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We explore a connection between monogamy of non-locality and a weak macroscopic locality con-
dition: the locality of the average behaviour. These are revealed by our analysis as being two sides
of the same coin.

Moreover, we exhibit a structural reason for both in the caseof Bell-type multipartite scenarios,
shedding light on but also generalising the results in the literature [16, 14]. More specifically, we
show that, provided the number of particles in each site is large enough compared to the number of
allowed measurement settings, and whatever the microscopic state of the system, the macroscopic
average behaviour is local realistic, or equivalently, general multipartite monogamy relations hold.

This result relies on a classical mathematical theorem by Vorob'ev [18] about extending compat-
ible families of probability distributions defined on the faces of a simplicial complex – in the lan-
guage of the sheaf-theoretic framework of Abramsky & Brandenburger [2], such families correspond
to no-signalling empirical models, and the existence of an extension corresponds to locality or non-
contextuality. Since Vorob'ev’s theorem depends solely onthe structure of the simplicial complex,
which encodes the compatibility of the measurements, and not on the specific probability distribu-
tions (i.e. the empirical models), our result about monogamy relations and locality of macroscopic
averages holds not just for quantum theory, but for any empirical model satisfying the no-signalling
condition.

In this extended abstract, we illustrate our approach by working out a couple of examples, which
convey the intuition behind our analysis while keeping the discussion at an elementary level.

Keywords: monogamy of non-locality, macroscopic averages, Bell inequalities, no-signalling mod-
els, simplicial complexes, Vorob'ev’s theorem.

1 Introduction

Bell’s theorem [8] showed that the quantum world is non-local: the correlations between the outcomes
of measurements on two entangled (space-like separated) particles are too strong to be explainable by a
common ‘local’ cause. The usual monogamy of non-locality relations impose a limit on the amount of
non-locality shared by one party with multiple other parties. For example, in a tripartite (A, B andC)
system where each experimenter has two measurement settings available, there is a trade-off between
the strengths of violation of a Bell inequality by the subsystem composed ofA andB and the subsystem
composed ofA andC. More explicitly, for a bipartite Bell inequalityB(−,−)≤ R, the added inequality
B(A,B)+B(A,C)≤ R+Rholds, even if each ofB(A,B)≤ RandB(A,C)≤ R might be violated.

Ramanathan et al. [16] consider multipartite macroscopic systems, consisting of a large number of
particles at each site, which are described by quantum mechanics. At each site, only ‘macroscopic’ mea-
surements are available: e.g. magnetisation along some direction, which arises as a sort of average of the
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individual spin measurements in that direction for each particle in the site. The authors are concerned
only with the average behaviour over all the microscopic particles – this can be obtained from the mean
values of intensities measured macroscopically (see Section 3.1 for a more detailed explanation). They
show that, whatever the quantum state of the system (so regardless of the form and strength of the entan-
glement between the particles), and provided the number of particles at each site is large enough when
compared to the number of different measurement settings available, there is a local realistic explanation
for these macroscopic average correlations. The reason forsuch classicality is that non-local effects are
diluted by averaging due to the restrictions imposed by monogamy.

However, monogamy holds more generally than just for quantum mechanics. Pawłowsky & Brukner
[14] show that all no-signalling theories satisfy monogamyrelations for the violation of any bipartite
Bell-type inequality. More specifically, given a general bipartite Bell inequalityB(A,B)≤ R, they con-
sider a scenario with one Alice,A, andk independent copies of Bob,B(1), . . . ,B(k), with k equal to the
number of measurement settings available to Bob. They show that a monogamy relation for the bipartite
inequality,∑k

m=1B(A,B(m))≤ kR, is satisfied by any no-signalling theory.
The methods used in the two above-cited papers are manifestly similar. This observation, also made

in [16], leads one to conjecture that the results about localmacroscopic averages also hold in general for
any no-signalling theory. We show that this turns out to be the case: our investigation establishes a clear
structural connection between the two papers leading to a generalisation of the results of both. Indeed,
our main result for multipartite scenarios (Proposition 5.1) can be read in two ways: on the one hand, it
generalises the result of Pawłowski & Brukner [14], concerning deriving monogamy relations from the
no-signalling condition, from bipartite to multipartite Bell inequalities with an arbitrary number of sites;
on the other hand, it generalises the result of Ramanathan etal. [16], about the classicality of macroscopic
average behaviour in multipartite models, from quantum models to all no-signalling models. Let us spell
out the consequences of Proposition 5.1 from each of these perspectives.

• Let B(A,B,C, . . .) ≤ R be a general Bell-type inequality overn sitesA,B,C, . . . with respectively
kA,kB,kC, . . . measurement settings available. Then, consider a scenariowith a single copy of one
of the sites, sayA, and withrB copies of siteB, B(1), . . . ,B(rB), rC copies of siteC, C(1), . . . ,C(rC),
etc. The monogamy relation for the satisfaction of the Bell inequality,

rB

∑
mB=1

rC

∑
mC=1

· · · B(A,B(mB),C(mC), . . .)≤ rBrC · · ·R , (1)

is satisfied by any no-signalling model if and only if the number of copies of each site is at least the
number of measurement settings at that site; i.e.rB ≥ kB, rC ≥ kC, etc. Reference [14] addressed
the particular casen= 2 for which it proved the ‘if’ side of this result when~r =~k.

• From the other perspective, suppose that we have a scenariowith n ‘macroscopic’ sitesA,B,C, . . .
with respectivelykA,kB,kC, . . . measurement settings available, and suppose that each of these
macroscopic sites is constituted by a numberr i (i ∈ {A,B,C, . . .}) of microscopic sites. We assume
that each of theki measurement settings available at sitei corresponds to performing a similar
measurement on all the microscopic sites (say, particles) that constitute it: the expected value
of the macroscopic measurement then tells us the average behaviour among all the microscopic
sites (see Section 3.1 for more details). We show that if the number of microscopic sites forming
each macroscopic site is at least the number of measurement settings at that site, i.e. ifr i ≥ ki

for all sites i ∈ {A,B,C, . . .}, then any no-signalling empirical model on a microscopic scenario
has local average macroscopic behaviour. Reference [16] proved this result, but restricted to the
case of quantum mechanical correlations. We show that having local macroscopic averages is not a



38 On monogamy of non-locality and macroscopic averages: examples and preliminary results

particular property of quantum mechanics distinguishing it from super-quantum correlations. Note
that this is not to say that we cannot distinguish them by other, more refined notions of macroscopic
locality (cf. e.g. [13], and see Section 3.1 for a discussion).

Moreover, it becomes apparent that the two items above are essentially two ways of looking at the same
thing.

More important perhaps than these generalisations is that our analysis highlights thestructural rea-
son why these results hold. This is related to a characterisation due to Vorob'ev of the measurement
scenarios that are inherently local or non-contextual. Theidea is that quotienting a large scenario by the
identification (of sites that are ‘copies’ or instances of the same site, or of microscopic sites forming a
single macroscopic site)

A(1) ∼ ·· · ∼ A(rA) B(1) ∼ ·· · ∼ B(rB) C(1) ∼ ·· · ∼C(rC) . . . ,

along which one considers the monogamy relation or takes theaverage, yields such an inherently local
scenario. Hence, the model obtained by averaging along the symmetry, being defined on this quotient
scenario, must be local. This also implies that the originalmodel satisfies all monogamy relations for
this symmetry, which are simply the invariant Bell inequalities.

Another important aspect of this work is its potential for further generalisation, as indicated in Section
6. For example, the same ideas can potentially be applied to yield monogamy relations for violation of
contextuality inequalities, or to study macroscopic averages in more general scenarios as well.

The central aim of this extended abstract is to convey the intuition behind this structural proof. We
mainly focus on showing a couple of simple examples whose geometric realisations can be easily vi-
sualised. We try to keep the presentation at an elementary level, ignoring some of the more involved
technical details, rather to focus on the central ideas and intuitions. A longer version of this work, con-
taining all the technical details and full proofs, as well aspresenting things in greater generality, is under
preparation.

Outline. Section 2 gives a quick overview of the main ingredients of the sheaf-theoretic approach.
In Section 3, after a discussion that clarifies the meaning ofaverage macroscopic behaviour and com-
pares it to other notions discussed in the literature, we observe a connection between such averages and
monogamy of non-locality, in the simplest (tripartite) scenario where the latter arises, in its most famil-
iar form. Section 4 presents Vorob'ev’s theorem, and illustrates, using the motivating example, how it
can provide a structural explanation for monogamy relations and local macroscopic averages, due to the
acyclicity of a certain quotient complex. We also consider another tripartite example, with more mea-
surement settings, for which the quotient is not acyclic, and so the explanation above does not apply:
monogamy relations may fail to hold and macroscopic averages fail to be classical. Both examples are
particular cases of the general multipartite scenarios that are considered in Section 5, where we present
(without proof) the complete characterisation of those whose quotients are acyclic (Proposition 5.1),
which yields the generalisations of the results of the two papers mentioned above. Finally, Section 6
concludes with a summary and an outlook.
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2 Measurement scenarios and empirical models

We quickly summarise some of the basic ideas of the sheaf-theoretic framework of Abramsky & Bran-
denburger [2], which provides a unified treatment of non-locality and contextuality in the general setting
of no-signalling probabilistic models. For the purpose of the present document, we shall be mainly con-
cerned with non-locality. Still, the geometric structuresof this framework provide an appropriate setting
in which to understand – and visualise – monogamy and macroscopic averages. For some other interest-
ing results stemming from this sheaf-theoretic approach tonon-locality and contextuality, the reader is
referred to [4, 5, 3, 11, 1, 10].

2.1 Measurement scenarios

A measurement scenariois given by an abstract simplicial complexΣ on the (finite) setX of allowed
measurements1 (or equivalently, by a coverU of X: the corresponding simplicial complex is obtained
by down closure; and conversely, the maximal faces of a simplicial complex form a cover ofX). Each
face of the complex is called a measurement context. The intuition is that measurements in the same
context can be performed together. Examples include multipartite Bell-type scenarios, Kochen–Specker
configurations, and more.

Let us take as an example the simplest scenario in which monogamy relations arise, in their most
familiar form. We consider a Bell-type scenario with three sites (A, B andC) and two possible mea-
surement settings available to the experimenter at each site (a1 anda2 for A, b1 andb2 for B, andc1

andc2 for C). As usual, the choice of measurement at each site can be madeindependently of the other
sites. Formally, the set of available measurements isX = {a1,a2,b1,b2,c1,c2} and the cover of maximal
contexts is

U =
{{

ai ,b j ,ck
}
| i, j,k∈ {1,2}

}
.

The corresponding simplicial complex is ahollow octahedron, depicted below:

a1 a2

b1

b2

c1

c2

Note that this complex can be described in a more compositional way as

D
∗3
2 =D2∗D2∗D2 ,

whereD2 is the discrete simplicial complex on two vertices2, corresponding to the scenario available to

1An abstract simplicial complex on a set (of vertices)X is a family of subsets ofX, called faces, that is downwards-closed
and contains all the singletons{x}, x ∈ X. This is interpreted as a combinatorial description of a geometrical object given as
a collage of points (the singletons), line segments (sets oftwo elements), triangles (sets of three elements), and their higher-
dimensional counterparts.

2The discrete complex onn vertices,Dn, is the minimal simplicial complex onn vertices, containing no faces of dimension
higher than 0 (lines, triangles, etc.). Formally,Dn := { /0,{1}, . . . ,{n}}.
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each experimenter, and∗ stands for the simplicial join operation3, which captures parallel composition
of scenarios. For more details on this, see e.g. [17].

In the explicit examples of empirical models in the rest of this text, we shall take all measurements
to have two possible outcomes: 0 and 1. This is irrelevant as none of the results we consider is sensitive
to the sets of outcomes, as long as there are at least two outcomes per measurement. With this extra
assumption, the scenarioD∗3

2 above is also customarily known as the(3,2,2) scenario: the numbers
stand for 3 sites, 2 measurement settings at each site, and 2 outcomes for each measurement.

2.2 Empirical models and extendability

While a measurement scenario is an abstract description of aset of possible experiments, empirical
models represent particular (real or hypothetical) probabilistic results of these experiments (one can think
of frequencies tabulated from runs of the experiments on ensembles of identically prepared systems).

Given a measurement scenarioU , an empirical model is a compatible family of probability dis-
tributions (µC)C∈U , where eachµC is a distribution on joint outcomes of the measurements in context
C. Compatibility here means thatµC andµC′ marginalise to the same distribution on outcomes of mea-
surements inC∩C′. In the case of multipartite scenarios, this corresponds tothe usualno-signalling
condition.

For such an empirical model, we are concerned with the existence of a global probability distribution
µX on the joint outcomes of all the measurements that marginalises to all the distributionsµC. It is
shown by Abramsky & Brandenburger [2] that such a global extension exists iff the model admits a
non-contextual (or local, in the particular case of multipartite scenarios) hidden variable explanation. So,
the set of joint outcomes of all measurements ({0,1}X in the case of dichotomic measurements) can be
seen as a canonical hidden variable space. Obstructions to such extensions are witnessed by violations
of Bell-type inequalities by the probability distributions µC (cf. [4] for a general scheme, based on
logical consistency conditions, for deriving complete sets of Bell-type inequalities on any measurement
scenario).

Let us consider some examples. Take the tripartite scenariofrom Section 2.1. An empirical model
for this scenario is a collection of no-signalling probabilities of the formp(ai ,b j ,ck = x,y,z), wherex,
y, z range over the possible outcomes of the respective measurements. An example of a valid empirical
model is represented in the following table – this is the model obtained by preparing a 3-qubit system in
the W state and allowingZ andX measurements at each site (on each qubit).

A B C 000 001 010 011 100 101 110 111
a1 b1 c1 3/8 1/24 1/24 1/24 1/24 1/24 1/24 3/8

a1 b1 c2 1/3 1/12 0 1/12 0 1/12 1/3 1/12

a1 b2 c1 1/3 0 1/12 1/12 0 1/3 1/12 1/12

a1 b2 c2 1/6 1/6 1/6 0 1/6 1/6 1/6 0
a2 b1 c1 1/3 0 0 1/3 1/12 1/12 1/12 1/12

a2 b1 c2 1/6 1/6 1/6 1/6 1/6 0 1/6 0
a2 b2 c1 1/6 1/6 1/6 1/6 1/6 1/6 0 0
a2 b2 c2 0 1/3 1/3 0 1/3 0 0 0

(2)

3Given simplicial complexesΣ1 andΣ2 on vertex setsX1 andX2 respectively, their simplicial join is defined on the vertex
setX1⊔X2 asΣ1 ∗Σ2 := {σ1⊔σ2 | σ1 ∈ Σ1,σ2 ∈ Σ2}= {σ ⊆ X1⊔X2 | σ ∩X1 ∈ Σ1 ∧ σ ∩X2 ∈ Σ2}.
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Another example is the super-quantum tripartite box known as Svetlichny box [7]:

A B C 000 001 010 011 100 101 110 111
a1 b1 c1 1/4 0 0 1/4 0 1/4 1/4 0
a1 b1 c2 1/4 0 0 1/4 0 1/4 1/4 0
a1 b2 c1 1/4 0 0 1/4 0 1/4 1/4 0
a1 b2 c2 0 1/4 1/4 0 1/4 0 0 1/4

a2 b1 c1 1/4 0 0 1/4 0 1/4 1/4 0
a2 b1 c2 0 1/4 1/4 0 1/4 0 0 1/4

a2 b2 c1 0 1/4 1/4 0 1/4 0 0 1/4

a2 b2 c2 0 1/4 1/4 0 1/4 0 0 1/4

(3)

Finally, let us also consider a non-symmetric example (withrespect toB andC):

A B C 000 001 010 011 100 101 110 111
a1 b1 c1 1/4 1/4 0 0 0 0 1/4 1/4

a1 b1 c2 1/4 1/4 0 0 0 0 1/4 1/4

a1 b2 c1 1/4 1/4 0 0 0 0 1/4 1/4

a1 b2 c2 1/4 1/4 0 0 0 0 1/4 1/4

a2 b1 c1 1/4 1/4 0 0 0 0 1/4 1/4

a2 b1 c2 1/4 1/4 0 0 0 0 1/4 1/4

a2 b2 c1 0 0 1/4 1/4 1/4 1/4 0 0
a2 b2 c2 0 0 1/4 1/4 1/4 1/4 0 0

(4)

All three examples above are non-local.

3 Relating monogamy and macroscopic averages: a first example

3.1 Macroscopic average behaviour

We start by clarifying what we mean by macroscopic average behaviour. This is the same as the macro-
scopic correlations considered in Ramanathan et al. [16]. We also contrast it with the notion of macro-
scopic locality suggested in Navascués & Wunderlich [13] and Bancal et al. [6].

In order to understand the averaging process, we first consider single-site measurements. Let us take
a (microscopic) measurement withl possible outcomes. One can imagine that, in such a measurement,
a singleparticle is subjected to an interactiona, a measurement process of some sort, resulting in the
particle colliding with one of thel detectors corresponding to the measurement outcomes (Figure 1).
The nature of this interaction might be probabilistic; repeating the experiment many times on identi-
cally prepared systems allows us to collect statistical data p(x | a) or p(a= x) (with x∈ {0, . . . , l −1})
corresponding to the probability of the detectorx being clicked given that one has decided to measurea.

Now we introduce a change to this setup. In a macroscopic experiment, the experimenter receives a
beam ofN particles instead of a single particle. The same interaction is applied (simultaneously) to all
the particles in the beam, dividing it into smaller beams that collide with each of the detectors 0, . . . , l −1.
The information one can obtain from such an experiment is thenumber of particles that collide with each
detector, i.e. the intensity of each of the smaller resulting beams (Figure 2). Note that instead of beams
of photons, we could also think of regions of a magnetic material where measuring the magnetisation in
a certain direction corresponds to making a spin measurement on all theN particles in the region. The
details are not essential to the discussion, so we shall keeptalking mostly about ‘beams’.
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a

10

10

source

Figure 1: Dichotomic measurement,a, performed on a single particle, which ends up hitting the detector
corresponding to one of the possible outcomes (in this case,outcome 1).

a

10

10

source

I1 = 2/3

I0 = 1/3

Figure 2: Dichotomic measurement,a, performed on abeamof particles, which may have been prepared
in a large entangled state. This beam is split into two smaller beams, which hit each of the detectors cor-
responding to the possible outcomes, and whose intensitiesare recorded revealing theaverage behaviour
of a particle in the beam.
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In order to simplify the discussion, but with no crucial loss, we assume that the microscopic mea-
surements are dichotomic, i.e.l = 2, and take the possible outcomes to be 0 and 1. Then, the result of
the macroscopic measurement (an intensity) can be represented by a single numberI1 proportional to
the number of particles that hit the detector correspondingto outcome 1. (Note that this number can be
normalised to yield a number in[0,1] representing the proportion of particles that hit detector1.)

Of course, given the probabilistic nature of the microscopic measurements, every time the whole
experiment is run, with the same preparation of the initial state of the beam, the number of particles
hitting detector 1 differs slightly. But ifN is large enough, a realistic detector won’t be able to discern,
and so count, individual particles. For the purpose of this paper, we are concerned only with the mean,
or expected, value of these intensities. This can easily be obtained from such a macroscopic experiment,
and it is what is usually taken to be thevalueof the macroscopic observable (e.g. total magnetisation).
This mean intensity can also be interpreted as giving the average behaviour among the particles in the
beam or region: if one would randomly select one of theN particles and subject it to the microscopic
measurement, one would get the outcome 1 with probabilityI1 (assuming the intensities are normalised
as mentioned above); i.e.I1 = 1

N ∑N
i=1 pi(a = 1). Observe that the situation is analogous to statistical

mechanics, where a macrostate arises as an averaging over anextremely large number of microstates,
and hence several different microstates can correspond to the same macrostate.

We, like Ramanathan et al. [16], are interested in average multipartite correlations arising from
macroscopic measurements of this kind done across different sites. We can think of a beam of photons
being sent to each of a number of experimenters in spatially separated locations who can make several
different measurements, or we can think (as suggested in [16]) of magnetisation measurements along
several different directions done in a number of regions of amany-spin system. In any case, we have
a sort of average macroscopic Bell experiment: the (mean) values of the macroscopic intensities (the
intensity of an outcome〈x1, . . . ,xn〉 of a multipartite macroscopic measurement is the product ofthe
intensities of the outcomexi for each sitei) indicate the behaviour of a randomly chosen tuple of particles:
one from each of the beams, or sites. We shall show, as a consequence of Proposition 5.1, that, as long as
there are enough particles (microscopic sites) in each macroscopic site when compared to the number of
possible measurement settings the experimenter at that site can choose from, such average macroscopic
behaviour is always local no matter which no-signalling theory accounts for the underlying microscopic
correlations.

We should mention how this relates to discussions about macroscopic locality in the literature. In
Bancal et al. [6], a bipartite setup similar to the one described above is considered. One difference is that
the authors assume that the pair of beams received by the experimenters is composed of independently
and identically prepared pairs of particles. This is also the case in Navascués and Wunderlich [13] (see
the caption of figure 2 of this reference). A run of their macroscopic experiment can be seen as running
the same microscopic bipartite Bell experiment multiple times and recording only how many times one
obtains a certain outcome, disregarding the information ofwhich particles from each of the beams were
originally paired. The mean values of the intensities (or, equivalently, the behaviour of a random pair)
that we described above are rather boring in this situation with identically prepared pairs: what we get is
a diluted version of the probabilities for one of the identical microscopic empirical models4. However,
these authors are not simply interested in the mean values ofthese intensities (each of which is, after
normalisation, a value in the interval[0,1]), but rather on the more fundamental probability distributions
over [0,1] from which these means are calculated – recall that each timethe macroscopic experiment is

4 Suppose thatN pairs{〈a(m),b(m)〉}m=1,...,N are prepared each having the same empirical model, described by probability
distributionsp(a,b= x,y) wherea andb range over the possible measurement settings on each of the sites, andx andy over
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run, one measures slightly different intensities, so the observed intensities fall in a distribution around
the mean value. Their aim is to witness non-locality on the fluctuations. More specifically, they are
concerned with the question of whether these distributionsof intensities can be explained by local hidden
variable models.

Even though some information is inevitably lost in such an experiment (particularly regarding the
original pairings), Bancal et al. [6] show that one can witness non-locality at this level if the detectors are
perfect, in the sense that they can measure the intensity of beams with maximal precision, to a sensitivity
of one particle. This clearly becomes impractical asN grows. At the opposite end, in the idealised limit
where the resolution of the detectors is very bad, one would always observe the same intensities: namely,
our mean value of intensities with no fluctuations around it.Navascués & Wunderlich [13] suggest that
it is physically reasonable that, whenN is large, one could detect changes on intensity values of the
order of

√
N. These authors propose the notion of macroscopic locality to mean that the distributions of

observed intensities with a resolution of order
√

N admit a local hidden variable explanation. They show
that this principle of macroscopic locality is satisfied by quantum mechanics, but is not valid in general
for all no-signalling theories: more accurately, the set ofcorrelations satisfying it isQ1, the first level of
the hierarchy of semidefinite programs approximating the quantum set proposed by Navascués, Pironio,
& Acı́n [12].

In this sense, the kind of macroscopic correlations we (and Ramanathan et al. [16]) consider seems
more restricted, since we show that these are local no matterwhich no-signalling theory accounts for
the underlying microscopic correlations. However, there are some important differences, which we now
summarise:

• Firstly, we do not consider the beams to consist of identically prepared pairs (or tuples) of parti-
cles. In the bipartite setting of [6, 13] above, pairs of particles were identically and independently
prepared and then a particle of each pair was sent to Alice andthe corresponding one to Bob
(although the pairing is lost as the particles are lumped together in a beam). In our setting, the par-
ticles may be in different states and there are no restrictions on which groups of particles of Alice
and of Bob (and possibly of others, as we allow for an arbitrary number of sites) are entangled –
the ‘microstate’ of the system can be very highly non-local.The only restriction we impose is that
of no-signalling.

• Secondly, our aim is not to explain the distribution of the intensities, with their fluctuations around
the mean value, by a local model, as in [13, 6]. Rather, the (products of the) mean intensities them-

the respective outcomes. Then the average behaviour of an (arbitrary) pair is given by:

p̃(a,b= x,y) =
1

N2

N

∑
mA,mB=1

p(a(mA),b(mB) = x,y)

=
1

N2

N

∑
m=1

p(a(m),b(m) = x,y)+
1

N2

N

∑
mA 6=mB=1

p(a(mA),b(mB) = x,y)

=
N

N2 p(a,b= x,y)+
1

N2

N

∑
mA 6=mB=1

p(a(mA) = x)p(b(mB) = y)

=
1
N

p(a,b= x,y)+
N2−N

N2 p(a= x)p(b= y)

=
1
N

p(a,b= x,y)+

(
1− 1

N

)
p(a= x)p(b= y)

which is the initial microscopic model very ‘diluted’ by a local model (corresponding to the pairs that were not prepared
originally as a pair, and are thus uncorrelated).
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selves, which are taken as the value of the macroscopic observable, give us a description of the
behaviour of the average pair or tuple of particles in the beams. It is this average behaviour that we
aim to explain by a local model. We prove this is indeed alwayspossible for any no-signalling mi-
croscopic theory provided there are enough particles compared to measurement settings available
at each site. The reason, again, has to do with monogamy, which dilutes non-locality.

Despite the latter difference, note that since such averagebehaviour corresponds to the mean, or
expected, values of the macroscopic measurements of intensities considered as in [13, 6], our result also
implies that macroscopic CHSH-type inequalities, i.e. inequalities involving only the expected values
of macroscopic experiments, can never be violated by no-signalling microscopic theories. It is only by
looking at higher-order moments (which correspond to othercharacteristics of the distribution, such as
variance, skewness, kurtosis, etc.) that one may witness a difference between quantum mechanics and
general no-signalling theories.

3.2 Macroscopic average behaviour: examples

Let us see how this averaging works for our tripartite example. We regard sitesB andC as forming
one macroscopic site,M, and siteA as forming another5. The idea is that we will average over the
behaviour of the microsystemsB andC. In order to be lumped together,B andC must be symmetric,
i.e. of the same ‘type’. In particular, we need to know which measurements on the siteB correspond
to which measurements on the siteC. Here, we consider a symmetry of the system which makes the
identificationsb1 ∼ c1 andb2 ∼ c2. We will namem1 andm2 the ‘macroscopic’ measurements resulting
from these identifications.

Given an empirical model on the tripartite scenario, one canconsider the partial model on the sub-
system composed of sitesA andB only, whose probabilities are given by marginalisation (inquantum
mechanics, this corresponds to partial trace):

p(ai ,b j = x,y) := ∑
z

p(ai ,b j ,ck = x,y,z) .

Note that this expression is independent ofck due to no-signalling. Similarly, one can consider the partial
model on the subsystem composed ofA andC only.

The average behaviour under the identification ofB with C is then a bipartite model with two ‘macro-
scopic’ sitesA andM, given as an average of probability distributions of the partial models:

p(ai ,mj = x,y) :=
p(ai ,b j = x,y)+ p(ai ,c j = x,y)

2
. (5)

Let us see how such average models look for the particular empirical models (2)–(4) from Section
2.2. The first two examples are symmetric with respect toB andC, meaning that the restriction of the
model to sitesA andB is the same as the restriction of the model to sitesA andC. Consequently, it is also
equal to the macroscopic average model, since the latter arises as an average of the two partial models.

5In this example, ‘macroscopic’ means one or two microsystems only, allowing us to keep the example small enough to be
visualised. This is sufficient to get local averages given that we are only considering two measurement settings per site: recall
from Section 1 that the condition is that the number of microsystems in a site, or copies of a site, should be at least the number
of measurement settings available at that site (except possibly for one of the sites,A in this example, where we can consider a
single microsystem or copy).
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The table for the macroscopic model emerging from example (2) is:

A M 00 01 10 11
a1 m1 5/24 1/24 1/24 5/24

a1 m2 1/6 1/12 1/6 1/12

a2 m1 1/6 1/6 1/12 1/12

a2 m2 1/6 1/6 1/6 0

and for example (3) we obtain the totally mixed model:

A M 00 01 10 11
a1 m1 1/4 1/4 1/4 1/4

a1 m2 1/4 1/4 1/4 1/4

a2 m1 1/4 1/4 1/4 1/4

a2 m2 1/4 1/4 1/4 1/4

Note that both these (macroscopic average) bipartite models are local. Now let us consider example (4).
The partial models on sitesA andB and on sitesA andC are represented in the following tables:

A B 00 01 10 11
a1 b1 1/2 0 0 1/2

a1 b2 1/2 0 0 1/2

a2 b1 1/2 0 0 1/2

a2 b2 0 1/2 1/2 0

A C 00 01 10 11
a1 c1 1/4 1/4 1/4 1/4

a1 c2 1/4 1/4 1/4 1/4

a2 c1 1/4 1/4 1/4 1/4

a2 c2 1/4 1/4 1/4 1/4

Note that the model in the left is non-local (even maximally violating a Bell inequality: it is a Popescu–
Rohrlich box [15]), while the one in the right is local (it is the totally mixed model, in fact). The
‘macroscopic’ average model is obtained as an average of these two:

A M 00 01 10 11
a1 m1 3/8 1/8 1/8 3/8

a1 m2 3/8 1/8 1/8 3/8

a2 m1 3/8 1/8 1/8 3/8

a2 m2 1/8 3/8 3/8 1/8

This model is also local, like the other average models above: a global probability distribution for this
model is

1
8[a1a2m1m2 = 0000]+ 1

8[a1a2m1m2 = 0001]

+1
8[a1a2m1m2 = 0100]+ 1

8[a1a2m1m2 = 0110]

+1
8[a1a2m1m2 = 1001]+ 1

8[a1a2m1m2 = 1011]

+1
8[a1a2m1m2 = 1110]+ 1

8[a1a2m1m2 = 1111] .

We shall see that these three examples are in no way special. Indeed, our analysis will clarify that the
macroscopic average behaviour is local no matter which no-signalling tripartite empirical model we start
from.
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3.3 Monogamy and macroscopic averages: Bell inequalities

Now, we make a very simple observation that establishes the connection between monogamy of non-
locality and locality of these macroscopic averages. Consider any Bell inequalityB(−,−) ≤ R for a
scenario with two parties, each with two available measurements. Such an inequality is determined by a
set of coefficientsα(i, j,x,y) and a boundR. We have that:

B(A,M)≤ R

⇔
∑

i, j,x,y

α(i, j,x,y)p(ai ,mj = x,y)≤ R

⇔ { definition of the average probabilities, eq. 5}

∑
i, j,x,y

α(i, j,x,y)
p(ai ,b j = x,y)+ p(ai ,c j = x,y)

2
≤ R

⇔ { re-arranging terms}

∑
i, j,x,y

α(i, j,x,y)p(ai ,b j = x,y)+ ∑
i, j,x,y

α(i, j,x,y)p(ai ,c j = x,y) ≤ 2R

⇔
B(A,B)+B(A,C)≤ 2R

That is, the ‘macroscopic’ average model,p(ai ,mj = · · · ) on sitesA andM, satisfies the Bell inequality,
B(A,M)≤ R, if and only if the ‘microscopic’ model (on sitesA, B andC) is monogamous with respect
to violating it; i.e. the bipartite partial modelsp(ai ,b j = · · · ) and p(ai ,c j = · · · ) satisfy the monogamy
relationB(A,B)+B(A,C)≤ 2R, and so cannot both violate the Bell inequality. This is an instance of
a more general equivalence between Bell inequalities on ‘macroscopic’ averages and the monogamy of
violation of the same inequality at the ‘microscopic’ level. As a consequence, a macroscopic average
model satisfies all Bell inequalities (i.e. it is local) if and only if the microscopic model is monogamous
with respect to violating all those inequalities. This is the case, in particular, of all the models in the
tripartite scenario we are analysing, such as the examples considered in Section 3.2. In the next section,
we give a reason for this based on the structure of the scenario.

4 A structural explanation

4.1 Vorob'ev’s theorem

A classical mathematical result due to Vorob'ev [18], and motivated by a problem in game theory, deals
with the following question, here rephrased in our terms: for which measurement scenariosU (or Σ) is
it so that any no-signalling empirical model(µC)C∈U defined on it admits a global extension, i.e. is local
or non-contextual? Vorob'ev derived a necessary and sufficient condition on the simplicial complexΣ for
this to be the case. We present a simplified yet equivalent version of Vorob'ev’s condition, which happens
to be known in relational database theory as acyclicity, an important property of database schemata (cf.
[1, 17] for more on the connection between relational database theory and the study of locality and non-
contextuality). The idea is that such a scenario can be constructed by adding one measurement at a time
in such a way that the new measurement is added to only one maximal context. Equivalently, it can be
de-constructed by removing at each step a measurement belonging to a single maximal context.
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Definition 4.1. Let Σ be a simplicial complex. Given a maximal faceC, let πC denote the vertices ofΣ
which belong toC and not to any other maximal faces. IfπC 6= /0 for someC, then we say that there is a
Graham-reduction step fromΣ to the subcomplex

Σ′ := {σ ∈ Σ | σ ∩πC = /0}= {σ \ πC | σ ∈ Σ}

and writeΣ Σ′.
The complexΣ is said to beacyclic if it is Graham-reducible to the empty complex6, i.e. if there

exists a series of Graham-reduction steps fromΣ to the empty complex:

Σ = Σ0 Σ1 · · · Σr = 0 .

The following is an example of a successful Graham reductionto 0, witnessing the acyclicity of the
simplicial complex on the left.

a

b

c

d

e

b

c

d

e

b

c

d b d b

0

On the contrary, the following complex is not acyclic: Graham reduction always fails, hitting a ‘cycle’.

a

b

c

d

e

b

c

d

e

Theorem 4.2(Vorob'ev [18], rephrased and with simplified condition [17]). Let Σ be a simplicial com-
plex. Then any empirical model defined onΣ is extendable if and only ifΣ is acyclic.

4.2 Structural reason: tripartite example

We mentioned above that, for the scenario we are considering, any empirical model gives rise to local
average behaviour correlations. The structural reason forthis is the fact that the quotient of the scenario
by the identification of sitesB andC is acyclic. Let us look at this in more detail.

Our scenario is represented by the simplicial complexD2∗D2∗D2, where the factors correspond to
sitesA, B andC. This is the hollow octahedron we depicted before, in Section 2.2. Given that we want
to identify B andC, we regard this complex as7

Σn=2,k1=2,k2=2,r1=1,r2=2 := D2∗D∗2
2 = D2∗ (D2∗D2) ,

with sitesB andC ‘grouped’ together in the second factor on which the identificationbi ∼ ci acts.

6The empty complex,0 is the only simplicial complex on /0, that is, with no vertices.
7The Σn,~k,~r notation on the left-hand side will be introduced in Section5; it is provided here just for reference:n stands

for the number of ‘macroscopic’ sites,ki for the number of measurement settings available at sitei, andr i for the number of
‘microscopic’ sites in, or copies of, sitei. The reader is referred to Section 2.1 for the notation on theright-hand side.
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We shall explicitly see what the quotient is. The first step isso-called semiregularisation, where we
remove edges between vertices that are being identified as such edges are unnecessary. So, in this case,
we must remove the edges{b1,c1} and{b2,c2}, obtaining the following simplicial complex:

sr(D2∗D∗2
2 ) = a1 a2

b1

b2

c1

c2

Now, taking the quotient, we will identify the measurementsb1 andc1 asm1, andb2 andc2 asm2. We
obtain the following simplicial complex:

sr(D2∗D∗2
2 )/(S1×S2) = a1 a2

m1

m2

Observe that the set of maximal faces (i.e. the cover of maximal contexts) is

{{a1,m1,m2},{a2,m1,m2}} .

So, more things are compatible than in the usual bipartite scenario, which has cover

{{a1,m1},{a1,m2},{a2,m1},{a2,m2}} .

As it happens, any empirical model defined on the original complexD2∗D2
2 will give rise to another

model defined on the quotient scenario, by taking averages along the faces being identified. Therefore,
not only are the probabilitiesp(ai ,mj = . . .) defined via an average, giving a model on the usual bipartite
scenario above, so are the probabilitiesp(ai ,m1,m2 = . . . ), yielding a model on the more compatible
bipartite scenario that arises as a quotient. The probability distribution on the triangle{ai ,m1,m2} is
obtained as an average of the probability distributions on the top and bottom triangles that gave rise to it,
namely ofp(ai ,b1,c2 = . . . ) andp(ai ,c1,b2 = . . . ).

The quotient complex we have obtained does satisfy the Vorob'ev condition of acyclicity. This is
easy to see: one can remove the vertices, for example, in the ordera1, a2, m1, m2. Therefore, no matter
which empirical modelp(ai ,b j ,ck = · · · ) we start from, the model of average macroscopic behaviour,
p(ai ,mj = · · · ), is local. In particular, it satisfies any Bell inequality. Hence, by the equivalence discussed
in Section 3.3, the original tripartite model also satisfiesa monogamy relation for any of these bipartite
Bell inequalities.
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4.3 A non-acyclic example

Let us now consider an example where one does not get monogamyrelations, or equivalently, where
one does not necessarily get local macroscopic averages. Suppose that we again have a tripartite (A, B,
C) scenario, but that this timeB andC have 3 available measurement settings each. In a compositional
notation (as explained in footnote 7 at the start of Section 4.2) and since we are again interested in
identifying the sitesB andC, this scenario is represented by the simplicial complex

Σn=2,k1=2,k2=3,r1=1,r2=2 := D2∗D∗2
3 = D2∗ (D3∗D3) .

The maximal contexts are

U = {{a1,b1,c1},{a1,b1,c2},{a1,b1,c3},{a1,b2,c1},{a1,b2,c2},{a1,b2,c3},
{a1,b3,c1},{a1,b3,c2},{a1,b3,c3},{a2,b1,c1},{a2,b1,c2},{a2,b1,c3},
{a2,b2,c1},{a2,b2,c2},{a2,b2,c3},{a2,b3,c1},{a2,b3,c2},{a2,b3,c3}}

and half the simplicial complex is depicted below (one should imagine the other half, a mirror image of
this consisting of the faces that includea2 instead ofa1, collated to it; we choose to omit that part as it
would make the picture more confusing and hard to visualise):

a1

b1

b2b3

c1

c2 c3

We consider the identificationsbi ∼ ci (i = 1,2,3). Again, we first discard the edges between identified
measurements, namely{b1,c1}, {b2,c2}, and{b3,c3}. The resulting complex,sr(D2∗D∗2

3 ), is depicted
below (as above, we just depict half of it):

a1

b1

b2b3

c1

c2 c3

The quotient then identifiesbi with ci , yielding the following simplicial complex (half of it, as before):

a1

m1

m2 m3
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Collating the missing half of the picture, this is a hollow triangular bipyramid, a complex with six two-
dimensional maximal faces:

{{a1,m1,m2},{a1,m2,m3},{a1,m3,m1},
{a2,m1,m2},{a2,m2,m3},{a2,m3,m1}}

which clearly does not satisfy the acyclicity condition of Vorob'ev’s theorem. Indeed, one can find
empirical models for the original measurement scenario whose ‘quotient’ average macroscopic behaviour
is non-local. The reason for this is that we have too many measurement settings available and not
enough microscopic sites (or independent copies of Bob) to dilute the information these measurements
can obtain.

The situation becomes different if there is another siteD (with measurementsd1,d2,d3) and the sites
B, C andD are identified as forming the same macroscopic site (or as being three copies of Bob). The
complex in this case is

Σn=2,k1=2,k2=3,r1=1,r2=3 := D2∗D∗3
3 = D2∗ (D3∗D3∗D3) ,

and its quotient is a solid, rather than hollow, triangular bipyramid (two filled tetrahedrons collated
together). In keeping with the previous examples, we depictonly half of the simplicial complex:

a1

m1

m2 m3

The set of maximal faces of this complex (i.e. the cover of maximal contexts of this scenario) is

{{a1,m1,m2,m3},{a2,m1,m2,m3}} ,

from which it is clear that the complex is acyclic, ensuring that any no-signalling model satisfies all
monogamy relations, and that all average macroscopic models are local. The point we are hinting at is
that, in order to guarantee monogamy and local averages, there must be at least as many microscopic
sites in each macroscopic site as there are measurement settings available at that site.

5 General multipartite scenarios

We now look at multipartite scenarios in general. We consider the general scenario already mentioned
in the item list in Section 1: we haven (macroscopic) sites 1, . . . ,n (also denoted byA,B,C, . . .); each
site i haski measurement settings; and we haver i copies of sitei, or microscopic sites constituting the
macroscopic sitei. If we write A for a (macroscopic) site, thenA(1), . . . ,A(rA) denote the several copies
of it or microscopic sites constituting it, anda(m)

1 , . . . ,a(m)
kA

are the measurements for them-th copy or

microscopic siteA(m), wherem∈ {1, . . . , rA}.
Such a scenario is therefore determined by the positive integersn,k1, . . . ,kn, r1, . . . , rn. The simplicial

complex representing this scenario is

Σn,~k,~r := Dk1
∗r1 ∗ · · · ∗Dkn

∗rn .
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For example, as already mentioned in Section 4.2, our main example measurement scenario, the tripartite
simplicial complexD2∗D2∗D2 where we want to lump together the second and third sites, is written as

Σn=2,k1=2,k2=2,r1=1,r2=2 = D2∗D∗2
2 .

Other examples were also provided in the previous section.
On such a scenario, we have a symmetry that identifies the appropriate copies or microscopic sites

that are to be lumped together. It identifies the measurements:

a(1)j ∼ ·· · ∼ a(rA)
j (∀ j ∈ {1, . . . ,kA}),

b(1)j ∼ ·· · ∼ b(rB)
j (∀ j ∈ {1, . . . ,kB}),
etc.

Formally, this symmetry is given by an action of the groupSr1 ×·· ·×Srn, whereSl , the symmetric group
on l elements, acts on each of the factors corresponding to ‘macroscopic’ sites. We are interested in
knowing under which conditions the quotient of (the semiregularisation of)Σn,~k,~r by this symmetry is
acyclic.

Proposition 5.1. The quotient of the measurement scenariosr(Σn,~k,~r) by the symmetry above is acyclic
iff one of the following holds:

(i) each site has at least as many microscopic sites or copiesas it has measurement settings, i.e.
∀i∈{1,...,n}. ki ≤ r i ;

(ii) one of the sites has a single copy and the condition aboveis satisfied by all the other sites, i.e.

∃i0.
(

r i0 = 1 ∧ ∀i∈{1,...î0...,n}. ki ≤ r i

)
.

Proof. See [17] for the proof of this result. The examples of Sections 4.2 and 4.3 provide some intuition.

The way in which this proposition splits into two cases mightstrike one as strange at first sight. The
first case is better suited for a reading of the result in termsof macroscopic averages, whereas the second
case resembles more closely the usual monogamy relations, where one deals with the correlations shared
by a single party with several others. As mentioned in Section 1, we can read the result of Proposition
5.1 as a generalisation of the results of Ramanathan et al. [16] and Pawłowski & Brukner [14].

From the former’s perspective, suppose that we have several(a large number of) microsystems dis-
tributed overn sites, withr i microsystems at sitei. The groupSr1 ×·· ·×Srn captures the symmetry of
the system: we can interchange any of ther i microsystems within the same sitei. Now assume there are
ki measurement settings available at each sitei. Microscopically, we need to considerki possible mea-
surements for each microsystem. But we consider that, macroscopically, only the average behaviour is
accessible, with the corresponding measurements being lumped together aski averaged measurements.
The fact that the quotient is acyclic as long as there are enough microsystems in each site means the
following: no matter what the statistics for all the original microscopic measurements are (as long as
they satisfy no-signalling), the average behaviour is classical, in the sense that it admits a local hidden
variable description. This generalises the paper’s resultbecause it holds for any no-signalling theory and
not just for quantum mechanics.

Note, however, that by augmenting the number of (macroscopic) measurements that one performs, it
would in principle be possible to detect non-locality on theaverage macroscopic correlations. However,
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this soon becomes impractical if one has a large (say≈1023) number of microsystems in each site. So, it
seems that the limitation on our experimental capability ofperforming enough measurements makes the
average behaviour appear local.

From the point of view of Pawłowski & Brukner [14], we start with ann-partite scenario withki

measurement settings for each sitei. Then the question is: fixing the first site (or any other for that
matter), how many copies of the other sites do we need to consider so that the monogamy relation for
the violation of anyn-partite Bell-type inequality holds? (See equation (1) forthe general form of such
a monogamy relation.) That is, with how many copies of the other sites can Alice violate the same Bell-
type inequality? The authors of the paper consider only the casen = 2 and show that one can takek2

copies of the second site in order to get the monogamy relations. Our proposition above generalises this
for anyn, giving the correct monogamy relation for this general case.

Moreover, our proposition is a complete characterisation:not only does it say that it suffices to take
ki copies of each sitei, it also says that taking less than that is not enough. That is, if one takes less
copies of some site, there exists a no-signalling empiricalmodel that violates the monogamy relations.
Similarly, the interpretation in terms of locality of macroscopic averages is also an equivalence. This is
another way in which our result generalises both papers.

6 Conclusions and outlook

This work explores a connection between monogamy of non-locality and the locality of average macro-
scopic behaviour in multipartite scenarios. We show that both can be explained by a structural property
of the simplicial complex representing the compatibility of measurements in the scenario: after taking
a quotient by an appropriate symmetry along which one takes the average or considers the monogamy
relation, the resulting complex should be acyclic, hence inherently local or non-contextual according to
Vorob'ev’s theorem. This means, in particular, that the proof is independent of quantum mechanics and
works more generally for any no-signalling theory. In the present document, we have motivated and
illustrated the main ideas behind this analysis via some simple example measurement scenarios.

The language of simplicial complexes, as used in the sheaf-theoretic framework [2], allows one to
describe not only the Bell-type multipartite scenarios familiar from discussions of non-locality that we
have been considering, but also more general contextualityscenarios, such as Kochen–Specker config-
urations [9]. In upcoming work, we develop a scheme formalising our analysis in this more general
setting. The result for Bell-type scenarios stated in Proposition 5.1, whose full proof will also appear
there, can be seen as a first instance or application of that scheme. Future work includes applying this
scheme in different kinds of scenarios to yield monogamy relations for contextuality inequalities and to
study non-contextuality of macroscopic averages.
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