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We present a novel lambda calculus that casts the categorical approach to the study of quantum
protocols [4] into the rich and well established tradition of type theory. Our construction extends the
linear typed lambda calculus [6] with a linear negation [1] of ”trivialised” De Morgan duality [5].
Reduction is realised through explicit substitution, based on a symmetric notion of binding of global
scope, with rules acting on the entire typing judgement instead of on a specific subterm. Proofs of
subject reduction, confluence, strong normalisation and consistency are provided, and the language
is shown to be an internal language for dagger compact categories.

1 Introduction

1.1 Motivation

Since the turn of the century, the study of quantum protocolsand quantum computation has gained new
momentum through the introduction of a category theoretic approach in the works of [4] and [21]. This
approach has primarily been using dagger compact categories. In addition to introducing categories to
the study of quantum computation, however, the line of work that sprang from this approach has been
instrumental in driving a new breed of diagrammatic calculi[11, 14, 12, 13, 9, 10].

In parallel to this approach, another very prominent line ofresearch was seen in the works of
[19, 20, 27, 26, 23, 24, 25] and was geared towards the development of a quantum programming lan-
guage. This approach was seminal in establishing a semanticapproach to quantum programming lan-
guage design and focused primarily in designing a higher order lambda calculus for quantum computa-
tion. More specifically, in [25], a quantum lambda calculus with a complicated set of rules is presented,
whose structural equations nevertheless allow for higher-order structures. The rest of the work towards
constructing a concrete model for the language’s semanticsremains an open problem.

The purpose of this paper is to bridge these two approaches, bringing the programming languages
approach closer to the categorical approach, by casting thediagrammatic formalism into the rich and
well established tradition of type theory.

1.2 Summary of results

Since Symmetric Monoidal Closed categories are the precursor to Compact Closed and Dagger Compact
categories, we begin our construction by extending the linear typed lambda calculus of [6]. Similarly
to the approach used by [1], we introduce a linear negation operator. Contrary to [1], however, because
quantum logicsequate⊗ with

&

[5], our linear negation operator only allows for a ”trivialised” form of
De Morgan duality. We also redefine the notion of binding, as asymmetric relation whose scope spans
the entire sequent. Reduction works by means of an explicit substitution, in the spirit of the operational
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semantics of the linear chemical abstract machine [1]. The rules for explicit substitution act globally on
the entire typing judgement, instead of limiting their scope to a specific subterm.

By designing our calculus in this way we manage to deconstruct lambda abstraction, one of the
traditional primitives of computation, into finer notions of tensor-based binding. This allows us to easily
reason with binding operations, such as teleportation, even when they are performed on compound terms.
The representation of those operations remains the same, regardless of whether they are teleporting a state
or an entire function. A detailed example of this is presented in the end of the Appendix.

An elimination procedure allows us to reconstruct Application using Cut, hence removing it from
our primitive rule set. The new rules allow for a fully symmetric language, where inputs and outputs are
treated as elements of a symmetric relation, and give rise toa new structural rule called thedagger-flip.
The resulting set of rules is minimal and simple to use, whichallows us to easily prove the properties
of subject reduction, confluence, strong normalisation andconsistency. Our analysis of the language’s
semantics is completed by a proof that the dagger lambda calculus is an internal language for dagger
compact categories.

2 The dagger lambda calculus

Dagger compact categories were first introduced in [3], albeit under a different name, using some of
the terminology of [15]. They were later proposed by [4] and [21] as an axiomatic framework for the
study of quantum protocols. Though a lot of work has been doneon categorically driven quantum
programming languages [23], [24] and [25], these lambda calculi did not provide a way of modelling
the dagger functor of dagger compact categories. The work of[8] highlighted the importance of dagger
compact categories for the semantics of quantum computation; it presented a rough correspondence
between quantum computation, logic and the lambda calculus, yet its type theory fell short of providing
a correspondence to the entire structure of dagger compact categories. This section fills this gap by
presenting thedagger lambda calculus: a computational interpretation for dagger compact categories.

2.1 Language construction

We will now construct a language fordagger compact categoriesby defining well formed formulas for
terms, types and sequents. The rules for deriving these formulas will be given in the form of Gentzen-
style inference rules. In order to give computational meaning to our language, we will reformalise
the typing dynamics of the linear typed lambda calculus [6] with the explicit substitution of the linear
chemical abstract machine [1]. The linear negation we will use causes a significant collapse between
conjunction and disjunction, extends tensor to a (potentially) binding operator, and provides us with a
semantics similar to that of the proof nets in [5]. The set of rules is kept at a minimum, allowing for
clean proofs of the various desired properties. Many familiar computational notions do not appear as
primitives, but they do arise as constructed notions in goodtime.

Definition 2.1 (Variables, constants and terms in the dagger lambda calculus). The fundamental building
blocks of our language arevariables; they are denoted by single letters and are traditionally represented
using the later letters of the alphabet (i.e.x,y,z). We also allow for the use ofconstant terms(i.e.
c1,c2,c3); these are terms with an inherent value and cannot serve as placeholders for substitution. These
primitives can then be combined with each other to form composite terms, denoted by different combi-
nations of the following forms:

〈term〉 ::= variable | 〈term〉∗ | 〈term〉⊗ 〈term〉 | constant
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Definition 2.2 (Types in the dagger lambda calculus). Every term in our language, regardless of whether
it is a variable, a constant or composite, has atype. We will first start by defining a set ofatomic types;
these are traditionally represented using capital letters(i.e. A,B,C). Atomic types can then be combined
to give us types of the following forms:

〈type〉 ::= atomic | 〈type〉∗ | 〈type〉⊗ 〈type〉

The star operator that we use is not a repetition operator; instead, it corresponds to a particular form of
linear negation. As one would expect from a negation operation, the star operator is involutive(a∗)∗ ≡ a
and(A∗)∗ ≡ A. Abramsky [1] proposed using linear negation as the passageway between Intuitionistic
Linear Logic and Classical Linear Logic. The linear negation used in [5] ”trivialized” the notion of De
Morgan duality of [1] by setting(A⊗B)∗ := A∗⊗B∗. The linear negation that we use is similar to the
one used in [13]; it distributes differently over tensor by performing a swap of the terms/types at hand
and allows for a more ”planar” representation. An exchange rule, presented later in this section, will
maintain the symmetry of the language’s tensors.

Definition 2.3 (Linear negation). The star operator is a form of linear negation whose De Morganduality
is defined by:(a⊗b)∗ := b∗⊗a∗ on terms and(A⊗B)∗ := B∗⊗A∗ on types.

Definition 2.4 (Scalars). One of the language’s atomic types, denoted byI , acts as the tensor unit. One
of the very important properties of the typeI is negation invariance, wherebyI ≡ I∗. We say that a term
i is ascalar iff it is of type I .

Definition 2.5 (Dimensions). For every typeA, we will define a scalar constantDA : I , referring to it as
thedimensionof typeA. The dimension ofI is defined to beDI = 1 : I , where 1= 1∗ : I ≡ I∗.

Definition 2.6 (Soup connection). A soup connectionis an ordered pair of equityped terms. A soup
connection between two terms of typeA is written ast1 :A t2 and is an element of the cartesian product of
the terms of typeA with themselves. To simplify our notation, we write the connection ast1 : t2, omitting
the type, whenever there is no ambiguity about the type of theconnected terms. Soup connections do not
form a symmetric relation; we use the propertya1 : a2 ≡ a2∗ : a1∗ to equate some soup terms by collapsing
them into the same congruence class. Moreover, soup connections are not self-dual; we define anegation
on soup connections as(t : u)∗ := t∗ : u∗ ≡ u : t.

Definition 2.7 (Soup). A soupis a set of soup connections, where not all of the connectionshave to be of
the same type. The resulting soup is of the formS= {v1 : v2, . . . ,vm−1 : vm}. All of the computation in our
language is performed inside the relational soup, by treating its constituent soup connections as a form
of explicit substitution. Our negation extends naturally into asoup negationwhereby(S∪S′)∗ := S∗∪S′∗.

Definition 2.8 (Typing judgements in the dagger lambda calculus). Thetyping judgements, or sequents,
of our language are composed of terms, their respective types, and a relational soup. A typing judgement
is thus represented by:

t1 : A1, t2 : A2, . . . , tn : An ⊢S t : B

Example 1. In the following typing judgement, the types oft1 andt2 are both known to beA. Similarly,
we know that bothDC and 1 are scalars, so their type isI . We omit writing the types for soup connections
t1 : t2 andDC : 1 but, to prevent ambiguity, we have to write it forx :B x, because we have no other way
of deducing it from the sequent:

t1 : A⊢{t1:t2,x:Bx,DC:1} t2 : A
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Now that we know which formulas are well formed in our language, we can proceed by defining a
notion of binding. Contrary to what we are used to from the lambda calculus, where the notion of binding
is restricted in scope to the confines of a single term, the dagger lambda calculus supports a binding that is
global and whose scope spans the entire typing judgement. The computational interpretation of classical
linear logic, which was provided by [1] in his linear chemical abstract machine, views two occurrences
of the same variable as two ends of a communication channel. Adhering to the spirit of that definition,
we define binding as follows:

Definition 2.9 (Bound variables and terms in the dagger lambda calculus). For any variablex, we say
that it is abound variablewhen it appears twice within a given sequent, regardless of where in the
sequent those instances appear. We can also say that an instance of that variable iscapturedby the other
instance of the variable in the sequent. As such, variable capture is not limited to the scope of a single
term but spans the entire sequent. For any termt that does not contain any occurrences of constants, we
say that that term is captured when it consists entirely of variables that are captured within the scope of
the current sequent. We use the phrasesbound termandbundle of bound variablesinterchangeably when
referring to captured terms. Trivially, a bound variable isalso a bound term.

Example 2. In the following sequent,x1, x2, y1, y2 and f are all bound variables. The individual variables
may be free when looking at subtermsx1∗⊗y1 andx2∗⊗y2 but, when considering the scope of the entire
sequent, they are captured by other occurrences of themselves in the soup. Moreover, the termsx1∗⊗y1

andx2∗⊗y2 are both bound terms because they contain no constants and they consist solely of variables
that are captured by variables in the soup:

x1∗⊗y1 : A∗⊗B⊢{x1∗⊗y1: f , f :x2∗⊗y2} x2∗⊗y2 : A∗⊗B

In the following sequent,f , y, x1 andx2 are bound variables; they can also be viewed as bound terms
since a single variable is a term and since they do not containany constants. The termx1 ∗⊗x1 is a
bundle of bound variables because it contains no constants and consists solely of bound variables. The
termc∗⊗x2, however, is not a bundle of bound variables because it contains a constant calledc:

f : A∗⊗B⊢{x1∗⊗x1:c∗⊗x2, f :x2∗⊗y} y : B

Remark 1. As will become obvious from our language’s sequent rules, which will impose linearity
constraints on the introduction of variables, the nature oflinearity in our language mandates that all of
the variables within a given sequent occur exactly twice. This means that all of the free variables in a
given term will occur once more in the sequent within which they reside, hence becoming captured in
the scope of that sequent. Within that scope, all terms will essentially consist of captured variables and
constants.

Definition 2.10 (α-renaming on variables in the dagger lambda calculus). A bound variablex can be
α-renamed by replacing all of its instances, in a given sequent, with a bundle of bound variablest. The
termt has to be of the same type asx, must not contain any constants (since it will be a bundle of bound
variables), and it must consist of variables that do not already appear in the sequent.

We can now extend the operation ofα-renaming to operate on captured terms:

Definition 2.11(α-renaming on terms in the dagger lambda calculus). A bound termt can beα-renamed
by eitherα-renaming its constituent variables or, in cases wheret appears twice in a given sequent, by
replacing all of its instances with a variablex. The variablex has to be of the same type ast and it must
not already appear in the sequent.
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Definition 2.12 (α-equivalence in the dagger lambda calculus). We define a notion ofα-equivalenceas
the reflexive, symmetric and transitive closure ofα-renaming. In other words, we say that two sequents
are α-equivalent, or equivalent up toα-renaming, when one can be transformed to the other byα-
renaming zero or more terms.

Example 3. Going back to the examples we used earlier, the sequent

x1∗⊗y1 : A∗⊗B⊢{x1∗⊗y1: f , f :x2∗⊗y2} x2∗⊗y2 : A∗⊗B

is α-equivalent to
g : A∗⊗B⊢{g: f , f :x2∗⊗y2} x2∗⊗y2 : A∗⊗B

because we canα-rename the bound termx1∗⊗y1 into the variableg. Similarly, the sequent

f : A∗⊗B⊢{x1∗⊗x1:c∗⊗x2, f :x2∗⊗y} y : B

is α-equivalent to
x3∗⊗y2 : A∗⊗B⊢{x1∗⊗x1:c∗⊗x2,x3∗⊗y2:x2∗⊗y1} y1 : B

because we canα-rename the bound variabley into y1 and alsoα-rename the bound variablef into the
termx3∗⊗y2.

Definition 2.13 (Typing contexts in the dagger lambda calculus). The left-hand-side of a typing judge-
ment is actually a list of typed terms. We use the lettersΓ and∆ as shorthand for arbitrary (possibly
empty) lists of such terms. Let∆ be the listt1 : T1, t2 : T2, . . . , tn : Tn. We define

⊗

∆ to be the term
(((t1⊗ t2)⊗ . . .)⊗ tn) : (((T1⊗T2)⊗ . . .)⊗Tn), referring to it as∆ in tensor form.

Our language exposition features a Gentzen-style Sequent Calculus, which provides us with the in-
ference rules used to produce judgements. Rules with a double line are bidirectional; sequents matching
the top of the rule can be used to derive sequents matching thebottom and vice versa. The rules are
formed in a way that allows composite terms to appear to the left of the turnstile. The sequent rules are:

Id,
x : A⊢ x : A

Γ ⊢S1 a : A a′ : A,∆ ⊢S2 b : B
Cut∗,Γ,∆ ⊢S1∪S2∪{a:a′} b : B

Γ ⊢S1 a : A ∆ ⊢S2 b : B
⊗R∗,Γ,

⊗

∆ ⊢S1∪S2 a⊗b : A⊗B

a : A⊢S b : B
Negation,

a∗ : A∗ ⊢S∗ b∗ : B∗

a : A,Γ ⊢S b : B
Curry,

Γ ⊢S a∗⊗b : A∗⊗B

Γ,a : A,b : B⊢S c : C
⊗L.

Γ,a⊗b : A⊗B⊢S c : C

∗: The sequents merged

by the Cut and ⊗R

rules must not share

any common variables.

Whenever we use these

two rules on sequents

whose variables overlap,

we have to α-rename

them first to prevent

capturing the variables.

Remark 2. The identity axiom (Id) is the only inference rule we have forintroducing variables into our
expressions. Consequently, variables are always introduced as bound pairs. The Cut rule establishes a
connection between the output of one sequent and the input ofanother. The⊗R rule tensors two sequents
together, preserving tensor associativity by turning∆ into

⊗

∆. Given the capturing restriction for Cut
and⊗R, no other bindings can be introduced in our expressions. As such, variables will appear exactly
twice in a sequent. We call this propertylinearity, the sequentslinear, and the restrictions on Cut and
⊗R linearity constraints.



222 The dagger lambda calculus

We sometimes use sequents with an empty right-hand-side, for instancea : A,Γ ⊢ as shorthand for
a : A,Γ ⊢ 1 : I . Such sequents are easy to produce by usingUncurrying, the inverse of theCurry rule,
together with the constant 1 :I :

Γ ⊢ a∗ : A∗ ⊢ 1 : I
⊗RΓ ⊢ a∗⊗1 : A∗⊗ I

Uncurry
a : A,Γ ⊢ 1 : I

The language has a structural exchange rule that can be used to swap terms on the left hand side of a
sequent. When navigating through a proof tree, instances ofthe exchange rule can be used to keep track
of which terms were swapped and at which points during a derivation:

Γ,a : A,b : B,∆ ⊢ c : C
Exchange.

Γ,b : B,a : A,∆ ⊢ c : C

Our language also has two unit rules,λΓ andρΓ, that are used to more accurately represent scalars:
Γ ⊢S∪{i∗:1} b : B

λΓ
i : I ,Γ ⊢S b : B

,
Γ ⊢S∪{i∗:1} b : B

ρΓ
Γ, i : I ⊢S b : B

.

Our language dynamics are defined through soup rules. These rules explain how the relational con-
nections propagate within the soup, giving rise to an operational semantics for a form of ”global sub-
stitution” that resembles pattern matching on terms. The soup propagation rules, calledbifunctoriality,
traceandcancellationrespectively, are:

S∪{a⊗b : c⊗d} −→ S∪{a : c,b : d}

S∪{x :A x} −→ S∪{DA : 1}

S∪{1 : 1} −→ S

whereψ is a constant andx is a variable. Our soup rules also contain aconsumption rule. This rule
uses up a relational connection between{t : u} to perform a substitution in the typing judgement. Note,
however, that the term we are substituting for has to be one that was captured in the scope of the sequent:

Γ ⊢S∪{t:u} b : B−→

(

Γ ⊢S b : B

)

{

[t/u], if u does not contain constants

[u/t], if t does not contain constants

If t anduare both without constants, linearity implies that their constituent variables were all captured
in the scope of the original sequent. In such a case, we can choose the way in which we want to substitute.
This gives us a symmetric notion of substitution, where our choice of substitution does not affect the
typing judgement, as the sequents will be equivalent up to alpha renaming.

Example 4. Consider the following sequent:

f : A∗⊗B⊢{ f :c∗⊗y} y : B

The variablef is captured within the scope of the sequent. As such, we can use theconsumption rule
to consume the connection in the soup and substitutec∗⊗ y for f in the rest of the sequent. This will
change the sequent to:

c∗⊗y : A∗⊗B⊢ y : B

Alternatively, if we hadα-renamed the original sequent to:

x1∗⊗y1 : A∗⊗B⊢{x1∗⊗y1:c∗⊗y2} y2 : B
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we could have then used thebifunctoriality rule to split the soup connection:

x1∗⊗y1 : A∗⊗B⊢{x1∗:c∗,y1:y2} y2 : B

The first connection of the resulting soup is only consumablein one way, sincec is a constant, by
substitutingc∗ for x1∗. The second soup connection, however, presents us with a choice, since bothy1

andy2 are captured in the sequent. One choice will give us

c∗⊗y2 : A∗⊗B⊢ y2 : B

while the other choice will give us
c∗⊗y1 : A∗⊗B⊢ y1 : B

Upon closer inspection, one will notice that all three of theresulting sequents areα-equivalent.

Definition 2.14 (Soup reduction). We use the termsoup reductionto refer to the binary relation that
extendsα-equivalence with the sequent transformations that are caused by applying one of the soup
rules. Thus, for two sequentsΓ ⊢S1 t : T andΓ ⊢S2 t : T, if the soupS1 is transformed intoS2 through the
application of one of the soup propagation rules,S1 → S2, then we say that one sequent reduces to the
other viasoup reduction. Similarly, if a sequentJ1 is transformed intoJ2 by using the consumption rule
to perform a substitution, we say thatJ1 reduces toJ2 via soup reduction.

Definition 2.15(Soup equivalence). We define a notion ofsoup equivalenceas the reflexive, symmetric,
and transitive closure of soup reduction. In other words, wesay that two sequentsJ1 andJ2 aresoup-
equivalent, or equivalent up to soup-reduction, when we can convert one to the other by using zero or
more instances ofα-renaming and soup reduction.

We can now use the rules that we have defined so far in order to express the computational notion of
application:

Definition 2.16 (Application in the dagger lambda calculus). Let t and f be terms such thatt : A and
f : A∗⊗B for some typesA andB. We define theapplication f tas a notational shorthand for representing
a variablex : B, along with a connection in our soup. The origins of the application affect the structure
of its corresponding soup connection:

f t : B,Γ ⊢ c : C := x : B,Γ ⊢{ f :t∗⊗x}∗ c : C and Γ ⊢ f t : B := Γ ⊢{ f :t∗⊗x} x : B

For an application originating inside our soup, we have:

{ f t : c} := {x : c}∪{ f : t∗⊗x} and {c : f t} := {c : x}∪{ f : t∗⊗x}∗

Corollary 2.1 (Beta reduction). This immediately allows us to represent a form of beta reduction. Instead
of relying on an implicit meta-concept of substitution, ourbeta reduction is going to express the binding

and reduction of terms by connecting them in the soup by setting (a∗⊗b)t
β

−→ b, while causing{t : a}
or {t : a}∗ to be added to the relational soup.

Proof. This is derived from our definition of application because(a∗⊗b)t represents a variablex along
with one of two possible connections in our soup. The soup connection can be manipulated into:

{a∗⊗b : t∗⊗x}→ {a∗ : t∗,b : x} → {t : a}∪{b : x}

{a∗⊗b : t∗⊗x}∗ →{a∗ : t∗,b : x}∗ →{t : a}∗∪{x : b}

The connection betweenb andx can then be consumed to change the variablex into ab. All that remains
is {t : a} or {t : a}∗.
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Now that all of the language’s rules are in place, we can demonstrate how the familiar notion of
lambda abstraction can be reconstructed from the finer notions of linear negation and tensor, by defining
it to be a notational shorthand:

Definition 2.17 (Lambda abstraction in the dagger lambda calculus). Let λa.b := a∗⊗b andA⊸ B :=
A∗⊗B

The following combinators are used in the rest of this paper:

idA := λa.a (wherea : A) b̄ := λg.λ f .λa.g( f a)

s̄ := λ (a⊗b).(b⊗a) t̄ := λ f .λg.λ (x1⊗x2).( f x1⊗gx2)

Theorem 2.1(Admissibility of ⊸ E). We can also use the definition of application to demonstrate that
an implication elimination rule (⊸ E) is admissible within our set of rules.

Proof.
Γ ⊢S1 t : A

∆ ⊢S2 f : A∗⊗B

a : A⊢ a : A
a∗ : A∗ ⊢ a∗ : A∗ b : B⊢ b : B

a∗ : A∗,b : B⊢ a∗⊗b : A∗⊗B
a∗⊗b : A∗⊗B⊢ a∗⊗b : A∗⊗B

Cut∆ ⊢S2∪{ f :a∗⊗b} a∗⊗b : A∗⊗B
Uncurry

a : A,∆ ⊢S2∪{ f :a∗⊗b} b : B
CutΓ,∆ ⊢S1∪S2∪{t:a, f :a∗⊗b} b : B

Γ,∆ ⊢S1∪S2∪{ f :t∗⊗b} b : B

Γ,∆ ⊢S1∪S2 f t : B

We define some additional notational conventions, so that wecan more easily describe the reversal
in the causal order of computation:

Definition 2.18 (Complex conjugation). Let f : A∗⊗B be an arbitrary function. As a notational conven-
tion, we setf ∗ := s̄ f : B⊗A∗.

Theorem 2.2(Admissibility of †-flip). We can use the language’s rules and definitions in order to admit
a new structural rule called the†-flip. This rule contains all the computational symmetry that we will
later need in order to model the dagger functor.

Proof.

a : A⊢S b : B
Negation

a∗ : A∗ ⊢S∗ b∗ : B∗

Uncurry
b : B,a∗ : A∗ ⊢S∗ Exchange
a∗ : A∗,b : B⊢S∗ Curry
b : B⊢S∗ a : A

Lemma 2.1 (Interchangeability of †-flip and Negation). Alternatively, we could have defined the lan-
guage by including†-flip in our initial set of sequent rules. That would have allowed us to admit the
Negation rule as a derived rule.
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Proof.

a : A⊢S b : B
†-flip

b : B⊢S∗ a : A
Uncurry

a∗ : A∗,b : B⊢S∗ Exchange
b : B,a∗ : A∗ ⊢S∗ Curry

a∗ : A∗ ⊢S∗ b∗ : B∗

2.2 Scalars

Similarly to the attachable monoid that is described in [2] for multiplying scalars, we can optionally
define a multiplication operation for the scalars in the dagger lambda calculus. This is not part of the
structure that is necessary to model dagger compact categories computationally, hence the designation
optional, but it does provide a good example of how connections propagate in the soup:

Definition 2.19 (Scalar multiplication). For any two scalarsm : I andn : I , we define a multiplication
operationm·n : I such that:

m·1= 1·m= m

and
{m· p : n·q} := {m : n, p : q}

The operation features a number of properties. To help the reader get more accustomed to the way things
propagate in the soup, we will demonstrate some of them as an example. First of all, scalar multiplication
is associative:

Lemma 2.2(Associativity of multiplication). (a·b) ·c= a· (b·c)

Proof.

{(a·b) ·c : 1} = {(a·b) ·c : (1·1) ·1}

= {a : 1,b : 1,c : 1}

= {a· (b·c) : 1· (1·1)}

= {a· (b·c) : 1}

The multiplication operation is alsocommutative:

Lemma 2.3(Commutativity of multiplication). m·n= n·m

Proof.

{m·n : 1}= {m·n : 1·1}

= {m : 1,n : 1}

= {n : 1,m : 1}

= {n·m : 1·1}

= {n·m : 1}
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It is sesquilinear:
Lemma 2.4(Sesquilinearity of scalar connections). {m : n} = {m·n∗ : 1}

Proof.

{m : n}= {m·1 : 1·n}

= {m : 1,1 : n}

= {m : 1,n∗ : 1}

= {m·n∗ : 1·1}

= {m·n∗ : 1}

Finally, it is easy to deduce that the dimension of a tensor oftypes distributes into a product of dimen-
sions:
Corollary 2.2 (Dimension multiplication). {DA ·DB : 1} = {DA⊗B : 1}

Proof.

{DA ·DB : 1}= {DA : 1,DB : 1} = {a :A a,b :B b}

= {a⊗b :A⊗B a⊗b} = {DA⊗B : 1}

2.3 Language properties

Our lambda calculus was designed with a minimal set of rules.This has led to a tractable language,
where most of the properties are easy to prove by structural induction. Throughout the rest of this
section, we establish that our lambda calculus satisfies thefollowing important properties of a calculus:
subject reduction, confluence, strong normalisation, and consistency. Sketches of the proofs are provided
and more detailed versions can be found in [7].

2.3.1 Subject reduction

The first thing we have to prove, in order to demonstrate that our typing system is well defined, is the
consistency of our typing dynamics. In other words, we have to verify that the way in which relational
connections propagate through our soup preserves type assignments. This is easy to observe since our
soup only connectsequitypedterms. Pair consumption substitutes a term for another of the same type,
thus preserving types.
Theorem 2.3(Subject reduction). Let J1 and J2 be two typing judgements such that J1 = Γ ⊢S t1 : A1

and J2 = ∆ ⊢S′ t2 : A2. Suppose that these two judgements are such that we can use a soup reduction rule
S−→ S′ to reduce one to the other: J1 −→ J2. Then, the reduction will not alter type assignments in any
way: types(Γ) = types(∆) and A1 ≡ A2.

Proof. A longer version of this proof can be found in [7]. The only soup rule that could affect the
premises and conclusion of a typing judgement is the consumption rule. The resulting substitution may
be global in scope, but it does not affect the sequent’s typing, since it is substituting one term for another
one of the same type.
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2.3.2 Normalisation

Strong normalisation is a highly sought after property for lambda calculi, primarily because of the impli-
cations it has on the practical implementation of the language. A reduction that is strongly normalising
implies that every sequent has a normal form. Furthermore, it requires that the normal form is attained
after a finite number of steps, without any chance of running into an infinite reduction loop.

Theorem 2.4(Strong normalisation). Every sequence of soup reduction steps is finite and ends witha
typing judgement that is in normal form.

Proof. A longer version of this proof can be found in [7], using an induction on the size and structure of
the soup reduction. A sequent not in normal form will have a soup with at least one usable connection,
for which there are four possible reduction steps. A step using thetrace, cancellationor consumption
rule will use up that soup connection, the soup being a finite set, leaving us with a smaller usable soup.
A step using thebifunctoriality rule, bounded in its application by the number of atomic types, will split
the soup connection into simpler subtypes.

2.3.3 Confluence

Another very important property for our language is the Church-Rosser property. It ensures that we can
end up with the same sequent regardless of the reduction pathwe choose to follow. A careful observation
of our rewrite rules will reveal that the rules are all left-linear.

Theorem 2.5(Left-linearity). All of our soup rewrite rules are left-linear.

Proof. In accordance with the linearity constraints of our language, no variable appears more than twice
on the left hand side of any of our soup reduction rules.

One should note, at this point, that our soup rules do exhibita form of ”harmless” overlap. More
specifically, the consumption rule (S∪{t : u} −→ S) forms a critical pair with itself in cases wheret and
u are both bound. Fortunately, as we will see in the next lemma,these pairs prove to betrivial as they
correspond to sequents that are equivalent up toα-renaming.

Theorem 2.6(Symmetry of substitution). Let J be a typing judgement of the form J:= Γ ⊢S∪{t:u} a : A,
where t and u are both bound. The connection{t : u} can be consumed in either of two ways; one
substitutes t for u and the other substitutes u for t in the typing judgement. Let’s call these J1 and J2
respectively. J1 will then beα-equivalent to J2.

Proof. Sincet andu are both bound, by linearity, we know that they appear exactly once inΓ ⊢S a : A.
After substitution is performed,J1 will have two occurrences oft wheret andu used to be, sot will be a
bound term in that judgement. Similarly,J2 will have two occurrences ofu wheret andu used to be, so
u will be a bound term in that judgement. These bound terms occur in the exact same spots, so we can
alpha-renameJ1 to J2 and vice versa.

Corollary 2.3 (No overlap). The rewrite rules have no overlap up toα-equivalence of typing judgements.

Theorem 2.7(Confluence). Our reduction rules have the Church-Rosser property.
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Proof. Our set of rewrite rules isleft-linear and has no significant overlap, since it only gives rise to crit-
ical pairs that aretrivial up toα-equivalence. Therefore, our rewrite rules constitute aweakly orthogonal
rewrite system, which isweakly confluentaccording to [16] (Consider the variation of Theorem 2.1.5 for
weakly orthogonalTRS’s on page 72). Since the rewrite system is both strongly normalising and weakly
confluent, we can use Newman’s lemma to conclude that it also possesses the Church-Rosser property.
See [16] for a more detailed explanation of the properties oforthogonal rewriting systems.

2.3.4 Consistency

In order to show that our type theory is consistent, we have toshow that our soup dynamics do not
collapse all equityped terms to the same element.

Theorem 2.8(Consistency). There exist two terms of the same type, henceforth referred to as t1 and t2,
such thatΓ ⊢S1 t1 : A andΓ ⊢S2 t2 : A could never reduce to the same typing judgement.

Proof. Consider two combinators of the same type,t1 = idA⊗A andt2 = s̄A⊗A. Both terms are closed,
containing no free variables or constants. The sequents⊢ idA⊗A : (A⊗A)⊸ (A⊗A) and⊢ s̄A⊗A : (A⊗
A) ⊸ (A⊗A) are distinct normal forms: They are clearly distinct from one another and cannot be
further reduced using any of our rules, thereby proving thatthey could never reduce to the same typing
judgement.

2.4 Correspondence to dagger compact categories

The purpose of this section is to provide a full Curry-Howard-Lambek correspondence between the dag-
ger lambda calculus and dagger compact categories. We startby defining a directed graphG , representing
a signature for dagger compact categories. We then show how that graph can be interpreted to define the
free dagger compact categoryCFree and the dagger lambda calculus †λ . An appropriate Cut-elimination
procedure is defined to partition the sequents of the dagger lambda calculus into equivalence classes up
to soup equivalence. The resulting equivalence classes aremodular proof invariants represented by de-
notations. We show that the types and denotations can be usedto form a syntactic category,CSynt, and
prove that the category is dagger compact. The diagram below, fashioned to resemble the diagram at the
bottom of page 49 in [17], is provided to help visualise the Curry-Howard-Lambek correspondence. In
this diagram,UCFree andUCSynt are the underlying graphs of their respective categories, where iden-
tities, composition, natural isomorphisms and other structural elements of the parent categories have
been ”forgotten” by applying the forgetful functorU . F is the unique functor between the free and the
syntactic category, that satisfies the rest of the conditions in the diagram.

CFree

CSynt†λ
ℓ

!F

UCFree

UCSynt

UF

G

We will prove an equivalence between the free category and the syntactic category. We should note
at this point that our typing conventions of an involutive negation (A≡ (A∗)∗) and negation invariance of
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the tensor unit (I ≡ I∗) implicitly introduce equivalence classes on types. Our proof of equivalence will
be achieved by fully exhibiting the correspondence in objects and arrows between the two categories,
showing that their notions of equality overlap, up to the equivalence classes that are induced by our
typing conventions.

2.4.1 A signature for dagger compact categories

The notion of signature that we will use combines the algebraic signature of [22] with the directed
graph used by [17]. Consider a set of object variablesΣ0. Using the tensor operation, an associated
tensor identity, and the duality operator star, we can construct the free(⊗, I ,�∗)-algebra overΣ0. This
corresponds to the set of all object terms or vertices in a compact closed category and will be denoted
by Dagger(Σ0). Now consider a setΣ1 of morphism variables or edges between those vertices. Let
dom,cod be a pair of functions such thatdom,cod : Σ1 −→ Dagger(Σ0). Throughout the rest of this
section, we will be referring to the graphG as the directed graph whose vertices and edges are defined
by Dagger(Σ0) andΣ1. This graph forms the signature upon which we will base both the dagger lambda
calculus and our description of the free dagger compact category; it includes all of the symbols but none
of the logic of the languages that we want to describe.

2.4.2 The free dagger compact category

We will now show how to define the free dagger compact categoryCFree as an interpretation of the graph
G . A highly intuitive introduction to free categories and howthey can be generated from directed graphs
can be found in [17]. Furthermore, a more extensive presentation of the process of constructing various
kinds of free categories can be found in [22]. A more detailedpresentation of the incremental buildup to
the construction of free dagger compact categories can alsobe found in [2].

The set of objects for the free category in this section will be the same as the set of verticesDagger(Σ0)
in the graphG . The set of edgesΣ1 in the graph is used to generate morphisms for the free category.
Thus, an edge of the formf : A→ B generates an arrow inCFree which we will denote as〈A, f ,B〉. The
identities are represented by:〈A〉,〈B〉,〈C〉, . . .

The free category over a directed graph, also referred to as apath category, includes morphisms that
correspond to the paths generated by combining adjoining edges inG . These morphisms are formed
using the free category’s composition operation. Given twomorphisms〈A, f ,B〉 and〈B,g,C〉, we write
their composition inCFree as〈A, f ,B,g,C〉.

Since the free category is a monoidal category, it allows us to consider two of the graph’s edges
concurrently by bringing together their corresponding categorical morphisms using a monoidal tensor
product. Given two morphisms〈A, f ,B〉 and〈C,h,D〉, we write their tensor product as〈A⊗C, f ⊗h,B⊗
D〉.

The free category generated by the graphG also includes a number of morphisms that are part of the
dagger compact logical structure. The monoidal natural isomorphisms are written as:

〈A⊗ (B⊗C),αA,B,C,(A⊗B)⊗C〉 〈I ⊗A,λA,A〉 〈A⊗ I ,ρA,A〉
The symmetry isomorphism, and the units and counits are written as:

〈A⊗B,σA,B,B⊗A〉 〈I ,ηA,A∗⊗A〉 〈A⊗A∗,εA, I〉
For every map〈A, f ,B〉 in the free category, the dagger compact logical structure contains mapsf∗

and f †, represented by〈A∗, f∗,B∗〉 and〈B, f †,A〉 respectively. When acting on compositions of paths,
such as〈A, f ,B,g,C, . . . ,X,h,Y, t,Z〉, the dagger operator reverses the order of operations, yielding:

〈Z, t†,Y,h†,X, . . . ,C,g†,B, f †,A〉
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2.4.3 The dagger lambda calculus

This section demonstrates how the graph signatureG can be interpreted to derive the dagger lambda
calculus. The set of types used by †λ is precisely the set of verticesDagger(Σ0) used in graphG .
Every edgef : A → B in Σ1 is interpreted as a sequenta : A ⊢{ f :a∗⊗b} b : B up to alpha-equivalence.
These interpretations essentially introduce constants, in our casef : A∗⊗B, written as sequents that are
reminiscent ofη-expanded forms. The rest of the rules of the dagger lambda calculus can be used to
process and combine sequents, yielding a richer logical structure.

2.4.4 The syntactic category

Following a method that is similar to [18], we will define a process of Cut-elimination by using the soup
reduction relation to partition the sequents of the dagger lambda calculus into equivalence classes. The
resulting equivalence classes are modular proof invariants calleddenotations. This section demonstrates
how these denotations give rise to thesyntactic categoryCSynt, a dagger compact category. Sketches of
the proofs are presented in the Appendix and more detailed versions can be found in [7].

Definition 2.20 (Denotations). We will use the termdenotationsto refer to the equivalence classes that
are formed by partitioning the sequents of the lambda calculus according to soup equivalence. Hence, two
sequents will correspond to the same denotation if and only if they are equivalent up to soup reduction.

Theorem 2.9(The syntactic category). The types of the lambda calculus and the denotations generated
by soup equivalence form a category whose objects are types and whose arrows are denotations.

Theorem 2.10(Dagger compact closure). The syntactic category is a dagger compact category.

2.4.5 Proof of equivalence

We will now prove that the free dagger compact categoryCFree is equivalent to the syntactic category
CSynt.

Lemma 2.5 (Essentially surjective on objects). The set of objects in the free category and the set of
objects in the syntactic category are surjective, up to isomorphism.

Proof. RecallDagger(Σ0); the free(⊗, I ,�∗)-algebra over the set of object variablesΣ0. The sets of
objects inCFree and CSynt both correspond toDagger(Σ0), up to the equivalence classes induced by
(A∗)∗ ≡ A andI∗ ≡ I .

Lemma 2.6(Equal arrows correspond to equal denotations). If two arrows,〈A, f ,B〉 and 〈A, f ′,B〉 are
equal in the free category, then they will also be equal in thesyntactic category:[ f ] = [ f ′] : A→ B.

Proof. The structure of the free categoryCFree imposes the minimum number of equalities for a category
to be dagger compact. Moreover, both the free category and the syntactic category derive their symbols
from the same signature graphG . Since we have already shown thatCSynt is dagger compact, the same
steps can be used to show that any arrows〈A, f ,B〉 and 〈A, f ′,B〉 that are equal in the free category
correspond to equal denotations[ f ] = [g] in the syntactic category.

Lemma 2.7(Equal denotations correspond to equal arrows). Any denotations that are equal in the syn-
tactic category correspond to equal arrows in the free category.
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Proof. Let [ f ] : Γ → B and [g] : Γ → B be denotations in the syntactic category such that[ f ] = [g].
Since the two denotations are equal, the sequents they represent in the dagger lambda calculus must be
equivalent up to soup reduction. Without loss of generality, lets assume that[ f ] represents a sequentJ1

and that[g] represents a sequentJ2, whereJ1 → J2. The soup reduction relation consists of four soup
rules: bifunctoriality, trace, cancellation, andconsumption. We prove this lemma by induction on the
structure of the soup reduction linkingJ1 andJ2. The details of the induction have been omitted in this
paper; they are, available in [7]. This shows that〈Γ, f ,B〉= 〈Γ,g,B〉.

Theorem 2.11(Equivalence between the free category and the syntactic category). The free dagger
compact categoryCFree and the syntactic categoryCSynt are equivalent.

Proof. The two categories derive their symbols from a common signature graphG . As we have already
shown, bearing in mind the equivalence classes that we have induced on types, the categories are essen-
tially surjective on objects. Moreover, arrows that are equal in the free category are equal in the syntactic
category and vice versa. This means that the functorF is full andfaithful, causing the notions of equality
between arrows to overlap in these two categories. Consequently, the categories are equivalent.

Corollary 2.4 (Internal language). The dagger lambda calculus is an internal language for dagger com-
pact categories.

3 Conclusion

This paper has presented a lambda calculus for dagger compact categories. As we have seen from [4],
this language can be used to represent a subset of quantum computation, namely, quantum protocols.
The dagger lambda calculus was shown to satisfy subject reduction, confluence, strong normalisation,
and consistency, while the language was shown to be an internal language for dagger compact categories.

In order to be able to cover all of quantum computation, commonly referred to as universal quantum
computation, we need a language with classical control. Oneway of adding this feature in a denotation-
ally sound way is by extending our language’s axiomatisation to include classical basis states. This can
be achieved by introducing complementary classical structures, like the ones built on top of the dagger
compact structure in [12], [10] and [13]. This work is partlycovered by [7] and will be included in a
forthcoming paper.
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A Appendix

A.1 Correspondence to dagger compact categories

A.1.1 The syntactic category

Theorem A.1(The syntactic category). The types of the lambda calculus and the denotations generated
by soup equivalence form a category whose objects are types and whose arrows are denotations.

Proof. As we noticed during the proof of the subject reduction property, soup reduction rules do not
affect our language’s type assignments. Consequently, thetype of the premises used by a sequent will
be the same across all sequents in a given denotation. Similarly, the type of the conclusion produced
by a sequent will be the same across all sequents in a given denotation. For any sequentΓ ⊢S b : B,
corresponding to a denotation[π1], we will say that itsdomainis Γ and itscodomainis B, writing this as
[π1] : Γ → B.

Let [ f ] : A → B and [g] : B → C be denotations representing the soup equivalent forms of some
sequentsa : A⊢S1 b : Bandb′ : B⊢S2 c :C respectively. For any two such denotations, where the codomain
of the first matches the domain of the second, we will define acompositionoperator◦ that can combine
them into[g]◦ [ f ] : A→C. The new denotation will represent all the soup equivalent forms of the sequent
that is generated by combining the two sequents using the Cutrule:

a : A⊢S1 b : B b′ : B⊢S2 c : C
Cut

a : A⊢S1∪S2∪{b:b′} c : C

The composition operation we just defined inherits associativity from the Cut rule; the order in which
Cuts are performed does not matter since the connected termsare allowed to ”float” freely within the
soup. Therefore,[h]◦ ([g]◦ [ f ]) = ([h]◦ [g])◦ [ f ]. Moreover, for every typeA, there is a denotation[idA]
that represents the sequent generated by the Identity axiom(Id): x : A⊢ x : A.

Composing a denotation[ f ] : A → B with an identity yields[ f ] ◦ [idA] or [idB] ◦ [ f ] depending on
whether we compose with an identity on the right or on the left. The two resulting denotations represent

x : A⊢ x : A a : A⊢S b : B
x : A⊢S∪{x:a} b : B

and a : A⊢S b : B x : B⊢ x : B
a : A⊢S∪{b:x} x : B

both of which are soup equivalent toa : A⊢S b : B and the rest of the sequents represented by[ f ]. Hence
[idB]◦ [ f ] = [ f ] = [ f ]◦ [idA]

Definition A.1 (Syntactic category notational conventions). For notational convenience, we define the
following combinators:
αA,B,C := λ (a⊗ (b⊗c)) .((a⊗b)⊗c) : (A⊗ (B⊗C))⊸ ((A⊗B)⊗C)
ηA := λ1.(x∗⊗x) : I ⊸ (A∗⊗A) λA := λ (1⊗a).a : (I ⊗A)⊸ A ρA := λ (a⊗1).a : (A⊗ I)⊸A
εA := λ (x⊗x∗).1 : (A⊗A∗)⊸ I σA,B := λ (a⊗b).(b⊗a) : (A⊗B)⊸ (B⊗A)

Theorem A.2(Monoidal category). The syntactic category is a monoidal category.

Proof. Let [ f ] : A→ B and[g] : C→ D be denotations representing the soup equivalent forms ofa : A⊢S1

b : B andc : C ⊢S2 d : D. For any such[ f ] and [g], we define a monoidal product[ f ]⊗ [g] : A⊗B →
C⊗D. The product represents all the soup equivalent sequents generated by using the right tensor rule to
combine the sequents for[ f ] and[g]. We can now use soup reduction to show that([g]◦ [ f ])⊗([t]◦ [h]) =
([g]⊗ [t]) ◦ ([ f ]⊗ [h]), [idA]⊗ [idB] = [idA⊗B], [αA⊗B,C,D] ◦ [αA,B,C⊗D] = ([αA,B,C]⊗ [idD]) ◦ [αA,B⊗C,D] ◦
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([idA]⊗ [αB,C,D]), and([ρA]⊗ [idB]) ◦ [αA,I ,B] = [idA]⊗ [λB]. The syntactic category, therefore, satisfies
all of the requirements and coherence conditions of a monoidal category.

Theorem A.3(Symmetric monoidal category). The syntactic category is a symmetric monoidal category.

Proof. We can use soup reduction to show that[σB,A]◦ [σA,B] = [idA⊗B], [ρA] = [λA]◦ [σA,I ], and[αC,A,B]◦
[σA⊗B,C] ◦ [αA,B,C] = ([σA,C]⊗ [idB]) ◦ [αA,C,B] ◦ ([idA]⊗ [σB,C]). The syntactic category thus satisfies all
of the requirements and coherence conditions of a symmetricmonoidal category.

Theorem A.4(Compact closure). The syntactic category is a compact closed category.

Proof. Using our soup reduction rules, we can show that[λA]◦ ([εA]⊗ [idA])◦ [αA,A∗ ,A]◦ ([idA]⊗ [ηA])◦
[ρA]

−1 = [idA] and[ρA∗ ] ◦ ([idA∗ ]⊗ [εA]) ◦ [αA∗,A,A∗ ]−1 ◦ ([ηA]⊗ [idA∗ ]) ◦ [λA∗ ]−1 = [idA∗ ], by reducing the
sequents represented by the denotations on the left hand sides to identities. The syntactic category thus
satisfies both of the yanking conditions that are required ofa compact closed category.

Theorem A.5(Dagger compact closure). The syntactic category is a dagger compact category.

Proof. For every denotation[ f ] : A→ B, we define its dagger[ f ]† : B→A, as the denotation representing
the soup equivalent sequents of the †-flipped sequents for[ f ]. It is now easy to show that([ f ]†)† = [ f ]
and[σA,A∗ ]◦ [εA]

† = [ηA], by showing that the sequents they represent are soup equivalent. The syntactic
category, therefore, satisfies all of the requirements of a dagger compact category.

A.2 Example

We will examine the differences in representation between teleportation1 of a single state and telepor-
tation of an entire function. The ”yanking” action of teleportation can be witnessed by considering the
reduction:

x1 : T ⊢{x1⊗x2∗⊗1:ε ,η :1⊗x2∗⊗x3} x3 : T

x1 : T ⊢{x1⊗x2∗⊗1:x4⊗x4∗⊗1,η :1⊗x2∗⊗x3} x3 : T

x1 : T ⊢{x1:x4,x2∗:x4∗,1:1,η :1⊗x2∗⊗x3} x3 : T

x1 : T ⊢{x2∗:x1∗,η :1⊗x2∗⊗x3} x3 : T

x1 : T ⊢{η :1⊗x1∗⊗x3} x3 : T

x1 : T ⊢{1⊗x5∗⊗x5:1⊗x1∗⊗x3} x3 : T

x1 : T ⊢{1:1,x5∗:x1∗,x5:x3} x3 : T

x1 : T ⊢{x1:x3} x3 : T

x1 : T ⊢ x1 : T

For a state of typeA, we could replace the typeT with A and leave the rest of the sequents in the
derivations as they are. Similarly, for a function of typeA ⊸ B, we could replaceT with A ⊸ B and
keep the rest of the derivation intact. This reveals the power of the dagger lambda calculus; we are
essentially using the same syntax to represent all types of teleportation.

1Our analysis will not include the unitary corrections that are typically applied at the end of the teleportation protocol, as
the classical control they require is beyond the scope of this paper.
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