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The notion of equality between two observables will play many important roles in foundations of
quantum theory. However, the standard probabilistic interpretation based on the conventional Born
formula does not give the probability of equality relation for a pair of arbitrary observables, since
the Born formula gives the probability distribution only for a commuting family of observables. In
this paper, quantum set theory developed by Takeuti and the present author is used to systematically
extend the probabilistic interpretation of quantum theoryto define the probability of equality relation
for a pair of arbitrary observables. Applications of this new interpretation to measurement theory are
discussed briefly.

1 Introduction

Set theory provides foundations of mathematics. All the mathematical notions like numbers, functions,
relations, and structures are defined in the axiomatic set theory, ZFC (Zermelo-Fraenkel set theory with
the axiom of choice), and all the mathematical theorems are required to be provable in ZFC [15]. Quan-
tum set theory instituted by Takeuti [14] and developed by the present author [11] naturally extends the
logical basis of set theory from classical logic to quantum logic [1]. Accordingly, quantum set theory
extends quantum logical approach to quantum foundations from propositional logic to predicate logic
and set theory. Hence, we can expect that quantum set theory will provide much more systematic inter-
pretation of quantum theory than the conventional quantum logic approach [3].

The notion of equality between quantum observables will play many important roles in foundations
of quantum theory, in particular, in the theory of measurement and disturbance [9, 10]. However, the
standard probabilistic interpretation based on the conventional Born formula does not give the probability
of equality relation for a pair of arbitrary observables, since the Born formula gives the probability
distribution only for a commuting family of observables [7].

In this paper, quantum set theory is used to systematically extend the probabilistic interpretation of
quantum theory to define the probability of equality relation for a pair of arbitrary observables, based
on the fact that real numbers constructed in quantum set theory exactly corresponds to quantum observ-
ables [14, 11]. It is shown that all the observational propositions on a quantum system correspond to
statements in quantum set theory with the same projection-valued truth value assignments and the same
probability assignments in any state. In particular, the equality relation for real numbers in quantum set
theory naturally provides the equality relation for quantum mechanical observables. It has been broadly
accepted that we cannot speak of the values of quantum observables without assuming a hidden variable
theory, which severely constrained by Kochen-Specker typeno-go theorems [5, 13]. However, quantum
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16 Quantum set theory

set theory enables us to do so without assuming hidden variables but alternatively with the consistent use
of quantum logic. Applications of this new interpretation to measurement theory are discussed briefly.

Section 2 provides preliminaries on commutators in complete orthomodular lattices, which play a
fundamental role in quantum set theory. Section 3 introduces quantum logic on Hilbert spaces and sec-
tion 4 introduces quantum set theory and the transfer principle from theorems in ZFC to valid statements
in quantum set theory established in Ref. [11]. Section 5 introduces the Takeuti correspondence be-
tween reals in quantum set theory to observables in quantum theory found by Takeuti [14]. Section 6
formulates the standard probabilistic interpretation of quantum theory and also shows that observational
propositions for a quantum system can be embedded in statements in quantum set theory with the same
projection-valued truth value assignment. Section 7 extends the standard interpretation by introducing
state-dependent joint determinateness relation. Section8 extends the standard interpretation by intro-
ducing state-dependent equality for arbitrary two observables. Section 9 and 10 provide applications to
quantum measurement theory.

2 Complete orthomodular lattices and commutators

A complete orthomodular latticeis a complete latticeQ with anorthocomplementation, a unary opera-
tion ⊥ on Q satisfying (C1) ifP≤ Q thenQ⊥ ≤ P⊥, (C2) P⊥⊥ = P, (C3) P∨P⊥ = 1 andP∧P⊥ = 0,
where 0=

∧
Q and 1=

∨
Q, that satisfies theorthomodular law(OM) if P≤ Q thenP∨ (P⊥∧Q) = Q.

In this paper, any complete orthomodular lattice is called alogic. A non-empty subset of a logicQ is
called asubalgebraiff it is closed under∧, ∨, and⊥. A subalgebraA of Q is said to becompleteiff
it has the supremum and the infimum inQ of an arbitrary subset ofA . For any subsetA of Q, the
subalgebra generated byA is denoted byΓ0A . We refer the reader to Kalmbach [4] for a standard text
on orthomodular lattices.

We say thatP andQ in a logicQ commute, in symbolsP |
◦ Q, iff P= (P∧Q)∨ (P∧Q⊥). A logic

Q is a Boolean algebra if and only ifP |
◦ Q for all P,Q∈ Q [4, pp. 24–25]. For any subsetA ⊆ Q, we

denote byA ! thecommutantof A in Q [4, p. 23], i.e.,

A
! = {P∈ Q | P |

◦ Q for all Q∈ A }.

Then,A ! is a complete subalgebra ofQ. A sublogicof Q is a subsetA of Q satisfyingA = A !! . For
any subsetA ⊆ Q, the smallest logic includingA is A !! called thesublogic generated byA . Then, it
is easy to see that a subsetA is a Boolean sublogic, or equivalently a distributive sublogic, if and only if
A = A !! ⊆ A !.

Let Q be a logic. Marsden [6] introduced thecommutatorcom(P,Q) of two elementsP andQ of Q

by

com(P,Q) = (P∧Q)∨ (P∧Q⊥)∨ (P⊥∧Q)∨ (P⊥∧Q⊥).

Generalizing this notion to an arbitrary subsetA of Q, Takeuti [14] defined the commutator com(A ) of
A by

com(A ) =
∨

{E ∈ A
! | P1∧E |

◦ P2∧E for all P1,P2 ∈ A }.

Subsequently, Chevalier [2] proved the relation

com(A ) =
∧

{com(P,Q) | P,Q∈ Γ0(A )},
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which concludes com(A ) ∈ A !! ∩A !. For anyP,Q∈ Q, the interval [P,Q] is the set of allX ∈ Q such
thatP≤ X ≤ Q. For anyA ⊆ Q andP,Q∈ A , we write[P,Q]A = [P,Q]∩A . The following theorem
clarifies the significance of commutators.

Theorem 1. LetA be a subset of a logicQ. Then,A !! is isomorphic to the direct product of the complete
Boolean algebra[0,com(A )]A !! and the complete orthomodular lattice[0,com(A )⊥]A !! without non-
trivial Boolean factor.

3 Quantum logic on Hilbert spaces

Let H be a Hilbert space. For any subsetS⊆ H , we denote byS⊥ the orthogonal complement of
S. Then,S⊥⊥ is the closed linear span ofS. Let C (H ) be the set of all closed linear subspaces in
H . With the set inclusion ordering, the setC (H ) is a complete lattice. The operationM 7→ M⊥ is
an orthocomplementation on the latticeC (H ), with which C (H ) is a complete orthomodular lattice.
Denote byB(H ) the algebra of bounded linear operators onH andQ(H ) the set of projections on
H . For anyM ∈ C (H ), denote byP(M) ∈ Q(H ) the projection operator ofH onto M. Then,
M ≤ N if and only if P(M) ⊆ P(N) for anyM,N ∈ C (H ), andQ(H ) with the operator ordering is
a complete orhtomodular lattice isomorphic toC (H ).

Let A ⊆ B(H ). We denote byA ′ the commutant ofA in B(H ). A self-adjoint subalgebra
M of B(H ) is called avon Neumann algebraon H iff M ′′ = M . We denote byP(M ) the set of
projections in a von Neumann algebraM . For anyP,Q∈ Q(H ), we haveP |

◦ Q iff [P,Q] = 0, where
[P,Q] = PQ−QP. For any subsetA ⊆ Q(H ), we denote byA ! thecommutantof A in Q(H ). A
logic on H is a sublogic ofQ(H ). For any subsetA ⊆ Q(H ), the smallest logic includingA is the
logic A !! called thelogic generated byA . Then, a subsetQ ⊆ Q(H ) is a logic onH if and only if
Q = P(M ) for some von Neumann algebraM onH [11].

We define theimplicationand thelogical equivalenceonQ by P→ Q= P⊥∨ (P∧Q) andP↔ Q=
(P→ Q)∧ (Q→ P). We have the following characterization of commutators in logics on Hilbert spaces
[11].

Theorem 2. LetQ be a logic onH . For any subsetA ⊆ Q, we have

com(A ) = P{ψ ∈ H | [A,B]ψ = 0 for all A,B∈ A
′′}.

4 Quantum set theory

We denote byV the universe of the Zermelo-Fraenkel set theory with the axiom of choice (ZFC). Let
L (∈) be the language for first-order theory with equality having abinary relation symbol∈, bounded
quantifier symbols∀x∈ y, ∃x∈ y, and no constant symbols. For any classU , the languageL (∈,U) is
the one obtained by adding a name for each element ofU .

Let Q be a logic onH . For each ordinalα , let

V(Q)
α = {u| u : D(u)→ Q and(∃β < α)D(u) ⊆V(Q)

β }.

TheQ-valued universe V(Q) is defined by

V(Q) =
⋃

α∈On
V(Q)

α ,
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where On is the class of all ordinals. For everyu∈V(Q), the rank ofu, denoted by rank(u), is defined as

the leastα such thatu∈V(Q)
α+1. It is easy to see that ifu∈ D(v) then rank(u)< rank(v).

For anyu,v∈V(Q), theQ-valued truth values of atomic formulasu= v andu∈ v are assigned by by
the following rules recursive in rank.

(i) [[u= v]]Q =
∧

u′∈D(u)(u(u
′)→ [[u′ ∈ v]]Q)∧

∧
v′∈D(v)(v(v

′)→ [[v′ ∈ u]]Q).

(ii) [[u∈ v]]Q =
∨

v′∈D(v)(v(v
′)∧ [[u= v′]]Q).

To each statementφ of L (∈,V(Q)) we assign theQ-valued truth value[[φ ]]Q by the following rules.

(iii) [[¬φ ]]Q = [[φ ]]⊥
Q

.

(iv) [[φ1∧φ2]]Q = [[φ1]]Q ∧ [[φ2]]Q.

(v) [[φ1∨φ2]]Q = [[φ1]]Q ∨ [[φ2]]Q.

(vi) [[φ1 → φ2]]Q = [[φ1]]Q → [[φ2]]Q.

(vii) [[φ1 ↔ φ2]]Q = [[φ1]]Q ↔ [[φ2]]Q.

(viii) [[(∀x∈ u)φ(x)]]Q =
∧

u′∈D(u)(u(u
′)→ [[φ(u′)]]Q).

(ix) [[(∃x∈ u)φ(x)]]Q =
∨

u′∈D(u)(u(u
′)∧ [[φ(u′)]]Q).

(x) [[(∀x)φ(x)]]Q =
∧

u∈V(Q) [[φ(u)]]Q .

(xi) [[(∃x)φ(x)]]Q =
∨

u∈V(Q) [[φ(u)]]Q .

We say that a statementφ of L (∈,V(Q)) holdsin V(Q) if [[φ ]]Q = 1. A formula inL (∈) is called a
∆0-formula if it has no unbounded quantifiers∀x or ∃x. The following theorem holds [11].

Theorem 3 (∆0-Absoluteness Principle). For any ∆0-formula φ(x1, . . .,xn) of L (∈) and u1, . . .,un ∈
V(Q), we have

[[φ(u1, . . . ,un)]]Q = [[φ(u1, . . . ,un)]]Q(H ).

Henceforth, for any∆0-formulaφ(x1, . . .,xn) andu1, . . . ,un ∈V(Q), we abbreviate[[φ(u1, . . . ,un)]] =
[[φ(u1, . . . ,un)]]Q, which is the commonQ-valued truth value in allV(Q) such thatu1, . . . ,un ∈V(Q).

The universeV can be embedded inV(Q) by the following operation∨ : v 7→ v̌ defined by the∈-
recursion: for eachv∈V, v̌= {ǔ| u∈ v}×{1}. Then we have the following [11].

Theorem 4 (∆0-Elementary Equivalence Principle). For any ∆0-formula φ(x1, . . .,xn) of L (∈) and
u1, . . .,un ∈V, we have〈V,∈〉 |= φ(u1, . . .,un) if and only if[[φ(ǔ1, . . . , ǔn)]] = 1.

For u∈V(Q), we define thesupportof u, denoted byL(u), by transfinite recursion on the rank ofu
by the relation

L(u) =
⋃

x∈D(u)

L(x)∪{u(x) | x∈ D(u)}.

For A ⊆ V(Q) we write L(A ) =
⋃

u∈A L(u) and for u1, . . . ,un ∈ V(Q) we write L(u1, . . . ,un) =
L({u1, . . . ,un}). Let A ⊆V(Q). Thecommutator ofA , denoted by com(A ), is defined by

com(A ) = com(L(A )).

For anyu1, . . . ,un ∈ V(Q), we write com(u1, . . . ,un) = com({u1, . . . ,un}). For bounded theorems, the
following transfer principle holds [11].

Theorem 5 (∆0-ZFC Transfer Principle). For any ∆0-formula φ(x1, . . .,xn) of L (∈) and u1, . . .,un ∈
V(Q), if φ(x1, . . .,xn) is provable in ZFC, then we have

com(u1, . . . ,un)≤ [[φ(u1, . . . ,un)]].
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5 Real numbers in quantum set theory

Let Q be the set of rational numbers inV. We define the set of rational numbers in the modelV(Q) to be
Q̌. We define a real number in the model by a Dedekind cut of the rational numbers. More precisely, we
identify a real number with the upper segment of a Dedekind cut assuming that the lower segment has
no end point. Therefore, the formal definition of the predicate R(x), “x is a real number,” is expressed by

R(x) := ∀y∈ x(y∈ Q̌)∧∃y∈ Q̌(y∈ x)∧∃y∈ Q̌(y 6∈ x)∧∀y∈ Q̌(y∈ x↔∀z∈ Q̌(y< z→ z∈ x)).

The symbol “:=” is used to define a new formula, here and hereafter. We defineR(Q) to be the interpre-
tation of the setR of real numbers inV(Q) as follows.

R(Q) = {u∈V(Q)| D(u) = D(Q̌) and[[R(u)]] = 1}.

The setRQ of real numbers inV(Q) is defined by

RQ = R(Q)×{1}.

For anyu,v∈ R(Q), Then, the following relations hold inV(Q) [11].

(i) [[(∀u∈ RQ)u= u]] = 1.

(ii) [[(∀u,v∈ RQ)u= v→ v= u]] = 1.

(iii) [[(∀u,v,w∈ RQ)u= v∧v= w→ u= w]] = 1.

(iv) [[(∀v∈ RQ)(∀x,y∈ v)x= y∧x∈ v→ y∈ v]].

(v) [[(∀u,v∈ RQ)(∀x∈ u)x∈ u∧u= v→ x∈ v]].

From the above, the equality is an equivalence relation between real numbers inV(Q). For any
u1, . . . ,un ∈ R(Q), we have

[[u1 = u2∧ ·· ·∧un−1 = un]]≤ com(u1, . . . ,un),

and hence commutativity follows from equality inR(Q) [11].
Let M be a von Neumann algebra on a Hilbert spaceH and letQ = P(M ). A closed operatorA

(densely defined) onH is said to beaffiliatedwith M , in symbolsAη M , iff U∗AU = A for any unitary
operatorU ∈M ′. LetA be a self-adjoint operator (densely defined) onH and letA=

∫
R λ dEA(λ ) be its

spectral decomposition, where{EA(λ )}λ∈R is the resolution of identity belonging toA [7, p. 119]. It is
well-known thatAη M if and only if EA(λ )∈Q for everyλ ∈ R. Denote byM SA the set of self-adjoint
operators affiliated withM . Two self-adjoint operatorsA andB are said tocommute, in symbolsA |

◦ B,
iff EA(λ ) |

◦ EB(λ ′) for every pairλ ,λ ′ of reals.
Let B be a Boolean logic onH . For anyu∈ R(B) andλ ∈ R, we defineEu(λ ) by

Eu(λ ) =
∧

λ<r∈Q

u(ř).

Then, it can be shown that{Eu(λ )}λ∈R is a resolution of identity inB and hence by the spectral theorem
there is a self-ajoint operator ˆuη B′′ uniquely satisfying ˆu=

∫
R λ dEu(λ ). On the other hand, letAη B′′

be a self-ajoint operator. We defineÃ∈V(B) by

D(Ã) = D(Q̌) andÃ(ř) = EA(r) for all r ∈ Q.

Then, it is easy to see thatÃ∈ R(B) and we have(û)̃ = u for all u∈ R(B) and(Ã)̂ =A for all A∈ (B′′)SA.
Therefore, the correspondence betweenR(B) and(B′′)SA is a one-to-one correspondence. We call the
above correspondence theTakeuti correspondence. Now, we have the following [11].
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Theorem 6. LetQ be a logic onH . The relations

(i) EA(λ ) =
∧

λ<r∈Q

u(ř) for all λ ∈ Q,

(ii) u(ř) = EA(r) for all r ∈ Q,

for all u= Ã∈R(Q) and A= û∈ (Q′′)SAsets up a one-to-one correspondence betweenR(Q) and(Q′′)SA.

6 Standard probabilistic interpretation

Let H be a Hilbert space describing a quantum systemS. For the systemS, theobservablesare defined
as self-adjoint operators onH , the statesare defined as density operators, and avector stateψ is
identified with the state|ψ〉〈ψ |. We denote byO(H ) the set of observables, byS (H ) the space of
density operators, and byB(H ) the space of bounded operators onH . ObservablesX1, . . . ,Xn∈O(H )
are said to bemutually commutingif Xj

|
◦ Xk for all j,k = 1, . . . ,n. If X1, . . . ,Xn ∈ O(H ) are bounded,

this condition is equivalent to[Xj ,Xk] = 0 for all j,k= 1, . . . ,n. The standard probabilistic interpretation
of quantum theory defines thejoint probability distribution function FX1,...,Xn

ρ (x1, . . . ,xn) for mutually
commuting observablesX1, . . . ,Xn ∈ O(H ) in ρ ∈ S (H ) by theBorn statistical formula:

FX1,...,Xn
ρ (x1, . . . ,xn) = Tr[EX1(x1) · · ·E

Xn(xn)ρ ].

To clarify the logical structure presupposed in the standard probabilistic interpretation, we define
observational propositionsfor S by the following rules.

(R1) For anyX ∈ O(H ) andx∈ R, the expressionX ≤ x is an observational proposition.

(R2) If φ1 andφ2 are observational propositions,¬φ1 andφ1∧φ2 are also observational propositions.

Thus, every observational proposition is built up from “atomic” observational propositionsX ≤ x by
means of the connectives¬ and∧. We introduce the connective∨ by definition.

(D1) φ1∨φ2 := ¬(¬φ1∧¬φ2).

For each observational propositionφ , we assign its projection-valued truth value[[φ ]]o ∈ Q(H ) by
the following rules [1].

(T1) [[X ≤ x]]o = EX(x).

(T2) [[¬φ ]]o = [[φ ]]⊥o .
(T3) [[φ1∧φ2]]o = [[φ1]]o∧ [[φ2]]o.

From (D1), (T2) and (T3), we have

(D2) [[φ1∨φ2]]o = [[φ1]]o∨ [[φ2]]o.

We define theprobability Pr{φ‖ρ} of an observational propositionφ in a stateρ by

(P1) Pr{φ‖ρ} = Tr[[[φ ]]oρ ].

We say thatan observational propositionφ holds in a stateρ if Pr{φ‖ρ} = 1.
The standard interpretation of quantum theory restricts observational propositions to be standard

defined as follows.

(W1) An observational proposition including atomic formulasX1 ≤ x1, . . . ,Xn ≤ xn is calledstandardif
X1, . . . ,Xn are mutually commuting.
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All the standard observational propositions including only given mutually commuting observables
X1, . . . ,Xn comprise a complete Boolean algebra under the logical order≤ defined byφ ≤ φ ′ iff
[[φ ]]o ≤ [[φ ′]]o and obey inference rules in classical logic. Suppose thatX1, . . . ,Xn ∈ O(H ) are mutu-
ally commuting. Letx1, . . . ,xn ∈ R. Then,X1 ≤ x1∧·· ·∧Xn ≤ xn is a standard observational proposition.
We have

[[X1 ≤ x1∧ ·· ·∧Xn ≤ xn]]o = EX1(x1)∧ ·· ·∧EXn(xn) = EX1(x1) · · ·E
Xn(xn).

Hence, we reproduce the Born statistical formula as

Pr{X1 ≤ x1∧ ·· ·∧Xn ≤ xn‖ρ}= Tr[EX1(x1) · · ·E
Xn(xn)ρ ].

From the above, our definition of the truth vales of observational propositions are consistent with the
standard probabilistic interpretation of quantum theory.

In order to make the counter part ofr ∈ R in R(Q), for anyr ∈ R, we define ˜r ∈ R(Q) by

D(r̃) = D(Q̌) and ˜r(ť) = [[ř ≤ ť]]

for all t ∈ Q. Then, ˜r ∈ R(Q) corresponds to ˜(r1), where 1 is the identity operator, under the Takeuti
correspondence.

For every observational propositionφ the corresponding statementφ̃ in L (∈,R(Q)) is given by the
following rules for anyX ∈ O(H ), x∈ R, and observational propositionsφ ,φ1,φ2.

(Q1) X̃ ≤ x := X̃ ≤ x̃.

(Q2) ¬̃φ := ¬φ̃ .
(Q3) φ̃1∧φ2 := φ̃1∧ φ̃2.

Then, it is easy to see that the relation
[[φ̃ ]] = [[φ ]]o

holds for any observational propositionφ . Thus, all the observational propositions are embedded in
statements inL (∈,R(Q)) with the same projection-valued truth value assignments.

Let EX(λ ) be the resolution of identity belonging toX ∈ O(H ). Let a < b∈ R. For the interval
I = (a,b], we defineEX(I) = EX(b)−EX(a), and we define the corresponding intervalĨ of real numbers
in V(Q) by D(Ĩ ) = R(Q) andĨ(u) = [[u≤ ã]]⊥∧ [[u≤ b̃]] for all u∈R(Q). Then, we have[[X̃ ∈ Ĩ ]] =EX(I).
The observational propositionX ∈ I , which will be also denoted bya< X ≤ b, is defined as

X ∈ I := ¬(a≤ X)∧ (X ≤ b).

Then, we have[[X ∈ I ]]o = [[X̃ ∈ Ĩ ]]. For mutually commuting observablesX1, . . . ,Xn ∈ O(H ) and
intervalsI1 = (a1,b1], . . . , In = (an.bn] we have

Pr{X1 ∈ I1∧ ·· ·∧Xn ∈ In‖ρ}= Tr[EX1(I1) · · ·E
Xn(In)ρ ].

7 Joint determinateness

Let Oω(H ) be the set of observables onH with finite spectra. An observableX ∈ O(H ) is said to be
finite if X ∈Oω(H ), andinfiniteotherwise. LetX ∈Oω(H ). Let δ (X) =minx,y∈Sp(X),x6=y{|x−y|/2,1}.
For anyx∈ R, we define the formulaX = x by

X = x := x−δ (X)< X ≤ x+δ (X).
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Then, it is easy to see that we have

[[X = x]]o = P{ψ ∈ H | Xψ = xψ}

for all x∈ R.
For observational propositionsφ1, . . . ,φn, we define the observational proposition

∨
j φ j by

∨
j φ j =

φ1∨·· ·∨φn. We denote by Sp(X) the spectrum of an observableX ∈ O(H ). For any finite observables
X1, . . . ,Xn ∈ Oω(H ) we define the observational proposition∨(X1, . . . ,Xn) by

∨(X1, . . . ,Xn) :=
∨

x1∈Sp(X1),...,xn∈Sp(Xn)

X1 = x1∧ ·· ·∧Xn = xn.

We say that observablesX1, . . . ,Xn are jointly determinatein a stateρ if the observational proposition
∨(X1, . . . ,Xn) holds inρ . In general, we say that observablesX1, . . . ,Xn arejointly determinatein a state
ρ with probability Pr{∨(X1, . . . ,Xn)‖ρ}. Then, we have the following [12].
Theorem 7. Finite observables X1, . . . ,Xn ∈ Oω(H ) are jointly determinate in a vector stateψ if and
only if the stateψ is a superposition of common eigenvectors of X1, . . . ,Xn.

The joint determinateness is characterized by the commutator in quantum set theory as follows.
Theorem 8. For any finite observables X1, . . . ,Xn ∈ Oω(H ), we have

[[∨(X1, . . . ,Xn)]]o = com(X̃1, . . . , X̃n). (1)

For self-adjoint operatorsA1, . . . ,An on H , thevon Neumann algebra generated by A1, . . . ,An, de-
noted by{A1, . . . ,An}

′′, is the von Neumann algebra generated by projectionsEA j (x) for all j = 1, . . . ,n
andx ∈ R. Under the Takeuti correspondence, the commutator of quantum reals are characterized as
follows.
Theorem 9. LetQ be a logic onH and let u1, . . . ,un ∈ R(Q). Then we have

com(u1, . . . ,un) = P{ψ ∈ H | [A,B]ψ = 0 for all A,B∈ {û1, . . . , ûn}
′′}.

Although we cannot find an observational proposition∨(X1, . . . ,Xn) satisfying Eq. (1) for infinite
observablesX1, . . . ,Xn ∈O(H ), we can introduce a new atomic observational propositions∨(X1, . . . ,Xn)
with Eq. (1) for all X1, . . . ,Xn ∈ O(H ). We introduce the following additional rule for formation of
observational propositions:
(R3) For anyX1, . . . ,Xn ∈ O(H ) andx1, . . . ,xn ∈ R, the expression∨(X1, . . . ,Xn) is an observational

proposition.
Moreover, we introduce the following additional rule for projection-valued truth values:
(T4) [[∨(X1, . . . ,Xn)]]o = P{ψ ∈ H | [A,B]ψ = 0 for all A,B∈ {û1, . . . , ûn}

′′}.

From Theorem 9, Eq. (1) holds for anyX1, . . . ,Xn ∈ O(H ) under (T4). Thus, we naturally extend the
notion of joint determinateness to arbitrary observables.We say that observablesX1, . . . ,Xn ∈O(H ) are
jointly determinatein a stateρ if Pr{∨(X1, . . . ,Xn)‖ρ}= 1, or equivalently if Tr[com(X1, . . . ,Xn)ρ ] = 1.
It is easy to see that this condition is equivalent to that[A,B]ρ = 0 for all A,B∈ {X̃1, . . . , X̃n}

′′.
A probability distribution functionF(x1, . . . ,xn) on Rn, is called ajoint probability distribution func-

tion of X1, . . . ,Xn ∈ O(H ) in ρ ∈ S (H ) if

F(x1, . . . ,xn) = Pr{X1 ≤ x1∧ ·· ·∧Xn ≤ xn‖ρ}.

A joint probability distributionF of X1, . . . ,Xn in ρ is unique, if any, and denoted byFX1,···Xn
ρ (x1, . . . ,xn).

Since the joint determinateness is considered to be the state-dependent notion of commutativity,
it is expected that the joint determinateness is equivalentto the state-dependent existence of the joint
probability distribution function, as shown below.
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Theorem 10. Observables X1, . . . ,Xn ∈ O(H ) are jointly determinate in a stateρ if and only if there
exists a joint probability distribution function FX1,···Xn

ρ (x1, . . . ,xn) of X1, . . . ,Xn in ρ . In this case, for any
polynomial p( f1(X1), . . . , fn(Xn)) of observables f1(X1), . . . , fn(Xn), where f1, . . . , fn are bounded Borel
functions, we have

Tr[p( f1(X1), . . . , fn(Xn))ρ ] =
∫

· · ·
∫

Rn
p( f1(x1), . . . , fn(xn))FX1,···Xn

ρ (dx1, . . . ,dxn).

8 Quantum equality

For any finite observablesX,Y, we define the observational propositionX =Y by

X =Y :=
∨

x∈Sp(X)

X = x∧Y = x.

We say that observablesX andY are equal in a stateρ if X =Y holds inρ . In this case, we shall write
X =ρ Y. In general, we say that observablesX andY are equal in a stateρ with probabilityPr{X =Y‖ρ}.
Then, we have the following [12].

Theorem 11. Finite observables X and Y are equal in a vector stateψ if and only if the stateψ is a
superposition of common eigenvectors of X and Y with common eigenvalues.

The state-dependent equality is characterized by the equality in quantum set theory as follows.

Theorem 12. For any finite observables X,Y ∈ Oω(H ), we have

[[X =Y]]o = [[X̃ = Ỹ]]. (2)

Under the Takeuti correspondence, the truth values of equality between reals are characterized as
follows.

Theorem 13. LetQ be a logic onH and let u,v∈ R(Q). Then we have

[[u= v]] = P{ψ ∈ H | Eû(λ )ψ = Ev̂(λ )ψ for all λ ∈ R}.

We cannot find an observational propositionX =Y satisfying Eq. (2) for infinite observablesX,Y ∈
O(H ). We introduce a new atomic observational propositionsX =Y with Eq. (2) for allX,Y ∈ O(H )
by the following additional rules for formation of observational propositions and for projection-valued
truth values:

(R4) For anyX,Y ∈ O(H ) andx,y∈ R, the expressionX =Y is an observational proposition.

(T5) [[X =Y]]o = P{ψ ∈ H | EX(λ )ψ = EY(λ )ψ for all λ ∈ R}.

Note that from Theorem 13, Eq. (2) holds for anyX,Y ∈ O(H ). We say that observablesX andY
areequal in a stateρ if Pr{X =Y‖ρ} = 1, or equivalently if Tr[[[X = Y]]oρ ] = 1. It is easy to see that
this condition is equivalent to thatEX(λ )ρ = EY(λ )ρ for all λ ∈ R. Thus, we naturally extend the
state-dependent notion of equality to arbitrary observables.

Theorem 14. For any observables X,Y ∈Oω(H ) andρ ∈S (H ), we have X=ρ Y if and only if there
exists a joint probability distribution function FX,Y

ρ (x,y) of X,Y in ρ and it satisfies
∫∫

∆
FX,Y

ρ (x,y) = 1,

where∆ is the diagonal set∆ = {(x,y) ∈ R2 | x= y}.



24 Quantum set theory

Let φ(X1, . . . ,Xn) be an observational proposition that includes symbols for observables only from
the list X1, . . . ,Xn. Then,φ(X1, . . . ,Xn) is said to becontextually well-formedin a stateρ if X1, . . . ,Xn

are jointly determinate inρ . The following theorem is an easy consequence from the transfer principle
in quantum set theory [11], and shows that for well-formed observational propositionsφ(X1, . . . ,Xn) for
a fixed familyX1, . . . ,Xn of observables, the projection-valued truth value assignments satisfy Boolean
inference rules and the probability assignments satisfy rules for calculus of classical probability.

Theorem 15. If φ(X1, . . . ,Xn) is a tautology in classical logic, then we have

[[∨(X1, . . . ,Xn)]]o ≤ [[φ(X1, . . . ,Xn)]]o.

Moreover, ifφ(X1, . . . ,Xn) is contextually well-formed in a stateρ , thenφ(X1, . . . ,Xn) holds inρ .

9 Measurements of observables

A measuring processfor H is defined to be a quadruple(K ,σ ,U,M) consisting of a Hilbert spaceK ,
a stateσ onK , a unitary operatorU onH ⊗K , and an observableM onK [8]. A measuring process
M(x) = (K ,σ ,U,M) with output variablex describes a measurement carried out by an interaction,
called themeasuring interaction, from time 0 to time∆t between the measured systemS described by
H and theprobesystemP described byK that is prepared in the stateσ at time 0. The outcome of
this measurement is obtained by measuring the observableM, called themeter observable, in the probe
at time∆t. The unitary operatorU describes the time evolution ofS+P from time 0 to∆t. We shall
write M(0) = 1⊗M, M(∆t) = U†M(0)U , X(0) = X ⊗ 1, andX(∆t) = U†X(0)U for any observable
X ∈ O(H ). We can use the probabilistic interpretation for the systemS+P. Theoutput distribution
Pr{x ≤ x‖ρ}, the probability distribution function of the output variable x of this measurement on input
stateρ ∈ S (H ), is naturally defined as

Pr{x ≤ x‖ρ} = Pr{M(∆t)≤ x‖ρ ⊗σ}= Tr[EM(∆t)(x)ρ ⊗σ ].

The POVM of the measuring processM(x) is defined by

Π(x) = TrK [EM(∆t)(x)(I ⊗σ)].

Then, we have

(P1) limx→−∞ Π(x) = 0, limx→+∞ Π(x) = 1, and limx0≤x→x0 Π(x) = Π(x0),

(P2) Π(x′)≤ Π(x′′) for x′ ≤ x′′,

(P3) Pr{x ≤ x‖ρ}= Tr[Π(x)ρ ].

Conversely, it has been proved in Ref. [8] that for every{Π(x)}x∈R satisfying (P1), and (P2), there is a
measuring process(K ,σ ,U,M) satisfying (P3).

Let A ∈ O(H ) and ρ ∈ S (H ). A measuring processM(x) = (K ,σ ,U,M) with the POVM
Π(x) is said tomeasure Ain ρ if A(0) =ρ⊗σ M(∆t), andweakly measure Ain ρ if Tr [Π(x)EA(y)ρ ] =
Tr[EA(min{x,y})ρ ] for any x,y ∈ R. A measuring processM(x) is said tosatisfy the Born statistical
formula (BSF) forA in ρ if it satisfies Pr{x ≤ x‖ρ} = Tr[EA(x)ρ ] for all x∈ R. The following theorem
characterizes measurements of an observable in a given state.

Theorem 16. Let M(x) = (K ,σ ,U,M) be a measuring process forH with the POVMΠ(x). For any
observable A∈ O(H ) and any stateρ ∈ S (H ), the following conditions are all equivalent.
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(i) M(x) measures A inρ .

(ii) M(x) weakly measures A inρ .

(iii) M(x) satisfies the BSF for A in any vector stateψ ∈ C (A,ρ).

Theorem 17. Let M(x) = (K ,σ ,U,M) be a measuring process forH with the POVMΠ(x). Then,
M(x) measures A∈ O(H ) in anyρ ∈ S (H ) if and only if Π(x) = EA(x) for all x ∈ R.

10 Simultaneous measurability

For any measuring processM(x) = (K ,σ ,U,M) and a real-valued Borel functionf , the measuring
processM( f (x)) with output variablef (x) is defined byM( f (x)) = (K ,σ ,U, f (M)). ObservablesA,B
are said to besimultaneously measurablein a stateρ ∈S (H ) by M(x) if there are Borel functionsf ,g
such thatM( f (x)) andM(g(x)) measureA andB in ρ , respectively. ObservablesA,B are said to besi-
multaneously measurablein ρ if there is a measuring processM(x) such thatA andB are simultaneously
measurable inρ by M(x).

The cyclic subspaceC (A,B,ρ) of H generated byA,B andρ is defined by

C (A,B,ρ) = ({A,B}′′ρH )⊥⊥.

We defineC (A,ρ) = C (A,1,ρ) andC (B,ρ) = C (1,B,ρ).
The simultaneous measurability and the commutativity are not equivalent notion under the state-

dependent formulation, as the following theorem clarifies.

Theorem 18. (i) Two observables A,B ∈ O(H ) are jointly determinate in a stateρ ∈ S (H ) if and
only if there exists a POVMΠ(x,y) on R2 satisfying

lim
y→+∞

Π(x,y) = EA(x) onC (A,B,ρ) for all x ∈ R,

lim
x→+∞

Π(x,y) = EB(y) onC (A,B,ρ) for all y ∈ R.

(ii) Two observables A,B∈ O(H ) are simultaneously measurable in a stateρ ∈S (H ) if and only
if there exists a POVMΠ(x,y) on R2 satisfying

lim
y→+∞

Π(x,y) = EA(x) onC (A,ρ) for all x ∈ R,

lim
x→+∞

Π(x,y) = EB(y) onC (B,ρ) for all y ∈ R.

11 Conclusion

To formulate the standard probabilistic interpretation ofquantum theory, we have introduced the lan-
guage of observational propositions with rules (R1) and (R2) for well-formed formulas constructed from
atomic formulas of the formX ≤ x, rules (T1), (T2), and (T3) for projection-valued truth value assign-
ment, and rule (P1) for probability assignment. Then, the standard probabilistic interpretation gives the
statistical predictions for standard observational propositions formulated by (W1), which concern only
commuting family of observables. The Born statistical formula is naturally derived in this way. We have
extended the standard interpretation by introducing two types of atomic formulas com(X1, . . . ,Xn) for
joint determinateness andX = Y for equality. To extended observational propositions formed through
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rules (R1),. . ., (R4), the projection-valued truth values are assigned by rule (T1),. . ., (T5), and the prob-
ability assignments are given by rule (P1). Then, we can naturally extend the standard interpretation to a
general and state-dependent interpretation for observational propositions including the relations of joint
determinateness and equality. Quantum set theory ensures that any contextually well-formed formula
provable in ZFC has probability assignment to be 1. This extends the classical inference for quantum
theoretical predictions from commuting observables to jointly determinate observables. We apply this
new interpretation to construct a theory of measurement of observables and a theory of simultaneous
measurement in the state-dependent approach, to which the standard interpretation cannot apply. We
have reported only basic formulations here, but further development in this approach will be reported
elsewhere.
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