
U. Fahrenberg, A. Legay and C. Thrane:
Quantities in Formal Methods (QFM 2012)
EPTCS 103, 2012, pp. 1–16, doi:10.4204/EPTCS.103.1

c© Abdulla et al.
This work is licensed under the
Creative Commons Attribution License.

Adding Time to Pushdown Automata
(Tutorial)

Parosh Aziz Abdulla
Department of Information Technology

Uppsala University
Sweden

parosh@it.uu.se

Mohamed Faouzi Atig
Department of Information Technology

Uppsala University
Sweden

mohamed faouzi.atig@it.uu.se

Jari Stenman
Department of Information Technology

Uppsala University
Sweden

jari.stenman@it.uu.se

In this tutorial, we illustrate through examples how we can combine two classical models, namely
those ofpushdown automata(PDA) andtimed automata, in order to obtaintimed pushdown automata
(TPDA) [2, 1]. Furthermore, we describe how the reachability problem for TPDAs can be reduced to
the reachability problem for PDAs.

1 Introduction

In this tutorial, we describe a timed extension of the widelyused model of Pushdown Automata (PDA)
[2, 1]. A PDA computes by moving between states according to some given transition rules. Additionally,
a PDA may utilize a stack to store information. This information is encoded instack symbols, and the
PDA may add a symbol (push) to or remove a symbol (pop) from the stack. The defining feature of a
stack is that it has ordering on its elements, traditionallyfrom top to bottom; the PDA can only access the
topmost element.

An interesting question is what happens to this model when weextend it with quantitative properties.
Will basic problems, such as state reachability, still be decidable? In particular, we are interested in
extending the model with continuous time in a similar mannerin which Timed Automata [5] extend Finite
Automata. Thus, we consider Timed Pushdown automata TPDA. A TPDA is a PDA that is augmented
with a finite number ofclocks. It operates in the following manner:

• at any point in the computation, time may elapse by some real number, increasing the values of all
clocks

• the values of clocks constrain the actions of the automaton

In addition to the set of clocks, we also store the age of each stack symbol. We can view this as an
additional clock. Accordingly, the ages of stack symbols increase whenever time elapses. Furthermore,
possible actions of the automaton may be restricted by the age of topmost stack symbol.

The TPDA model thus subsumes both the model of pushdown automata and timed automata. More
precisely, we obtain the former if we prevent the TPDA from using the timed information (all the timing
constraints are trivially valid); and obtain the latter if we prevent the TPDA from using the stack (no
symbols are pushed to or popped from the stack). Notice that aTPDA induces a system that is infinite

http://dx.doi.org/10.4204/EPTCS.103.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Adding Time to PDA

s1 s2 s3 s5

s4 s6

push(a) push(b)

push(b)

pop(b) pop(a)

pop(b)

Figure 1: A simple PDA

in two dimensions, namely it gives rise to a stack containingan unbounded number of symbols each of
which is equipped with a real-valued clock.

Outline In the next section, we present an overview of Pushdown Automata. In Section 3, we describe
the timed extension of PDA and show some examples of computations. In Section 4, we recall and
extend the notion of regions, and show how we can use them to define a symbolic encoding of TPDA

configurations. Finally, in Section 5 we describe how to construct a PDA which simulates a given TPDA.
The section ends with a detailed example of how the aforementioned TPDA computation is simulated.

2 PDA

In this section, we informally describe the model of Pushdown Automata. A Pushdown Automaton
(PDA) is a tuple(S,sinit ,Γ,∆) consisting of a finite set ofstates S, an initial statesinit , a finite stack
alphabetΓ, and a finite set oftransition rules∆. During the operation of a PDA, it may store information
in a stack. It may add information, which is referred to aspushing, or it may remove information, which
is calledpopping. The stack is a last-in, first-out queue, and access is restricted to the first element. The
stack alphabet contains all possible symbols that may be stored in the stack, and the set of transition rules
describe the manner in which the automaton is allowed to movebetween states. Each transition rule is of
the form(s,op, t). The rule contains a source states, a target statet and a stack operationop. The stack
operation is eitherpush(a), pop(a) or nop (here,a is an arbitrary symbol from the stack alphabet). A
transition rule describes that the automaton may move froms to t while performing the stack operation
op. The operationpush(a) pushesa onto the stack, andpop(a) pops it. The operationnop is an “empty”
operation which can be used to change state without modifying the stack. Figure 1 shows a PDA with
the state set{s1,s2,s3,s4,s5,s6} and stack alphabet{a,b}. The initial state of the automaton iss1. The
transition rules are drawn as arrows between states, labeled with the stack operation (missing labels mean
nop).

At any point during a computation, the PDA is in a certainconfiguration, defined by the current
state and the current stack content. Figure 2 shows the configurations that appear along a computation in

Abdulla et al. 3

which the automaton starts from its initial configuration (the state iss1 and the stack is empty), moves to
s2 while pushinga, then moves tos3 while pushingb, and finally popsb and moves tos4.

s1 a

c0

push(a) s2 a

c1

push(b) s3
b
a

c2

pop(b)
s4 a

c3

Figure 2: Computation of a PDA

Reachability Given a pushdown automaton, the reachability problem is theproblem of deciding whether
the automaton can reach a particular states. In other words, we ask whether there is a computation of
the automaton (starting from the initial configuration) that visits a configuration where the state iss,
regardless of the content of the stack. It turns out that for the automaton in Figure 1, the states4 is reach-
able but the states6 is not. This is because in order to move froms5 to s6, the automaton has to popa.
However, the topmost symbol when the automaton is in states5 will always beb. For PDA, reachability
is decidable in polynomial time [6].

3 Timed Pushdown Automata

The classical model of Timed Automata extends finite state automata with a finite set of real-valued
clocks. We extend PDA in a similar way, in the sense that a Timed Pushdown Automaton(TPDA) consists
of a finite set of statesS, an initial statesinit , a finite stack alphabetΓ, a finite set of transition rules∆, and
a finite set of clocksX. The transition rules are also extended in the sense that they can read and write the
values of clocks. More specifically, a transition rule(s,op, t) refers not only to stack operations. Instead,
op can also be one of theclock operations x∈ I ? andx← I . The operationx∈ I ? checks whether the
value of the clockx is in the intervalI . For example, the transition rule(s,x ∈ [1 : 3]?, t) can only be
performed when the value ofx is between 1 and 3. The operationx← I nondeterministicallyresets the
value of the clockx to some value in the intervalI . Additionally, each stack symbol is equipped with a
value representing itsage. We modify the stack operations to use these values:push(a, I) pushesa and
nondeterministically sets its initial age to some value in the intervalI , while pop(a, I) may only pop the
topmost stack symbol if it is equal toa and its age is in the given intervalI .

As with PDA, the semantics of TPDA are given by a transition system over configurations. The
configurations of a TPDA need to contain additional information, namely the values of all clocks and the
ages of all stack symbols. The values of all clocks are given by a clock valuation; a mappingX 7→ R

≥0

(whereR≥0 stands for the non-negative real numbers). To capture the ages of clocks symbols, we store
tuples in the stack. Each tuple consists of (i) a stack symbolfrom the stack alphabetΓ and (ii) its
corresponding age. Figure 4 and Figure 5 show an example computation of a TPDA (note that this
computation is not related to the automaton in Figure 3). Forexample, in the configurationc0 in Figure
4, the automaton is in the states1 with an empty stack, and the values of the two clocksx andy are 0. In
the configurationc3 in the same figure, the stack consists of a symbola which has age 2.4.

There are two different types of transitions between configurations of a TPDA; discreteand timed.
Discrete transitions are direct applications of the transition rules in∆. Timed transitions simulate the
passage of time. At any point in the computation, the automaton may take a timed transition, which
means that all clock values and ages of stack symbols are increased by a positive real number. Figures 4

4 Adding Time to PDA

s1 s2 s3 s4
x∈ (1 : 2]? push(b, [0 : 0])

pop(b, [1 : ∞))

x∈ [0 : 1]?

x← [0 : 0]

Figure 3: A simple TPDA

and 5 show a computation of a TPDA with clocksX = {x,y} and stack alphabetΓ = {a,b,c,d}. We will
describe the effect of each type of transition with an example from these figures.

Betweenc2 andc3, the TPDA moves froms2 to s3 and pushes the symbola onto an empty stack,
setting its initial age to 2.4, a value which is in the allowed interval[1 : 3). Recall that the initial age
is nondeterministically chosen from the given interval; inthe push betweenc6 andc7 the same interval
is given, but the chosen value happens to be 2.9 instead. The operationx← I chooses and assigns a
value nondeterministically. Fromc7, the automaton resets the value ofx. Its value, which was previously
6.1, is set to some value in the interval[2 : 3], in this case 2.1. Assume that∆ contains a transition
rule (s1,y ∈ (1 : ∞)?,s5). In c21, the TPDA tests if the value ofy is strictly greater than 1. It is, so the
transition rule is applied, and the state changes tos5, as shown in configurationc22. The above transitions
are all examples of discrete transitions, i.e. transitionsthat are induced by transition rules in∆. Figure 4
and Figure 5 also contain a number of timed transitions. For example, the transition betweenc8 andc9

represents the passage of 0.9 time units. Inc9, the values ofx andy and the ages ofa andb have all been
increased by 0.9.

Reachability In a similar manner to the reachability problem for PDA, the reachability problem for
TPDA is the problem of deciding whether a particular state is reachable from the initial configuration or
not. In other words, we ask whether it is possible to reach a configurationc such that the state ofc is the
given target state.

Notice that in the definition of the reachability problem, wedo not place any restrictions on the stack
contents or on the values of the clocks. However, the reachability of a state in a TPDA may, in general,
depend on the clock values and the ages of the stack symbols. For example, the states4 in Figure 3 is not
reachable because of timing limitations.

Since the set of configurations in a TPDA is infinite, we can not solve the reachability problem by
iteratively computing the successors of the initial configuration until a fixed point is reached. Further-
more, we cannot use the classical techniques that solve the reachability problem for PDA [6] since those
constructions rely on the stack alphabet being finite. Therefore, we will now describe a symbolic repre-
sentation of clock valuations and ages of stack symbols. We will use this representation to construct a
symbolicPDA that simulates the behavior of the given TPDA.

Abdulla et al. 5

s1
x← 0
y← 0

〈d,4.2〉

c0

Time= 3.9
s1

x← 3.9
y← 3.9

〈d,4.2〉

c1

y← [1 : 3)

s2
x← 3.9
y← 1.2

〈d,4.2〉

c2

push(a, [1 : 3))
s3

x← 3.9
y← 1.2

〈a,2.4〉

c3

Time= 1.7

s3
x← 5.6
y← 2.9

〈a,4.1〉

c4

y← (0 : 1)
s1

x← 5.6
y← 0.1

〈a,4.1〉

c5

Time= 0.5

s1
x← 6.1
y← 0.6

〈a,4.6〉

c6

push(b, [1 : 3))
s2

x← 6.1
y← 0.6

〈b,2.9〉
〈a,4.6〉

c7

x← [2 : 3]

s2
x← 2.1
y← 0.6

〈b,2.9〉
〈a,4.6〉

c8

Time= 0.9
s2

x← 3.0
y← 1.5

〈b,3.8〉
〈a,5.5〉

c9

push(c,(1 : 2))

s3
x← 3.0
y← 1.5

〈c,1.7〉
〈b,3.8〉
〈a,5.5〉

c10

Time= 4.1
s3

x← 7.1
y← 5.6

〈c,5.8〉
〈b,7.9〉
〈a,9.6〉

c11

x← [0 : 3]

s1
x← 1.8
y← 5.6

〈c,5.8〉
〈b,7.9〉
〈a,9.6〉

c12

Time= 0.3
s1

x← 2.1
y← 5.9

〈c,6.1〉
〈b,8.2〉
〈a,9.9〉

c13

Figure 4: A computation of a TPDA

6 Adding Time to PDA

s1
x← 2.1
y← 5.9

〈c,6.1〉
〈b,8.2〉
〈a,9.9〉

c13

pop(c,(6 : ∞))
s1

x← 2.1
y← 5.9

〈b,8.2〉
〈a,9.9〉

c14

x← (2 : 3)

s3
x← 2.2
y← 5.9

〈b,8.2〉
〈a,9.9〉

c15

y← (0 : 1)
s4

x← 2.2
y← 0.4

〈b,8.2〉
〈a,9.9〉

c16

push(d, [1 : 5])

s2
x← 2.2
y← 0.4

〈d,2.3〉
〈b,8.2〉
〈a,9.9〉

c17

x← [0 : 2]
s4

x← 0.3
y← 0.4

〈d,2.3〉
〈b,8.2〉
〈a,9.9〉

c18

Time= 1.75

s1
x← 2.05
y← 2.15

〈d,4.05〉
〈b,9.95〉
〈a,11.85〉

c19

pop(d, [4 : 5))
s1

x← 2.05
y← 2.15

〈b,9.95〉
〈a,11.85〉

c20

x← (3 : 4)

s1
x← 3.05
y← 2.15

〈b,9.95〉
〈a,11.85〉

c21

y∈ (1 : ∞)?
s5

x← 3.05
y← 2.15

〈b,9.95〉
〈a,11.85〉

c22

Figure 5: A computation of a TPDA (continued)

Abdulla et al. 7

4 Regions

In this section, we describe a symbolic region encoding to represent the infinitely many clock valuations
of a TPDA in a finite way. In the following section, we show how to construct, using this encoding, a
symbolic PDA that simulates the behavior of a TPDA.

In the classical paper by Alur and Dill on timed automata [5],a region represents a set of clock
valuations with “similar behaviors”. The representation splits a real number into two parts: itsintegral
value, i.e. its value rounded down to the nearest integer, and itsfractional part, i.e. what is left when
we subtract it by its integral value. For example, the integral value ofπ is 3, and its fractional part is
0.141592. . . . The main idea is that two configurations are equivalent if the following conditions hold:

• the integral values are identical in both valuations, up to aconstantcmax

• the fractional part of any clock is either 0 in both valuations, or positive in both valuations

• the orderings of the fractional parts of all clocks are identical in both valuations

If the integral values are the same, the valuations will satisfy the same set of constraints. If the
two valuations agree on the ordering of the fractional parts, they agree on the order in which the clocks
will change integral values (and therefore in which order the constrained transitions will be enabled or
disabled). The constantcmax is the largest constant appearing syntactically in the automaton. All values
that are abovecmaxare indistinguishable form each other, so we can represent them symbolically withω .
In our example computation (Figure 4 and Figure 5), this constant is 7.

We will use a representation of regions inspired by [3, 4], that suites our purposes. In our represen-
tation, regions are sequences of sets. Each set contains oneor more clocks together with their integral
values. Their positioning in the sequence encodes the ordering of the fractional parts. If two clocks are
in the same set, their fractional parts are equal. The first set contains all clocks with fractional part 0, and,
for technical reasons, is the only set which may be empty. Forexample, the regionR1 in Figure 6 rep-
resents clock valuations in which the values ofx1 andx2 are exactly 0 and 2, respectively. Furthermore,
the integral value ofx3 is 1 and the integral value ofx4 is 2, and so on. Finally, the clocks are ordered
in the sequence by increasing fractional part. Thus, the fractional parts of all clocks exceptx1 andx2 are
strictly positive, and the fractional parts ofx6 andx7 are the largest in the sequence (they are in the same
set, so their fractional parts are equal).

Region rotations Given a region, we may simulate passage of time byrotating it. When time passes,
one of two things may happen:

• Some items have fractional part 0, in which case any passage of time is enough to “push” them out

• No items have fractional part 0, in which case the items with the largest fractional part reach their
next integral values.

For instance, consider the regionR2 in Figure 6. The next change in the region representation is that
the values ofx6 andx7 reach 4 and 1, respectively.

5 Translation

Our goal is is to reduce the reachability problem for TPDA to the reachability problem for PDA by
translating the given TPDA to a PDA which simulates it. We will first describe a naive approach for

8 Adding Time to PDA

〈x1,0〉
〈x2,3〉

〈x3,1〉
〈x4,2〉

〈x1,0〉
〈x2,2〉

〈x5,2〉
〈x6,3〉
〈x7,0〉

R1

〈x3,1〉
〈x4,2〉

〈x1,0〉
〈x2,2〉

〈⊢,0〉 〈x5,2〉
〈x6,3〉
〈x7,0〉

R2

〈x1,4〉
〈x2,1〉

〈x1,0〉
〈x2,2〉

〈x6,4〉
〈x7,1〉

〈x3,1〉
〈x4,2〉

〈x5,2〉R3

〈x1,0〉
〈x2,2〉

〈x3,4〉
〈x6,4〉
〈x7,3〉

〈x4,2〉 〈x5,2〉R4

〈x1,4〉
〈x2,1〉

〈x1,0〉
〈x2,2〉

〈x6,4〉
〈x7,3〉

〈x4,2〉
〈x3,3〉
〈x5,2〉

R5

Figure 6: Example regions

constructing such a PDA. Then we show the problem with this approach and explain how to amend it.
At the end of this section, we show in detail how the computation in Figure 4 and Figure 5 is simulated
by the PDA.

In the original paper on timed automata [5], the timed automaton is simulated by a region automaton,
i.e. a finite state automaton that encodes the regions in its states. This abstraction relies on the fact that
the set of clocks is fixed and finite. Since a TPDA may in general operate on unboundedly many clocks
(the stack is unbounded, and each symbol has an age), we cannot rely entirely on this abstraction.

Instead, we store the regions in the stack. Each symbol in thestack of the TPDA is represented in the
stack of the PDA by a region that relates the stack symbol with all clocks. Forexample, consider Run 1
shown in Figure 7. At the beginning, the stack contains a region in which the integral values ofa andx
are 2 and 1, respectively, and the fractional part ofx is larger than the fractional part ofa, which is in turn
larger than 0. The PDA then simulates the pushing ofb with an initial age in[0 : 1]. This creates a new
region on top of the stack which relatesb to x. The region shown in the run is one of 4 possible regions.
Next, the value ofx is set to some value in[1 : 2]. In our case, it happens thatx gets the same fractional
part asb.

Unfortunately, it is not enough to relate each stack symbol to all clocks. Consider the final stack of
Run 1 in Figure 7. What is the resulting stack if we now popb? It is clear that the resulting stack must
containa andx. As for constraints on their values, we know from the topmostregion that the fractional
part ofx is positive. We also know, from the region below, that the fractional part ofa is positive. If we
combine this information, we end up with one of the stacks in Figure 8.

To see the problem, consider Run 2 in 7. This run ends up with the same stack. However, the
fractional part ofx in this run can not be equal to the fractional part ofa, since the value ofx has not been
reset. This rules out the stack in the middle in Figure 8. Therefore, we need to relate the fractional parts
of a andb. A tempting solution is to simply record the value ofa in the region representingb. However,
since a PDA needs to have a finite stack alphabet, we can only record the values of finitely many previous
stack symbols. At the same time, it is easy to construct counter-examples (similar to the one above) in
which we need to keep the relationship between stack symbolsthat lie arbitrarily far apart in the stack.
In [1], we show that we can in fact enrich the regions in a finiteway in order to construct a PDA which
simulates a TPDA. We will now explain the main points of this construction.

Abdulla et al. 9

〈a,2〉〈a,2〉 〈x,1〉

〈a,2〉〈⊢,0〉 〈x,1〉

〈b,0〉〈⊢,0〉 〈x,1〉

push(b, [0 : 1])

〈a,2〉〈⊢,0〉 〈x,1〉

〈b,0〉〈⊢,0〉
〈b,0〉
〈x,1〉

x← [1 : 2]

(a) Run 1

〈a,2〉〈a,2〉 〈x,1〉

〈a,2〉〈⊢,0〉 〈x,1〉

〈b,0〉〈⊢,0〉
〈b,0〉
〈x,1〉

push(b, [1 : 2])

(b) Run 2

Figure 7: Example of information loss

〈x,1〉〈x,1〉 〈a,2〉
〈a,2〉
〈x,1〉

〈x,1〉 〈a,2〉〈a,2〉 〈x,1〉

Figure 8: Result of popping

First, let us define the notion of items. Anitem is either aplain itemor a shadow item. A plain
item represents the value of a clock or the age of a stack symbol. We add a special reference clock⊢,
which is always 0 except when simulating a pop transition. Inother words, this reference clock is not
changed when we simulate timed transitions. Thus, the set ofplain items consists ofX ∪Γ∪{⊢}. On
the other hand, shadow items record the values of the corresponding plain items in the region below. For
each clockx and stack symbola, the set of shadow items contains the symbolsx• anda•. Additionally,
this set includes a shadow copy⊢• of the reference clock. The shadow items are used to rememberthe
amount of time that elapses while the plain items they represent are not on the top of the stack. A region
is then represented by a sequence of sets of items.

To illustrate this, let us simulate a push transition. Assume that the regionR1 in Figure 9 is the
topmost region in the stack. The regionR1 records the integral values and the relationships between the
clocksx1,x2, the topmost stack symbola and the reference clock⊢. It also relates these symbols to the
values ofx1,x2,b and⊢ in the previous topmost region. Now, if we simulate the pushing ofc with initial
age in[0 : 1], one of the possible resulting regions isR2. The regionR2 usesx•1, x•2 and⊢• to record the
previous values of the clocks (initially, their values are identical to those of their plain counterparts). The
value of the previous topmost symbola is recorded ina•. Finally, the region relates the new topmost
stack symbolc with all the previously mentioned symbols.

10 Adding Time to PDA

〈x1,4〉
〈x2,1〉

〈a•,1〉
〈⊢,0〉
〈⊢•,0〉

〈x1,4〉
〈

x•1,4
〉

〈x1,3〉
〈

x•1,3
〉 〈c,0〉R2

〈x1,4〉
〈x2,1〉

〈a,1〉
〈⊢•,0〉

〈⊢,0〉
〈x1,4〉
〈

b•1,2
〉

〈x2,3〉
〈

x•1,5
〉

〈

x•2,3
〉

R1

Figure 9: Example regions with shadow items

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈x,ω〉
〈⊢,4〉

〈⊢•,5〉〈b,ω〉 〈x•,ω〉
〈a•,ω〉
〈y•,5〉
〈y,5〉

〈a•,4〉
〈y•,0〉
〈b•,ω〉〈c,6〉

〈x,2〉
〈⊢,0〉

〈x•,ω〉
〈⊢•,4〉

〈y•,5〉
〈y,5〉R2

R1

Figure 10: Simulating pop

Simulation We will now describe how to simulate the rest of the transitions, i.e. timed transitions,
x∈ I ?,x← I , andpop(a, I).

Timed transitions are simulated by rotating the top-most region, as described in the previous section.
Note that the reference clock⊢ is not affected by these rotations. For example, the rotation of the topmost
region betweenS18 andS19 simulates the timed transition betweenc18 andc19 in Figure 4. The reference
clock⊢ stays in the first set, but all other items are rotated in a way which is consistent with the passage
of 1.75 time units.

The operationx∈ I ? checks whether the value ofx is in the intervalI or not. For every transition
rule (s,x∈ I ?, t) in the TPDA and every region that satisfies the conditionx∈ I , we create a sequence of
two transition rules which first pops the region in question and then pushes it back.

The reset operationx← I sets the value of clockx to some value in the intervalI . We simulate this
by first popping the topmost region and then nondeterministically pushing a region which is identical
except for the fact thatx has been updated so thatx∈ I . Note that there may be several regions satisfying
this; the region we push is chosen nondeterministically from these.

The interesting operation is pop: the operation merges the information in two different regions. The
simulation is performed in two steps. First, the next top-most region is “refreshed”, by repeatedly rotating
it until its items are updated in a manner that reflects their current values. This is illustrated in Figure 10:
the regionR1 is rotated until the shadow items inR2 match their plain counterparts inR1. In the figure,
this matching is illustrated by dotted lines. Next, we combine the regions in the following way:

• The plainstack symbolis selected from the lower region (R1)

• The plainclock symbolsare selected from the upper region (R2); it contains their most recent
values

Abdulla et al. 11

• Shadow items are selected from the lower region (R1)

For example, the result of combiningR1 andR2 is the topmost region inS14. In this way, we simulate
the passage of time only on the topmost region, but the effect“ripples” down the stack when popping.
Thus, we only encode a finite amount of additional information in the regions, so the stack alphabet is
kept finite.

Results Given a TPDA, we can solve the reachability problem by constructing a PDA which simulates
it, as described in this section. The target state is reachable in the TPDA if and only if it is reachable in
the PDA. However, the size of the PDA might be exponential in the size of the TPDA. The following
theorem states the main result in [1]:

Theorem 1 The reachability problem forTPDA is EXPTIME-complete.

Figure 11: Simulation of a TPDA computation

〈y,0〉
〈x,0〉
〈⊢,0〉

S0

〈⊢,0〉
〈y,3〉
〈x,3〉S1

〈y,1〉〈⊢,0〉 〈x,3〉S2

〈y,1〉〈⊢,0〉 〈x,3〉

〈⊢•,0〉
〈⊢,0〉

〈y•,1〉
〈y,1〉

〈⊢•,0〉
〈⊢,0〉

〈a,2〉
〈x•,3〉
〈x,3〉

S3

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,3〉
〈x,3〉
〈x•,5〉
〈x,5〉

〈a,4〉〈⊢,0〉 〈⊢•,1〉
〈y•,2〉
〈y,2〉

S4

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,3〉
〈x,3〉
〈x•,5〉
〈x,5〉

〈a,4〉
〈y,0〉

〈⊢,0〉 〈⊢•,1〉 〈y•,2〉

S5

12 Adding Time to PDA

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

S6

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈x•,6〉
〈x,6〉

〈⊢•,0〉
〈⊢,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈b,2〉

S7

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉
〈x•,6〉〈x,2〉

〈⊢•,0〉
〈⊢,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈b,2〉

S8

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈a•,5〉
〈y•,1〉
〈y,1〉

〈x•,ω〉〈x,3〉
〈⊢,0〉

〈b,3〉 〈⊢•,0〉

S9

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈a•,5〉
〈y•,1〉
〈y,1〉

〈x•,ω〉〈x,3〉
〈⊢,0〉

〈b,3〉 〈⊢•,0〉

〈x•,3〉
〈x,3〉
〈⊢•,0〉
〈⊢,0〉

〈y•,1〉
〈y,1〉

〈x•,3〉
〈x,3〉
〈⊢•,0〉
〈⊢,0〉

〈c,1〉 〈b•,3〉

S10

Abdulla et al. 13

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈a•,5〉
〈y•,1〉
〈y,1〉

〈x•,ω〉〈x,3〉
〈⊢,0〉

〈b,3〉 〈⊢•,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈y•,5〉
〈y,5〉

〈x•,ω〉
〈x,ω〉
〈⊢•,4〉

〈⊢,0〉 〈c,5〉 〈b•,ω〉

S11

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈a•,5〉
〈y•,1〉
〈y,1〉

〈x•,ω〉〈x,3〉
〈⊢,0〉

〈b,3〉 〈⊢•,0〉

〈a•,4〉
〈y•,0〉
〈y•,5〉
〈y,5〉

〈x•,ω〉
〈⊢•,4〉

〈⊢,0〉
〈c,5〉
〈x,1〉

〈b•,ω〉

S12

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈a•,5〉
〈y•,1〉
〈y,1〉

〈x•,ω〉〈x,3〉
〈⊢,0〉

〈b,3〉 〈⊢•,0〉

〈a•,4〉
〈y•,0〉
〈b•,ω〉〈c,6〉

〈x,2〉
〈⊢,0〉

〈x•,ω〉
〈⊢•,4〉

〈y•,5〉
〈y,5〉

S13

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,4〉
〈a•,4〉
〈y•,0〉

〈b,ω〉〈x,2〉〈⊢,0〉 〈⊢•,5〉 〈x•,ω〉
〈a•,ω〉
〈y•,5〉
〈y,5〉

S14

14 Adding Time to PDA

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,ω〉
〈y•,5〉
〈y,5〉
〈⊢•,5〉

〈b,ω〉
〈x,2〉

〈⊢,0〉 〈x•,ω〉
〈a•,ω〉
〈y•,5〉
〈y,5〉

S15

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,ω〉
〈y•,5〉
〈⊢•,5〉

〈b,ω〉
〈x,2〉

〈⊢,0〉
〈x•,ω〉
〈y,0〉

〈a•,ω〉
〈y•,5〉

S16

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,ω〉
〈y•,5〉
〈⊢•,5〉

〈b,ω〉
〈x,2〉

〈⊢,0〉
〈x•,ω〉
〈y,0〉

〈a•,ω〉
〈y•,5〉

〈b•,ω〉
〈x•,2〉
〈x,2〉

〈b•,ω〉
〈x•,2〉
〈x,2〉

〈⊢•,0〉
〈⊢,0〉

〈d,2〉
〈y•,0〉
〈y,0〉

S17

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,ω〉
〈y•,5〉
〈⊢•,5〉

〈b,ω〉
〈x,2〉

〈⊢,0〉
〈x•,ω〉
〈y,0〉

〈a•,ω〉
〈y•,5〉

〈b•,ω〉
〈x•,2〉

〈b•,ω〉
〈x•,2〉

〈⊢•,0〉
〈⊢,0〉

〈d,2〉
〈x,0〉

〈y•,0〉
〈y,0〉

S18

Abdulla et al. 15

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,ω〉
〈y•,5〉
〈⊢•,5〉

〈b,ω〉
〈x,2〉

〈⊢,0〉
〈x•,ω〉
〈y,0〉

〈a•,ω〉
〈y•,5〉

〈a•,4〉
〈y•,0〉
〈y•,2〉
〈y,2〉

〈d,4〉
〈x,2〉

〈⊢,0〉 〈⊢•,1〉
〈b•,ω〉
〈x•,3〉

S19

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,4〉
〈a•,4〉

〈⊢•,ω〉〈x,2〉〈⊢,0〉
〈x•,ω〉
〈y,2〉

〈a•,ω〉
〈y•,ω〉 〈b,ω〉

S20

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,ω〉
〈y•,5〉
〈x•,ω〉
〈y,2〉

〈x,3〉
〈⊢•,ω〉〈⊢,0〉

〈a•,ω〉
〈y•,ω〉 〈b,ω〉

S21

〈y,1〉〈⊢,0〉 〈x,3〉

〈x•,6〉
〈x,6〉
〈⊢•,2〉

〈x•,6〉
〈x,6〉

〈⊢,0〉 〈y•,3〉
〈a,4〉
〈y,0〉

〈a•,ω〉
〈y•,5〉
〈x•,ω〉
〈y,2〉

〈x,3〉
〈⊢•,ω〉〈⊢,0〉

〈a•,ω〉
〈y•,ω〉 〈b,ω〉

S22

References

[1] P.A. Abdulla, M.F. Atig & J. Stenman (2012):Dense-timed pushdown automata. In: Logic in Computer
Science (LICS), 2012 27th Annual IEEE Symposium on, IEEE, doi:10.1109/LICS.2012.15.

[2] P.A. Abdulla, M.F. Atig & J. Stenman (2012):The Minimal Cost Reachability Problem in Priced Timed Push-
down Systems. Language and Automata Theory and Applications, pp. 58–69, doi:10.1007/978-3-642-28332-1.

[3] P.A. Abdulla & B. Jonsson (1998):Verifying networks of timed processes. Tools and Algorithms for the
Construction and Analysis of Systems, pp. 298–312, doi:10.1007/BFb0054179.

http://dx.doi.org/10.1109/LICS.2012.15
http://dx.doi.org/10.1007/978-3-642-28332-1
http://dx.doi.org/10.1007/BFb0054179

16 Adding Time to PDA

[4] P.A. Abdulla & B. Jonsson (2003):Model checking of systems with many identical timed processes. Theoreti-
cal Computer Science290(1), pp. 241–264, doi:10.1016/S0304-3975(01)00330-9.

[5] R. Alur & D.L. Dill (1994): A theory of timed automata. Theoretical computer science126(2), pp. 183–235,
doi:10.1016/0304-3975(94)90010-8.

[6] A. Bouajjani, J. Esparza & O. Maler (1997):Reachability Analysis of Pushdown Automata: Application to
Model-Checking. In: CONCUR, LNCS 1243, Springer, pp. 135–150, doi:10.1007/3-540-63141-010.

http://dx.doi.org/10.1016/S0304-3975(01)00330-9
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/3-540-63141-0_10

	1 Introduction
	2 Pda
	3 Timed Pushdown Automata
	4 Regions
	5 Translation

