Geoffrey Smith (201Wtin-Entropy Leakage of Channels in Cascade: Proc. of
FAST, LNCS 7140, Springer, pp. 70-84, dbD. 1007/ 978- 3- 642- 29420- 4_5.

Barbara Espinoza & Geoffrey Smith (2013)tin-entropy as a resourcelnf. Comput, doi:10. 1016/ j .
i c.2013. 03. 005.

Yusuke Kawamoto, Konstantinos Chatzikokolakis & Gaia Palamidessi (2014):Compositionality
Results for Quantitative Information Flow In: Proc. of QEST'14 pp. 368-383, dol0. 1007/
978- 3- 319- 10696- 0_28.

Yusuke Kawamoto & Thomas Given-Wilson (2015)Quantitative Information Flow for Scheduler-
Dependent SystemResearch Report, INRIA. Availablelhtt p: //hal .inria.fr/hal-01114778.

Paul C Kocher (1996)Timing attacks on implementations of Diffie-Hellman, RSBSDand other systems
In: Proc. of CRYPTO’'96Springer, pp. 104-113, d&0. 1007/ 3- 540- 68697- 5 9.

Boris Kopf & David A. Basin (2007)An information-theoretic model for adaptive side-charatédcks In:
Proc. of CCSACM, pp. 286—-296, doi:0. 1145/ 1315245. 1315282.

Annabelle Mclver, Carroll Morgan, Geoffrey Smith, Bara Espinoza & Larissa Meinicke (2014bstract
Channels and Their Robust Information-Leakage Orderitg Proc. of POST'14pp. 83-102, doiO0.
1007/ 978- 3- 642- 54792- 8 5.

Geoffrey Smith (2009):0On the Foundations of Quantitative Information Flovin: Proc. of FOSSACS
LNCS5504, Springer, pp. 288-302, db@. 1007/ 978- 3- 642- 00596- 1_21.

Geoffrey Smith (2011)Quantifying Information Flow Using Min-Entropyn: Proc. of QEST’11pp. 159—
167, doi10. 1109/ QEST. 2011. 31.

Lijun Zhang & Martin R. NeuhaufRer (2010Model Checking Interactive Markov Chaindn: Proc. of
TACAS'10, Springer-Verlag, Berlin, Heidelberg, pp. 53-68, d6i: 1007/ 978- 3- 642- 12002- 2_5.


http://dx.doi.org/10.1007/s10626-007-0032-1
http://dx.doi.org/10.1016/j.ic.2009.06.006
http://dx.doi.org/10.1016/j.ic.2007.07.003
http://dx.doi.org/10.1145/358549.358563
http://dx.doi.org/10.1007/978-3-642-39799-8_47
http://dx.doi.org/10.1007/978-3-319-11212-1_13
http://dx.doi.org/10.1007/978-3-319-11212-1_13
http://dx.doi.org/10.1109/CSF.2013.20
http://dx.doi.org/10.1016/S1571-0661(04)00290-7
http://dx.doi.org/10.1016/S1571-0661(04)00290-7
http://dx.doi.org/10.1007/978-3-642-29420-4_5
http://dx.doi.org/10.1016/j.ic.2013.03.005
http://dx.doi.org/10.1016/j.ic.2013.03.005
http://dx.doi.org/10.1007/978-3-319-10696-0_28
http://dx.doi.org/10.1007/978-3-319-10696-0_28
http://hal.inria.fr/hal-01114778
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1145/1315245.1315282
http://dx.doi.org/10.1007/978-3-642-54792-8_5
http://dx.doi.org/10.1007/978-3-642-54792-8_5
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1109/QEST.2011.31
http://dx.doi.org/10.1007/978-3-642-12002-2_5

	1 Introduction
	2 Preliminaries
	2.1 Information-Theoretic Channel
	2.2 Quantitative Information Leakage Measures

	3 Information Leakage of Scheduler-Dependent Systems
	3.1 Traces and Systems
	3.2 Scheduled Composition
	3.3 Examples of Scheduled Composition

	4 Information Leakage to Observers
	4.1 Observers
	4.2 Observed Information Leakage
	4.3 Examples of Deterministic Observers
	4.4 Example of Probabilistic Observers

	5 Relationships between Scheduling and Observation
	5.1 Information Leakage Independent of Scheduling
	5.2 Schedulers for Altering Information Leakage
	5.3 Schedulers for Minimising Information Leakage

	6 Case Studies
	6.1 Sender Anonymity
	6.2 Side-Channel Attacks

	7 Related Work
	8 Conclusions and Future Work

