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In this tutorial, we illustrate through examples how we cambine two classical models, namely
those ofpushdown automat@pA) andtimed automatan order to obtainimed pushdown automata
(TpDA) [2,[1]. Furthermore, we describe how the reachability pgobfor TPDAS can be reduced to

the reachability problem forhs.

1 Introduction

In this tutorial, we describe a timed extension of the widedgd model of Pushdown Automatap{®
[2,[1]. A PDA computes by moving between states according to some gaesition rules. Additionally,

a PbA may utilize a stack to store information. This informatieneincoded irstack symbolsand the
PDA may add a symbolplsh to or remove a symbolppp from the stack. The defining feature of a
stack is that it has ordering on its elements, traditionttiyn top to bottom the FbA can only access the
topmost element.

An interesting question is what happens to this model wheaxtend it with quantitative properties.
Will basic problems, such as state reachability, still beideble? In particular, we are interested in
extending the model with continuous time in a similar mannerhich Timed Automaté [5] extend Finite
Automata. Thus, we consider Timed Pushdown automa&®AT A TPDA is a PbA that is augmented
with a finite number otlocks It operates in the following manner:

e at any point in the computation, time may elapse by some rgaber, increasing the values of all
clocks

e the values of clocks constrain the actions of the automaton

In addition to the set of clocks, we also store the age of etk symbol. We can view this as an
additional clock. Accordingly, the ages of stack symbotgéase whenever time elapses. Furthermore,
possible actions of the automaton may be restricted by tae&ppmost stack symbol.

The TpDA model thus subsumes both the model of pushdown automatanaed automata. More
precisely, we obtain the former if we prevent theDi from using the timed information (all the timing
constraints are trivially valid); and obtain the latter iEwprevent the PDA from using the stack (no
symbols are pushed to or popped from the stack). Notice ti@ma induces a system that is infinite
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2 Adding Time to PDA
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Figure 1: A simple PDA

in two dimensions, namely it gives rise to a stack contaiminginbounded number of symbols each of
which is equipped with a real-valued clock.

Outline In the next section, we present an overview of Pushdown Aatanin Sectiohl3, we describe
the timed extension of ®» and show some examples of computations. In Secfion 4, wél Ewh
extend the notion of regions, and show how we can use themfiteede symbolic encoding of ADA
configurations. Finally, in Sectidd 5 we describe how to twres a A which simulates a given ADA.
The section ends with a detailed example of how the aforaoreed TPDA computation is simulated.

2 PbDA

In this section, we informally describe the model of Pushaddwtomata. A Pushdown Automaton
(PDA) is a tuple(S snit,I",A) consisting of a finite set ddtates San initial statesyir, a finite stack
alphabetl’, and a finite set afransition rulesA. During the operation of a, it may store information
in a stack. It may add information, which is referred tgpashing or it may remove information, which
is calledpopping The stack is a last-in, first-out queue, and access isatestrio the first element. The
stack alphabet contains all possible symbols that may Ibedsto the stack, and the set of transition rules
describe the manner in which the automaton is allowed to rhetween states. Each transition rule is of
the form(s,op,t). The rule contains a source stafe target stateand a stack operatioop. The stack
operation is eithepush(a), pop(a) or nop (here,a is an arbitrary symbol from the stack alphabet). A
transition rule describes that the automaton may move oot while performing the stack operation
op. The operatiopush(a) pushes onto the stack, angop(a) pops it. The operationop is an “empty”
operation which can be used to change state without modififie stack. Figurgl1 shows a PDA with
the state sefs;, s, 3,5, 5,5} and stack alphabdta, b}. The initial state of the automatonss. The
transition rules are drawn as arrows between states, thiétle the stack operation (missing labels mean
nop).

At any point during a computation, the PDA is in a certaomfiguration defined by the current
state and the current stack content. Fidure 2 shows the coafiigns that appear along a computation in
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which the automaton starts from its initial configuratidne(state is; and the stack is empty), moves to
s, while pushinga, then moves taz while pushingb, and finally pops and moves t@;.

B _> o
C2

C1 C3

Figure 2: Computation of a PDA

Reachability Given a pushdown automaton, the reachability problem iptblelem of deciding whether
the automaton can reach a particular stgatén other words, we ask whether there is a computation of
the automaton (starting from the initial configuration)tthesits a configuration where the statess
regardless of the content of the stack. It turns out thatferutomaton in Figutd 1, the statgs reach-
able but the stats; is not. This is because in order to move fr@gno ss, the automaton has to pap
However, the topmost symbol when the automaton is in statéll always beb. For PDA, reachability

is decidable in polynomial timé [6].

3 Timed Pushdown Automata

The classical model of Timed Automata extends finite stateraata with a finite set of real-valued
clocks We extend BA in a similar way, in the sense that a Timed Pushdown Autom@ena) consists

of a finite set of stateS, an initial statesyj;, a finite stack alphabét, a finite set of transition rules, and

a finite set of clockX. The transition rules are also extended in the sense that#reread and write the
values of clocks. More specifically, a transition r(geop,t) refers not only to stack operations. Instead,
op can also be one of theock operations x | ? andx <— |. The operatiorx € | ? checks whether the
value of the clockx is in the intervall. For example, the transition ruls,x € [1: 3 ?,t) can only be
performed when the value gfis between 1 and 3. The operatigr— | nondeterministicallyresets the
value of the clockk to some value in the interval Additionally, each stack symbol is equipped with a
value representing itsge We modify the stack operations to use these valpesh(a, ) pushesa and
nondeterministically sets its initial age to some valuehia intervall, while pop(a, 1) may only pop the
topmost stack symbol if it is equal Bband its age is in the given intervil

As with PpA, the semantics of ADA are given by a transition system over configurations. The
configurations of a DA need to contain additional information, namely the valueslalocks and the
ages of all stack symbols. The values of all clocks are giwea dlock valuation a mappingX — R=0
(whereR=? stands for the non-negative real numbers). To capture the @igclocks symbols, we store
tuples in the stack. Each tuple consists of (i) a stack synooh the stack alphabdi and (ii) its
corresponding age. Figuré 4 and Figlfe 5 show an example utatign of a TPDA (note that this
computation is not related to the automaton in Figure 3).eé&ample, in the configuratioty in Figure
[4, the automaton is in the statgwith an empty stack, and the values of the two clocksidy are 0. In
the configuratiorcs in the same figure, the stack consists of a synabwhich has age 2.

There are two different types of transitions between conditjpns of a PDA; discreteandtimed
Discrete transitions are direct applications of the tiamsirules inA. Timed transitions simulate the
passage of time. At any point in the computation, the automatay take a timed transition, which
means that all clock values and ages of stack symbols ameaised by a positive real number. Figurks 4
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Figure 3: A simple TPDA

and’% show a computation of @DA with clocksX = {x,y} and stack alphabé&t = {a,b,c,d}. We will
describe the effect of each type of transition with an exanfygm these figures.

Betweenc, andcs, the TPDA moves froms; to s3 and pushes the symbalonto an empty stack,
setting its initial age to 4, a value which is in the allowed intervdl : 3). Recall that the initial age
is nondeterministically chosen from the given intervalthie push betweeg; andc; the same interval
is given, but the chosen value happens to I8i@stead. The operation«+ | chooses and assigns a
value nondeterministically. Fromy, the automaton resets the valuexofts value, which was previously
6.1, is set to some value in the interv@ : 3, in this case 2. Assume thafA contains a transition
rule (s,y € (1:)? ss5). In cp1, the TPDA tests if the value of is strictly greater than 1. It is, so the
transition rule is applied, and the state changes,tas shown in configuratiotp,. The above transitions
are all examples of discrete transitions, i.e. transititias are induced by transition rulesn Figurel4
and Figuré b also contain a number of timed transitions. kKample, the transition betwe&g andcg
represents the passage d @ime units. Incg, the values ok andy and the ages @ andb have all been
increased by @.

Reachability In a similar manner to the reachability problem fanA& the reachability problem for
TPDA is the problem of deciding whether a particular state ishreble from the initial configuration or
not. In other words, we ask whether it is possible to reachndiguarationc such that the state afis the
given target state.

Notice that in the definition of the reachability problem, éaenot place any restrictions on the stack
contents or on the values of the clocks. However, the reddipatf a state in a PDA may, in general,
depend on the clock values and the ages of the stack symiwolex&mple, the stat in Figurel3 is not
reachable because of timing limitations.

Since the set of configurations in @DA is infinite, we can not solve the reachability problem by
iteratively computing the successors of the initial confégiwn until a fixed point is reached. Further-
more, we cannot use the classical techniques that solvedobability problem for BA [6] since those
constructions rely on the stack alphabet being finite. Tihezewe will now describe a symbolic repre-
sentation of clock valuations and ages of stack symbols. Wause this representation to construct a
symbolicPDA that simulates the behavior of the giverOA.



Abdulla et al.

yo
a y+ 0
Co

. X< 3.9
2 ) oyi12
C2

. X< 56
S ) yeo9
Cq

(a,4.1)

. X 6.1
L) yeo06
Ce

(a,4.6)

- xe 2.1
2 1 yeo06
Cs

. x+ 3.0
=3 y+<15
Ci0

(c,1.7)
(b,3.8)
(a,5.5)

X+ 18
L ) y«<56
C12

Time= 3.9 X<+ 3.9
— |
y<+ 39
C1

push(a,[1:3))
_—

y+ (0:1)

push(b, [1: 3))
E

Time=0.9

Time=4.1
_

Time= 0.3

Figure 4: A computation of a TPDA
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Figure 5: A computation of a TPDA (continued)
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4 Regions

In this section, we describe a symbolic region encoding poasent the infinitely many clock valuations
of a TPDA in a finite way. In the following section, we show how to constt using this encoding, a
symbolic FbA that simulates the behavior of @DA.

In the classical paper by Alur and Dill on timed automata Ebfegion represents a set of clock
valuations with “similar behaviors”. The representatigiits a real number into two parts: itstegral
valug i.e. its value rounded down to the nearest integer, anflaitsional part i.e. what is left when
we subtract it by its integral value. For example, the irdégelue ofrris 3, and its fractional part is
0.141592 ... The main idea is that two configurations are equivalentdfftilowing conditions hold:

o the integral values are identical in both valuations, up tom@staniCyax
¢ the fractional part of any clock is either 0 in both valuatipar positive in both valuations

o the orderings of the fractional parts of all clocks are id=ttin both valuations

If the integral values are the same, the valuations willsfatihe same set of constraints. If the
two valuations agree on the ordering of the fractional pdinesy agree on the order in which the clocks
will change integral values (and therefore in which order ¢bnstrained transitions will be enabled or
disabled). The constan,ayis the largest constant appearing syntactically in theraaton. All values
that are abovenaxare indistinguishable form each other, so we can reprelsent symbolically withw.

In our example computation (Figuré 4 and Figure 5), this tzords 7.

We will use a representation of regions inspired [by [3, 43f Buites our purposes. In our represen-
tation, regions are sequences of sets. Each set contairar onere clocks together with their integral
values. Their positioning in the sequence encodes theinglef the fractional parts. If two clocks are
in the same set, their fractional parts are equal. The fitsts#ains all clocks with fractional part 0, and,
for technical reasons, is the only set which may be empty.ekample, the regioR; in Figure[6 rep-
resents clock valuations in which the valuesxpfindx, are exactly 0 and 2, respectively. Furthermore,
the integral value okz is 1 and the integral value o, is 2, and so on. Finally, the clocks are ordered
in the sequence by increasing fractional part. Thus, thetifnaal parts of all clocks excepi andx, are
strictly positive, and the fractional parts xf andx; are the largest in the sequence (they are in the same
set, so their fractional parts are equal).

Region rotations Given a region, we may simulate passage of timedbgting it. When time passes,
one of two things may happen:

e Some items have fractional part O, in which case any pasddupeeis enough to “push” them out

e No items have fractional part O, in which case the items withlargest fractional part reach their
next integral values.

For instance, consider the regiBa in Figure[6. The next change in the region representatidmais t
the values oKz andxy reach 4 and 1, respectively.

5 Trandation

Our goal is is to reduce the reachability problem farDR to the reachability problem for oA by
translating the given ADA to a FbA which simulates it. We will first describe a naive approach fo
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Figure 6: Example regions

constructing such aA. Then we show the problem with this approach and explain lwoaniend it.
At the end of this section, we show in detail how the compaiain Figure_# and Figuirlg 5 is simulated
by the PbA.

In the original paper on timed automata [5], the timed automa simulated by a region automaton,
i.e. afinite state automaton that encodes the regions itaitsss This abstraction relies on the fact that
the set of clocks is fixed and finite. Since adA may in general operate on unboundedly many clocks
(the stack is unbounded, and each symbol has an age), wet cahynentirely on this abstraction.

Instead, we store the regions in the stack. Each symbol istHol of the PDA is represented in the
stack of the PA by a region that relates the stack symbol with all clocks. é&@mple, consider Run 1
shown in Figuré]7. At the beginning, the stack contains aore@ which the integral values afandx
are 2 and 1, respectively, and the fractional parisflarger than the fractional part af which is in turn
larger than 0. The Ba then simulates the pushing bfwith an initial age in[0 : 1]. This creates a new
region on top of the stack which relaties$o x. The region shown in the run is one of 4 possible regions.
Next, the value ok is set to some value if1 : 2. In our case, it happens thagets the same fractional
part asb.

Unfortunately, it is not enough to relate each stack symballitclocks. Consider the final stack of
Run 1 in Figurd 7. What is the resulting stack if we now fdplt is clear that the resulting stack must
containa andx. As for constraints on their values, we know from the toprmegton that the fractional
part ofx is positive. We also know, from the region below, that thetitnal part ofa is positive. If we
combine this information, we end up with one of the stacksigufe[8.

To see the problem, consider Run 2[in 7. This run ends up wihstime stack. However, the
fractional part o in this run can not be equal to the fractional parap$ince the value of has not been
reset. This rules out the stack in the middle in Fiddre 8. &fuge, we need to relate the fractional parts
of aandb. A tempting solution is to simply record the valueaiin the region representing However,
since a PA needs to have a finite stack alphabet, we can only record thesvef finitely many previous
stack symbols. At the same time, it is easy to construct emexamples (similar to the one above) in
which we need to keep the relationship between stack synthatdie arbitrarily far apart in the stack.
In [1], we show that we can in fact enrich the regions in a fimiggy in order to construct ad2 which
simulates a PDA. We will now explain the main points of this construction.
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Figure 7: Example of information loss

________________________________________

Figure 8: Result of popping

First, let us define the notion of items. Atemis either aplain itemor ashadow item A plain
item represents the value of a clock or the age of a stack dyrié® add a special reference cloek
which is always 0 except when simulating a pop transitionothrer words, this reference clock is not
changed when we simulate timed transitions. Thus, the sefaof items consists KU U {F}. On
the other hand, shadow items record the values of the camdsm plain items in the region below. For
each clockx and stack symba, the set of shadow items contains the symb®landa®. Additionally,
this set includes a shadow copy of the reference clock. The shadow items are used to remetimber
amount of time that elapses while the plain items they remteare not on the top of the stack. A region
is then represented by a sequence of sets of items.

To illustrate this, let us simulate a push transition. Assuimat the regiorR; in Figure[9 is the
topmost region in the stack. The regiBarecords the integral values and the relationships betwesn t
clocksxy, %o, the topmost stack symbaland the reference clodk. It also relates these symbols to the
values ofx;, %o, b andt- in the previous topmost region. Now, if we simulate the paghof ¢ with initial
age in[0 : 1], one of the possible resulting regionsRs The regionR, usesx], x5 and"* to record the
previous values of the clocks (initially, their values atentical to those of their plain counterparts). The
value of the previous topmost symbmis recorded ima®. Finally, the region relates the new topmost
stack symbot with all the previously mentioned symbols.
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Figure 10: Simulating pop

Simulation We will now describe how to simulate the rest of the transgioi.e. timed transitions,
x€l?,x« |, andpop(al).

Timed transitions are simulated by rotating the top-mogiore as described in the previous section.
Note that the reference cloekis not affected by these rotations. For example, the ratatfahe topmost
region betweei$; g andS;g simulates the timed transition betwegg andc, g in Figure[4. The reference
clock - stays in the first set, but all other items are rotated in a waighvis consistent with the passage
of 1.75 time units.

The operatiorx € |1 ? checks whether the value »is in the intervall or not. For every transition
rule (s,x € I 2,t) in the TPDA and every region that satisfies the conditioa |, we create a sequence of
two transition rules which first pops the region in questiad then pushes it back.

The reset operatior«+ | sets the value of clockto some value in the interval We simulate this
by first popping the topmost region and then nondeterm@ailyi pushing a region which is identical
except for the fact thathas been updated so that |. Note that there may be several regions satisfying
this; the region we push is chosen nondeterministicallynftbese.

The interesting operation is pop: the operation mergesifieenation in two different regions. The
simulation is performed in two steps. First, the next topstmegion is “refreshed”, by repeatedly rotating
it until its items are updated in a manner that reflects thairemt values. This is illustrated in Figure] 10:
the regionR; is rotated until the shadow items iRy match their plain counterparts Ry. In the figure,
this matching is illustrated by dotted lines. Next, we conebtihe regions in the following way:

e The plainstack symbais selected from the lower regioRy)

e The plainclock symbolsare selected from the upper regidR); it contains their most recent
values
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e Shadow items are selected from the lower regiey) (

For example, the result of combinirigy andR; is the topmost region % 4. In this way, we simulate
the passage of time only on the topmost region, but the effggiles” down the stack when popping.
Thus, we only encode a finite amount of additional informafio the regions, so the stack alphabet is
kept finite.

Results Given a TPDA, we can solve the reachability problem by constructingba ®hich simulates
it, as described in this section. The target state is redehathe TPDA if and only if it is reachable in
the PbA. However, the size of thedA might be exponential in the size of theeDA. The following

theorem states the main result/in [1]:

Theorem 1 The reachability problem fof PDA is EXPTIME-complete.

Figure 11: Simulation of a FDA computation
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