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This paper contains initial work on attempting to bring recent developments in the foundations of
quantum mechanics concerning the nature of the wavefunction within the scope of more logical and
structural methods. A first step involves dualising a criterion for the reality of the wavefunction
proposed by Harrigan & Spekkens, which was central to the Pusey-Barrett-Rudolph theorem. The
resulting criterion has several advantages, including theavoidance of certain technical difficulties
relating to sets of measure zero. By considering the ‘reality’ not of the wavefunction but of the
observable properties of any ontological physical theory anew characterisation of non-locality and
contextuality is found. Secondly, a careful analysis of preparation independence, one of the key
assumptions of the PBR theorem, leads to a precise analogy with the kind of locality prohibited
by Bell’s theorem. Motivated by this, we propose a weakeningof the assumption to something
analogous to no-signalling. This amounts to allowing global or non-local correlations in the joint
ontic state, which nevertheless do not allow for superluminal signalling. This is, at least, consistent
with the Bell and Kochen-Specker theorems. We find a counter-example to the PBR argument,
which violates preparation independence, but does satisfythis physically motivated assumption. The
question of whether the PBR result can be strengthened to hold under the relaxed assumption is
therefore posed.

1 Introduction

The issue of the reality of the wavefunction has received a lot of attention recently (see especially [30, 13,
20]). In this paper, we show that insights may also be gained by taking a similar approach to considering
the ‘reality’ of objects and properties in physical theories more generally, and in particular that such
an approach can provide a new perspective on non-locality and contextuality. The first step will be to
formalise a suitably general criterion for ‘reality’ inspired by the Harrigan-Spekkens criterion for the
reality of the wavefunction [21], which was the subject of the Pusey-Barrett-Rudolph theorem [30].

The aim is to formulate the ideas in a manner that can allow fora deeper, structural understanding of
what is at play. Indeed, the initial motivation was to bring considerations of this kind within the scope
of the methods of the unified sheaf-theoretic approach to non-locality and contextuality [2, 4, 28]. The
resulting criterion has several advantages. It avoids certain technical difficulties, and due to its generality
it can be applied within any ontological physical theory: e.g. generalised probabilistic theories [6], or
classical mechanics.

The initial investigations here also show how such considerations can provide an alternative per-
spective on foundational questions more generally. We find an alternative characterisation of both local
and non-contextual correlations, as those that can arise from observations or measurements of properties
that can be considered ‘real’ in this sense. This ties together the notions of locality and reality, bring-
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ing to light another link between the Bell and Pusey-Barrett-Rudolph (PBR) theorems [30], which deal,
respectively, with these properties.

We begin, in section 2, by presenting our general, reformulated criterion for reality, which requires
minimal background. Much of the literature on the foundations of quantum mechanics, including that
concerning recent developments on the reality of the wavefunction, deals with hidden variable or onto-
logical models. Therefore, we will provide a brief review ofthis framework in section 3, which readers
familiar with the material may wish to skim over, paying attention to the notation used. In section 4,
we apply the criterion not to the wavefunction but to observable properties, leading to a characterisation
of locality akin to that of the unified sheaf-theoretic approach to non-locality and contextuality [2] or to
Kochen-Specker contextuality [24]. We demonstrate how this may be used to arrive at treatments of the
fact that local hidden variable models can be subsumed by thesheaf-theoretic framework [2], and the
EPR argument [14].

Finally, in section 5, we give a detailed consideration of preparation independence, which first ap-
peared as one of the assumptions of the PBR theorem. We show that the assumption, which is crucial to
the theorem, is analogous in a precise sense to Bell locality. Aside from this being another link between
the Bell and PBR theorems, the analogy would also suggest that the assumption may be too strong, and
that it could be weakened to something analogous to no-signalling [16]. A counter-example to the PBR
result was constructed by Lewis et al. [25] by dropping the assumption of preparation independence en-
tirely, with the caveat that for compound systems it would necessarily introduce superluminal signalling.
Here, we relax preparation independence to an independenceassumption that is still well motivated and
rules out signalling, and construct a counter-example which avoids this caveat. It is not clear, however,
if it is possible to strengthen the PBR theorem so that its result still holds under the weaker assumption.
We will mention, too, that by assuming preparation independence one can very easily prove Bell’s result,
a fact that may cast further suspicion on the strength of the stricter assumption.

2 A Criterion for Reality

In this section we will use the terminology of Harrigan & Spekkens [21], which has been established
in the literature. We begin by reviewing their criterion forthe reality, oronticity, of the wavefunction,
which we then dualise and re-cast. We note that a dual view wassuggested in [21], though it was not
formalised. For this, we need only postulate, for each system, a spaceΛ of ontic states. These can be
considered to correspond to real, physical states of the system. The idea will be that objects or properties
that are determined with certainty by the ontic state can themselves be considered ontic. The term ontic
is chosen deliberately, and it is supposed that such objects, properties, or states, have a real objective
existence as opposed to having a merely phenomenal existence. We do not, however, propose to get into
a discussion of the suitability of terminology here. Similarly, objects or properties that are not determined
with certainty are said to beepistemic, recalling that the literal meaning of the term is that whichrelates
to knowledge or to its degree of validation. The use of the term in [21] can be taken to reflect the fact that
objects and properties of this kind are necessarily probabilistic and could thus be assumed to represent
a degree of knowledge about some underlying ontic object or property. It should be borne in mind, of
course, that results relating to these definitions will holdregardless of the physical significance attached
to them.

As well as the existence of an ontic state space, the authors of [21] also posit the assumption that
the preparation of any quantum state|ψ〉 induces a distributionµ|ψ〉 over the ontic state spaceΛ for that
system, specifying the probabilities for the system to be ineach ontic state given that it has been prepared
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in this way.

Definition 2.1 (Harrigan & Spekkens [21]). If, for all wavefunctions|ψ〉 6= |φ〉 of each system, the
induced distributionsµ|ψ〉 andµ|φ〉 have non-overlapping supports, the wavefunction is said tobeontic.
Otherwise, there exist some|ψ〉 6= |φ〉 such thatµ|ψ〉(λ ) > 0 andµ|φ〉(λ ) > 0 for someλ ∈ Λ, and the
wavefunction is said to beepistemic.

We now formalise a more general, dual version of the definition. We thereby shift from thinking of
values of properties as giving probabilistic information about ontic states, to thinking of ontic states as
giving probabilistic information about values of properties. As we will see, the definition can be applied
to any object or property. Though the wavefunction would more usually be considered to be (at least) a
mathematical object rather than a property of a system, for simplicity we only refer to properties from
now on. The terms ontic and epistemic apply to the relationship or specification of values for each ontic
state, and it is this that we refer to as a property.

Definition 2.2. A V -valued property overΛ is a function f : Λ → D(V ), whereD(V ) is the set of
probability distributions overV . The property is said to beontic in the special case that, for allλ ∈ Λ,
the distributionf (λ ) overV is a delta function. Otherwise, it is said to beepistemic.

Another way of stating this is that ontic properties are generated by functionŝf : Λ → V ; i.e. they
map each ontic state to a unique value. For epistemic properties, however, there is at least one ontic state
that is compatible with two or more distinct values inV .

We now set about showing how these definitions relate, which may not be immediately clear. Any
V -valued propertyf specifies probability distributions overV , conditioned onΛ. Bayesian inversion
can be used to obtain probability distributions overΛ, conditioned onV , which we (suggestively) label
{µv}v∈V . Explicitly,

µv(λ ) :=
f (λ )(v) · p(λ )∫

Λ f (λ ′)(v) · p(λ ′)dλ ′ , (1)

assuming a uniform prior distributionp(λ ) onΛ. Note that this is only well-defined for finiteΛ, and that
a more careful measure theoretic treatment, which will not be provided here, is required for the infinite
case.

Proposition 2.3. A V -valued property over finiteΛ is ontic (definition 2.2) if and only if the distributions
{µv}v∈V have non-overlapping supports.

Proof. Suppose the propertyf is ontic according to definition 2.2, letλ ∈ Λ, and letv,v′ ∈ V such
thatv 6= v′. Assume for a contradiction thatµv(λ ) > 0 andµv′(λ ) > 0. Then, by (1),f (λ )(v) > 0 and
f (λ )(v′)> 0; but sincef is ontic,

vλ = v 6= v′ = vλ ,

wherevλ := f̂ (λ ).
Conversely, suppose that the distributions{µv}v∈V have non-overlapping supports and assume for a

contradiction thatf (λ )(v) > 0 and f (λ )(v′)> 0. Then, by (1),µv(λ )> 0 andµv′(λ )> 0.

One way of thinking about this correspondence, which may merit further research, could be as a
kind of Stone duality, or as a special case of the dual equivalence between the category of von Neumann
algebras and∗-homomorphisms and the category of measure spaces and measurable functions [22].

To illustrate, we provide a couple of simple examples of ontic and epistemic properties.

Example 2.4(Classical Mechanics). The phase space of a system is taken to be the ontic state space.
Classical mechanical observables (energy, momentum, etc.) are represented by real-valued functions on
phase space, and are therefore ontic.
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Example 2.5(Fuzzy Measurement). Consider an experiment in which a bag is prepared containingtwo
coins, which can each be green or white, with equal probability, but are otherwise identical. We claim
that the process of removing one and checking its colour measures an epistemic property. If the ontic
states areΛ = {GG,GW,WG,WW}, the property cannot be represented by a{G,W}-valued function
on Λ. Given the ontic stateGW, for example, bothG andW are compatible, and can arise with equal
probability.

In this second example, the property that is being measured is, according to the present definition,
epistemic with respect to the state of the bag; it might also be said the example describes a fuzzy mea-
surement on the state of the bag.

Definition 2.2 has some advantages.

• It is fully general and can be applied to any object or property in any ontological theory.

• It avoids measure theoretic problems relating to sets of measure zero that are inherent to the origi-
nal [17].

• It is also mathematically straightforward and conceptually transparent.

• We will see in section 4 that, while generalisation would bepossible in the original formulation,
generalising the criterion in the present form avoids the need to postulate additional non-specified
distributions.

3 Ontological Models

We are concerned with theories that give operational predictions for outcomes to measurements; we refer
to sets of such predictions as empirical models. Quantum mechanics is one such theory, which might be
described operationally by saying that we associate a density matrixρ p with each preparationp, a POVM
{Em

o }o∈O with each measurementm, and prescribe the probability of the outcomeo given preparationp
and measurementmby

p(o | m, p) = tr(ρ pEm
o ).

We wish, more generally, to consider theories with the same kind of operational structure. In order
to do so, we will use some notation that is similar to that of the sheaf-theoretic approach. For each
system we assume spacesP of preparations,X of measurements, andO of outcomes. There may be
some compatibility structure on the space of measurements,sayM ⊆ P(X), specifying which sets of
measurements can be made jointly (in quantum mechanics, this is specified by the commutative sub-
algebras of the algebra of observables). This information encodes which kind of measurement scenario
we are working in: e.g. the Bell-CHSH model [12, 8], Hardy model [18, 19], and PR correlations [29]
all deal with two-party scenarios in which each party can choose freely between two binary-outcome
measurements1. Again, we additionally assume a spaceΛ of ontic states, over which each preparation
induces a probability distribution.

In an effort to simplify notation, we will use an overline to denote a joint measurement

m= {mA,mB, . . .} ∈ M

and also to denote joint outcomeso ∈ E (m) to a joint measurement; hereE (m) is the set of functions
o : m→ O. Readers familiar with the sheaf-theoretic approach will recall thatE : X → OX is the event

1This measurement scenario is referred to as the(2,2,2) Bell scenario.
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sheaf. On the other hand,m∈ X ando ∈ O, without overlines, denote individual measurements and
outcomes, respectively. It may be the case that a particularindividual measurement can belong to several
allowed sets of joint measurements, etc. Joint preparations and joint ontic states will be treated similarly
in section 5.

Definition 3.1. An ontologicalor hidden variable model hoverΛ specifies:

1. A distribution
h(λ | p)

over the ontic statesΛ for each preparationp∈ P;

2. A distribution
h(o | m,λ ) (2)

over joint outcomesE (m), for each ontic stateλ ∈ Λ and joint measurementm∈ M .

Theoperational probabilitiesare then prescribed by

h(o | m, p) =
∫

Λ
dλ h(o | m,λ ) h(λ | p). (3)

The terms ontological model and hidden variable model are both used in the literature, but recently
the term ontological model has gained some popularity. It may be a more suitable term in the sense that
the ‘hidden’ variable need not necessarily be hidden at all:it could be directly observable. In Bohmian
mechanics [9, 10], for example, position and momentum play the role of the hidden variable. It also
carries the connotation that such a model is an attempt to describe some underlying ontological reality.

Definition 3.2. A theory which predicts the measurement statistics for the ontic states (2) will be referred
to as anontological theoryoverΛ.

We are especially interested in ontological models and theories that can reproduce quantum me-
chanical predictions. Trivially, the simplest such theoryis quantum mechanics itself, regarded as an
ontological theory.

Example 3.3(ψ-complete Quantum Mechanics). The ontic state is identified with the quantum state.
A preparation produces a density matrix, which is regarded as a distribution over the projective Hilbert
space associated with the system. By construction, the operational probabilities are those given by the
Born rule.

Of course, quantum mechanics, treated as an ontological theory in itself in this way, has certain non-
intuitive features (Einstein, Podolsky & Rosen provided one early discussion of this [14]) but later results
such as Bell’s theorem [7] and the Kochen-Specker theorem [24] clarified the fact that non-locality and
contextuality are necessary features of any theory that canaccount for quantum mechanical predictions.
In order to address these issues, we point out some relevant properties that ontological models may have.

Definition 3.4. An ontological model isλ -independentif and only if the distributions overΛ induced by
each preparationp∈ P do not depend on the joint measurementm∈ M to be performed.

We have already implicitly assumed this in definition 3.1, but it is worth making it clear since it is a
crucial assumption in all of the familiar no-go theorems. Ina λ -dependentmodel, on the other hand, the
probabilities of being in the various ontic states would depend on both the preparation of the system and
the joint measurement being performed, and we would haveh(λ | p,m) rather thanh(λ | p) in equation
(3).
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Definition 3.5. An ontological model isdeterministicif and only if for eachλ ∈ Λ and set of compatible
measurementsm∈ M there exists some joint outcomeo∈ E (m) such thath(o | m,λ ) = 1.

In such a model, the outcome to any measurement that can be performed on an ontic state is deter-
mined with certainty.

For any distributionh(o | m,λ ) over joint outcomeso ∈ E (m) to the joint measurementm∈ M

on the ontic stateλ ∈ Λ, we can find a distributionh(o | m,λ ) over outcomeso ∈ O to any individual
measurementm∈ m by marginalisation.

Definition 3.6. An ontological model isparameter-independentif and only if the probability distribution
h(o | m,λ ) overO is well-defined for eachm∈ X andλ ∈ Λ.

By well-definedness we mean that the same marginal distribution h(o |m,λ ) is obtained regardless of
which set of joint of measurements we marginalise from (in the case thatm∈mandm∈m′ for example).
Parameter independence thus asserts that the probabilities of outcomes to a particular measurement do
not depend on the other measurements being performed. It is related to the notion of no-signalling [16]
for operational probabilities, a property which is necessarily satisfied by all quantum correlations and
rules out the possibility of super-luminal signalling taking place via the measurement process at the
operational level (the choice of measurement at one site cannot influence outcomes at any other site).

Definition 3.7. Operational probabilitiesh(o | m, p) areno-signallingif and only if all marginal proba-
bility distributionsh(o | m, p) are well-defined.

Preparation independence ensures no-signalling by rulingout the possibility of super-luminal causal
influences at the ontological level. Precisely, preparation independence andλ -independence, together,
imply no-signalling.

Definition 3.8. An ontological model islocal (or non-contextual)if and only if it is both deterministic
and parameter-independent; empirical correlations arelocal (non-contextual)if and only if they can be
realised by a local (non-contextual) model.

This says that for each ontic state there is a certain outcometo any measurement that can be per-
formed, and that this does not depend on which other measurements are made. The term local is gen-
erally only used when the system being modelled is spatiallydistributed; where such an arrangement is
not assumed, the model is said to be non-contextual.

We draw attention to the fact that another definition of locality that is common in the literature
concerns the factorisability of the distributions

h(o | m,λ ) = ∏
m∈m

h(o | m,λ ). (4)

While the present definition may be a less familiar means of presenting non-locality, it is important to
note that these definitions were shown to be equivalent, in the sense that they generate the same sets of
empirical models, in [2], which built on work by Fine [15] that was specific to the(2,2,2) Bell scenario.

4 Observable Properties

If we are to assume that the outcomes of measurements providethe values of properties of a system, then
we require that for each measurementm∈ X there must exist anO-valued propertyfm : Λ → D(O) such
that fm(λ )(o) = h(o | m,λ ) for all λ ∈ Λ ando∈ O.
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Definition 4.1. Theobservable propertiesof an ontological modelh overΛ are theO-valued properties
fm : Λ → D(O) given by

fm(λ )(o) := h(o | m,λ ) (5)

for eachm∈ X such that the marginalh(o | m,λ ) is well-defined.
By generalising in the present dualised formulation, we avoid postulating that particular values of

properties induce non-specified distributionsµv over the space of ontic states and reasoning in terms of
these, in favour of the more palatable postulate that outcomes of measurements correspond to the values
of properties of a system.
Theorem 4.2. An ontological model is local (or non-contextual) if and only if all measurements are of
ontic observable properties.

Proof. First, we claim that a model is deterministic if and only if its observable properties are ontic. This
holds since, by (5),

h(o | m,λ ) = 1 ⇔ fm(λ )(o) = 1.

Next, we claim that a model is parameter independent if and only if all measurements are of observable
properties. This holds since, by definition 4.1, all measurements are of observable properties if and only
if all marginalsh(o | m,λ ) are well-defined. The result follows.

This characterisation of locality, which falls out easily from the definitions, is similar to the Kochen-
Specker [24] or topos approach [23] treatments of non-contextuality. It can provide an alternative and
sometimes simpler approach to certain results. The first result we mention shows that local ontological
models have a canonical form. In fact, it shows that local ontological or hidden variable models can
equivalently be expressed as distributions over the set of global assignments. In this sense it shows how
local ontological models are subsumed by the sheaf-theoretic approach; c.f. main theorem of [2], and
can also be understood as a generalisation of the work of Fine[15]. An interesting, related point is
that, by allowing for negative probabilities, these canonical models can also generate all no-signalling
correlations [2, 3, 26].
Theorem 4.3. Local models can be expressed in acanonical form, with an ontic state spaceΩ := E (X),
and probabilities

h(o | m,ω) = ∏
m∈m

δ (ω(m),o(m))

for all m∈ M , o∈ E (m), andω ∈ Ω.

Proof. See [26].

The next proposition will not be surprising in light of the EPR argument [14]. It shows that if one
were to take the view that quantum mechanics isψ-complete then all non-trivial observables are epis-
temic or inherently probabilistic. Indeed, we can obtain a re-statement of the EPR result as a corollary.
Proposition 4.4. Any non-trivial quantum mechanical observable is epistemic with respect toψ-complete
quantum mechanics.

Proof. Any observableÂ 6= I has eigenvectors, say|v1〉 and|v2〉, corresponding to distinct eigenvalues,
sayo1 ando2. Consider any state|ψ〉 such that〈v1|ψ〉> 0 and〈v2|ψ〉> 0. In aψ-complete model, the
wavefunction is the ontic state, soλ = |ψ〉. Then

fÂ(λ )(o1) = h(o1 | Â,λ ) = |〈v1|ψ〉|2 > 0,

and similarly fÂ(λ )(o2)> 0. ThereforefÂ is epistemic.
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Corollary 4.5 (EPR). Under the assumption of locality, quantum mechanics cannotbeψ-complete.

Proof. By Proposition 4.4, any non-trivial quantum observable is epistemic with respect toψ-complete
quantum mechanics. Therefore, by Theorem 4.2,ψ-complete quantum mechanics is not local.

This is the same result that was argued for by EPR, though thisproof has more in common with an
earlier argument by Einstein at the 1927 Solvay conference [5], and also with a more recent, general
treatment found in [1] and [11].

5 The PBR Theorem

In this section we briefly make some observations relating tothe PBR theorem, which deals with the
reality (i.e. onticity in the sense of definitions 2.1 and 2.2) of the wavefunction. One of the assumptions
for this result ispreparation independence[30]:

systems that are prepared independently have independent physical states.

The other assumptions are implicit in the present framework.

Theorem 5.1(PBR). For any preparation independent theory that reproduces (a certain set of) quantum
correlations, the wavefunction is ontic.

The preparation independence assumption is concerned withthe composition of systems and has not
appeared in previous no-go results. We will attempt to give this a more careful treatment. First of all, the
PBR theorem describes apreparation scenario. More generally, we might think of preparation scenarios
as an analogue of measurement scenarios, in which the preparationsP play the role of measurements and
the ontic statesΛ play the role of outcomes; see Table 1. Just as we had a compatibility structureM for
measurements, which in Bell scenarios allowed us to chose one measurement from each site, we should
in general allow for a compatibility structureP for preparations, which in the case of the PBR result
allows us to chose one preparation per site. We should allow for joint ontic statesλ , just as we allowed
for joint outcomes. Similarly to before, we will takep to denote a tuple of joint preparations, one for
each site, andλ : p → Λ to denote a tuple of joint hidden variables. The definitions of an ontological
model and the properties from section 3 can be modified in the obvious way to account for this additional
structure.

We are now in a position to give a more careful definition of preparation independence.

Definition 5.2. An ontological theoryh overΛ is preparation independentif and only if we can factor

h(λ | p) = ∏
p∈p

h(λp | p) (6)

for all p∈ P, whereλp := λ |p.

Presented in this way, preparation independence (6) in a preparation scenario is clearly seen to be
analogous to non-contextuality or Bell locality (4) in a measurement scenario. An intriguing question is
what happens if this is relaxed to an assumption analogous tono-signalling, in which we only assume
that the marginal distributionsh(λp | p) are well-defined. Such a ‘no-preparation-signalling’ assumption
would ensure that the preparation at one site cannot affect the probabilities of various ontic states at
another site. Preparation independence would trivially imply no-preparation-signalling, but not vice
versa. It is true that it would allow for global or non-local correlations in the joint ontic stateλ ; but
perhaps in light of the Bell and Kochen-Specker theorems this is to be expected. We therefore propose
this as a more reasonable independence condition.
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Table 1: Analogy between measurement and preparation scenarios, up to a sheaf-theoretic description of
preparation models (c.f. [2]).

Measurement Scenario Preparation Scenario

Measurements X Preparations P

Outcomes O Ontic states Λ

Non-locality Preparation independence

No-signalling No-preparation-signalling

Measurement compatibility M Preparation compatibility P

Measurement events E (m) := Om Preparation events E (p) := Λp

Empirical model {em}m∈M Preparation model {ep}p∈P

(∀ m∈ M . em ∈ DE (m)) (∀ p∈ P . ep ∈ DE (p))

Definition 5.3. An ontological theoryh overΛ is no-preparation-signallingif and only if the marginal
probabilitiesh(λp | p) are well-defined.

If we weaken the assumption of preparation independence to that of no-preparation-signalling, we
will show it is possible to avoid the conclusion of PBR. Underthe modified assumptions we will show
how to construct a counter-example to theargumentgiven by PBR for the onticity of the wavefunction
[30] (Proposition 5.4). The important question that will remain to be answered, therefore, is whether,
with the weaker no-preparation-independence assumption,a result similar to, or indeed counter to, that
of PBR can be proved. This question will be the subject of forthcoming work by the author.

Proposition 5.4. The PBR argument for the onticity of the wavefunction breaksdown for ontological
theories which satisfy no-preparation-signalling but notpreparation independence.

Proof. We begin by summarising the PBR argument up to the point at which we can find a counter-
example. It is assumed that a quantum system may be prepared in states|ψ0〉 or |ψ1〉, inducing distribu-
tions µ0(λ ) andµ1(λ ), respectively, over the spaceΛ of ontic states. Furthermore, it is assumed for a
contradiction that the supports of these distributions overlap on a region∆ ⊆ Λ, and that

q := min

{∫

∆
dλ µ0(λ ),

∫

∆
dλ µ1(λ )

}
> 0.

The argument proceeds by considering two such systems, eachof which is prepared independently in
either |ψ0〉 or |ψ1〉. Given that the systems are prepared independently, then with probability q2 > 0
both systems have ontic states in the region∆. It therefore follows that with this probabilityq2 the joint
ontic state is compatible with each of|ψ0〉⊗ |ψ0〉, |ψ0〉⊗ |ψ1〉, |ψ1〉⊗ |ψ0〉 and|ψ1〉⊗ |ψ1〉 (in the sense
that it lies in the support of the distributions on the joint ontic state space that are induced by these
quantum states). However, if the systems are only required to obey no-preparation-signalling, rather than
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Table 2: A preparation model that satisfies no-preparation-signalling but not preparation independence,
and provides a counter-example to the PBR argument. The tabular representation is analogous to the
framework for Bell-type measurement scenarios introducedin [27]. We read the table as saying, if the
first system is prepared in the quantum state|ψ0〉 and the second system is prepared in state|ψ0〉 (i.e.
joint quantum state|ψ0〉⊗ |ψ0〉), the probability of both ontic states being in the respective regions∆ is
0, etc.

System 2

|ψ0〉 |ψ1〉

∆ Λ−∆ ∆ Λ−∆

System 1

|ψ0〉
∆ 0 q 0 q

Λ−∆ q 1−2q q 1−2q

|ψ1〉
∆ 0 q 0 q

Λ−∆ q 1−2q q 1−2q

preparation independence, it is possible to find a counter-example to this step, which we present in Table
2.

Notice that in this hypothetical preparation model, the individual ontic states never both lie in the
overlap region. Hence, a joint ontic state which is compatible with all of the aforementioned quantum
states can never arise. Nevertheless, the preparation model is no-preparation signalling. For either sub-
system, given that the quantum state prepared is|ψ0〉, the probability of the ontic state being in the
overlap region∆ is q and the probability of being outside is 1−q, and similarly for|ψ1〉. So the choice
of quantum state prepared in one system does not affect the ontic state in the other.

This improves on a counter-example to the PBR argument givenby Lewis, et al. [25], which com-
pletely dropped the assumption of preparation independence. Here, we have provided a counter-example
that can apply to compound systems without invoking superluminal signalling through the preparation
process, due the fact that we have maintained an assumption of no-prepearation-signalling.

Another observation, which is also pointed out in [21], is that onticity of the wavefunction is actu-
ally inconsistent with locality. This can be demonstrated as a consequence of what Schrödinger called
steering[31]. If a local measurement in the basis{|0〉 , |1〉} is made on the first qubit of the state

∣∣φ+
〉
=

1√
2
(|00〉+ |11〉)

then this can be considered as a remote preparation of the second qubit in one of the states|0〉 or |1〉, and
similarly for a measurement in the basis{|+〉 , |−〉}. If the second sub-system has an ontic stateλ that
is independent of measurements made elsewhere, thenλ must be consistent with one state from each of
the sets{|0〉 , |1〉} and{|+〉 , |−〉}, but this contradicts the onticity of the wavefunction.
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The following theorem, which we propose to think of as a weak Bell theorem, since it draws the
same conclusion as Bell’s theorem [7] but with the extra assumption of preparation independence, is an
obvious consequence of this.

Theorem 5.5. Quantum mechanics is not realisable by any preparation independent, local ontological
theory.

Proof. This follows from the PBR theorem and the occurrence of steering in quantum mechanics (see
discussion above).

The ease at which this result falls out may lead us to be cautious of the strength of the preparation
independence assumption.

6 Discussion

We have presented a more general, dualised version of the criterion for the reality or onticity of the
wavefunction proposed by Harrigan & Spekkens. Recasting the criterion in this form has been seen to
give certain advantages; it avoids measure theoretic technicalities relating to sets of measure zero, is
general enough to apply to any object or property in any ontological theory, and is also mathematically
and conceptually straightforward. Furthermore, generalising in the present formulation avoids the need
to postulate that particular values of any property induce non-specified distributions over the space of
ontic states.

The obvious application of the criterion to an object or property other than the wavefunction is to
the observable properties of a system. This led to a characterisation of locality and non-contextuality in
terms of the nature of the observed properties. This may provide a useful tool for looking at foundational
results: we have used it to obtain a short proof that local ontological models have a canonical form and
to gain another perspective on the EPR argument. The characterisation is similar to the Kochen-Specker
[24] or topos approach [23] treatments of non-contextuality.

It is worth mentioning that the characterisation draws a connection between locality and onticity:
these are the properties that are dealt with by the Bell and PBR theorems, respectively. A further connec-
tion was found in Theorem 5.5, which showed that a weakened version of Bell’s result can be obtained
by an argument that combines the PBR result with the incompatibility that arises between steering and
the onticity of the wavefunction.

In relation to the PBR result itself, we have attempted to give a more careful treatment of the assump-
tion of preparation independence, and made a concrete analogy between this property and locality/non-
contextuality. It is possible to relax the assumption to onethat is analogous to no-signalling, and which
may still be well motivated. In this case we have provided a counter-example to the PBR argument. It
improves on the counter-example provided by Lewis, et al. [25] in that it applies to compound systems,
while still employing a reasonable independence conditionthat rules out superluminal influences. This
amounts to introducing global or non-local correlations inthe joint ontic state, which at least is consis-
tent with the Bell and Kochen-Specker theorems. An open question is whether by another argument the
result can be shown to hold with the relaxed assumption of no-preparation-signalling. This question will
be answered comprehensively in forthcoming work by the author.
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