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Presheaf models [7, 27, etc.] provide a formulation of labelled transition systems that is useful for,
among other things, modelling concurrent computation. This paper aims to extend such models
further to represent stochastic dynamics such as shown in quantum systems. After reviewing what
presheaf models represent and what certain operations on them mean in terms of notions such as
internal and external choices, composition of systems, andso on, I will show how to extend those
models and ideas by combining them with ideas from other category-theoretic approaches to rela-
tional models [15] and to stochastic processes [11, 3, 17, etc.]. It turns out that my extension yields a
transitional formulation of sheaf-theoretic structures that Abramsky and Brandenburger [1] proposed
to characterize non-locality and contextuality. An alternative characterization of contextuality will
then be given in terms of a dynamic modal logic of the models I put forward.

1 Introduction

The goal of this paper is to devise a formalism of semantic structure for dynamic logic that is suitable
for expressing stochastic dynamics such as shown in quantumsystems. Essential features of stochastic
dynamics I aim to capture include

• the distinction and interaction betweeninternal and external choices, that is, non-deterministic
branchings that are made within a system and that are made by external agents or experimenters;

• the distinction and interaction between what isglobally the case in an entire system and what is
locally the case in a subsystem.

In particular, the resulting semantics and logic shall be general enough to accommodate both the presence
and the absence of (typically quantum)non-localityandcontextuality, but at the same time expressive
enough to provide logical characterization for non-locality and contextuality.

I achieve my goal by integrating three frameworks of categorical approaches that have been proposed
to modelling non-deterministic and stochastic processes.Firstly, my formalism will be based on

(i) Presheaves as labelled transition models for concurrency (Winskelet al. [7, 27], etc.). I show how
the presheaf structure can be used to capture notions that are essential to my goal, such as internal
and external choices, composition of multipartite systems, and so on.
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Then I extend this setting in two aspects, by admitting non-trees and by adding probabilities. I attain
these extensions by integrating the following ideas into myformalism.

(ii) Kripke relational semantics in terms of Kripke frames as functors from labels to the categoryRel
of sets and relations (Hermida [15]). Integrating this ideawith the presheaf framework admits
presheaf-like models as transition systems of non-tree forms. I will also lay out motivation for
admitting non-trees. (One mode of this integration has already been given in Sobociński [25]; yet
the mode of integration I propose in this paper is different and not equivalent.)

(iii) The category of stochastic maps, or equivalently the Kleisli category of the distribution monad (the
idea goes back at least to Lawvere [18]; it is also studied recently by Fritz [11], Baezet al. [3],
Fong [9], etc., in the former formulation, by Jacobs [17], etc., in the latter formulation). How to
add probabilities to presheaf models is a question posed in the concluding part of Varacca [26]; I
answer this question by using structures closely related, though not equivalent, to stochastic maps.

These extensions give semantic structures on which I define adynamic and probabilistic logic.
To demonstrate that the resulting semantics and logic achieve the goal mentioned above, I will show

how they capture non-locality and contextuality. In particular, the semantics gives an alternative, transi-
tional formulation to a sheaf-theoretic approach to non-locality and contextuality (Abramsky and Bran-
denburger [1], etc.). This approach provides a sheaf-theoretic expression for, among other things, mea-
surement scenarios in quantum mechanics, and characterizes non-locality and contextuality found in
such scenarios in terms of non-existence of global sections. The transitional formulation I give to this
approach leads to an alternative, dynamic-logical characterization of non-locality and contextuality.

2 Presheaf Models for Measurements

This section reviews presheaves over trees as labelled transition systems (see [7, 27]). Rather than giving
new definitions or theorems, this section is concerned with conceptually laying out how to use the familiar
notions of presheaf and fibration to represent features of non-deterministic processes that are essential to
the goal of this paper.

2.1 Trees and Presheaves of Non-Deterministic Choices

Here I lay out the key idea of how to use a presheaf over a tree asa labelled transition system, or LTS for
short, in a manner suitable for representing different kinds of non-determinacy in stochastic processes.

As in the standard terminology, by a “measurement scenario of (n,k, ℓ)-type” let us mean a Bell-type
scenario of (typically quantum) measurements that involves n parts (or experimenters), each of which
(or whom) chooses one fromk measurements, each of which hasℓ outcomes. For instance, in a(1,2,2)
scenario, Alice chooses one from two measurements,a anda′, each of which has two outcomes, 0 and
1. This simple scenario can be represented by the following treeL and presheafSoverL.
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◦
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a a′
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The binary branching inL represents the choice Alice makes outside the system, choosing from two
measurementsa anda′. Then regardSas a transition system, reading “7→” backward as transition “←”;
each such edge of transition inS is labelled with an edge inL—for instance, those inS(a) above are
labelled witha, representing possible outcomes the system has for Alice’schoice ofa. So the binary
branching inS(a) represents the system having two outcomes for measurementa. One of our objectives
is to assign probabilities to such branchings, so that, in the picture above for instance, the states can be
(at least partially) specified by the vector of probabilities ~P to the right of the picture above.

Note that the representation just given involves two kinds of choice. Put in general terms, when we
describe a system and agents external to the system,

• The agents may be able to choose from different ways to interfere or interact with the system. We
call these choicesexternal choices, and represent them with branching in the base tree.

• The system may behave by itself non-deterministically—sometimes in response to external choices,
but sometimes simply as time passes—with several possible outcomes. We call these choicesin-
ternal choices, and represent them with branching in function components of the presheaf.

In short, external choice resides in the base treeL; internal choice resides in (function components of) the
presheafS. This is the slogan for our use of presheavesSover treesL asL-labelled transition systems.

In fact, not just the distinction between internal and external choices, the presheaf structure also
gives us several useful ways to control descriptions of these choices—for instance, to shift the boundary
between the internal and external. We will see this in subsection 2.2. Before doing so, it is useful to
observe that the presheaves over a tree are equivalent to thefibrationsover the tree (which should be
quite obvious from the picture above). Let us recall

Definition 1. A bundle (i.e., monotone map)π : S→ L of posets is called afibration (overL) if, whenever
x6L π(t), there is a uniques∈ π−1(x) such thats6St. WriteFib for the category of posets and fibrations.

We should note that ifπ : S→ L is a fibration andL is a tree thenS is also a tree. Then it is easy to
show the following (we provide a proof rather as a review of notation).

Fact 1. SetsL
op
≃ Fib/L for any posetL.

Proof. A presheafS : Lop→ Setsyields a fibration with the projectionπ : S→ L from the dependent
sumS:= ∑x∈L S(x) = {(x,s) | x∈ L ands∈ S(x)} to L and the order6S onSsuch that(x,s)6S (y, t) iff
x6L y ands= S(x,y)(t). A fibrationπ : S→ L yields a presheafS: Lop→ Setsby lettingS(x) = π−1(x)
for x∈ L and, wheneverx6L y, definingS(x,y) : π−1(y)→ π−1(x) so thatS(x,y)(t) for t ∈ π−1(y) is the
uniques∈ π−1(x) such thats6S t.

Given presheavesS,T : Lop→ Setsand corresponding fibrationsπS : S→ L, πT : T→ L, the natural
transformations fromS to T are just the monotone mapsf : S→ T overL (meaningπT ◦ f = πS), but
any such monotone mapf can easily be shown to be a fibration.

We will invoke this presheaf-fibration equivalence extensively in the rest of this paper.

2.2 Controlling System Descriptions

Given presheaf-fibration descriptions of non-deterministic processes with internal and external choices,
we can take further advantage of operations on the presheaf-fibration structure to control the descriptions.

A family of operations that will later prove useful is done bychange of base. One such operation is to
precompose a given presheafS: L1

op→ Setswith an embeddingm : L0 L1, obtaining a new presheaf
S◦ mop : L0

op→ Sets. Since some points, or “stages”, ofL1 are “omitted” inL0, the precomposition
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makes the model “forget” what takes place at these omitted stages. For instance, takem : L0 L1 as
on the left of (1) below, and leta andb represent measurements by Alice and by Bob. Then a presheaf
S: L1

op→Setscarries information as to the original states (inS(x)), the possible outcomes ofa (in S(y)),
and then the possible further outcomes ofb (in S(z)). In contrast, the presheafS◦ mop : L0

op→ Sets
carries the same information as to the original states (inS(x)) and the outcomes of both measurements
(in S(z)), but it has no information as to the process in between (or, indeed, even as to whethera is
performed before, after, or at the same time asb).

◦x ◦
y

◦
za b

•

•
0

•
1

• 00
• 01
• 10
• 11

L1

Sets

S

◦ ◦
ab

L0

m
◦ ◦

◦

a

a′

•

• 0

• 1
• 0

• 1

LA

SA

πA

◦ ◦L∅

pA

(1)

Another is to compose fibrationsπ : S→ L0 andp : L0→ L1, obtaining a new fibrationp◦ π : S→ L1.
In π, branchings inL0 represent external choices, but some of them are internal choices in p; so the
composition “internalizes” these external choices. TakeπA and pA as on the right of (1) above.πA

describes Alice as an agent external to a system who externally chooses from measurementsa anda′.
On the other hand,pA ◦ πA describes a bigger system encompassing Alice—so that we simply watch the
bigger system internally choose from the four outcomes, “Alice performsa and gets outcome 0”, etc.

In fact, such composition of fibrations can be used to composedescriptions of several systems into a
description of a multipartite system. The fibrationπA in the picture above describes a(1,2,2)-scenario
for Alice. Take an isomorphicπB : SB→ LB to describe a(1,2,2)-scenario for Bob. Then a fibration
πAB : SAB→ LAB for the composed(2,2,2)-scenario is obtained as follows:

SAB

��

//

πAB
""

SB

πB
��

LAB

��

// LB

pB
��

SA πA
// LA pA

// L∅ ◦
◦

◦

◦
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•11
•
•
•10
•11

• 00
• 01
•
•
• 00
• 01
• 10
• 11

ab

ab′

a′b

a′b′
LAB

SAB

πAB
(2)

That is,πAB = πA×L∅
πB : SA×L∅

SB→ LA×L∅
LB. Put more conceptually, we useL∅ as a clock for

synchronizing events in Alice’s scenario and ones in Bob’s,and then take simultaneous pairs of events
from Alice’s and Bob’s scenarios. We should note that the pair of projections fromSAB andLAB to SA

andLA represents the restriction of a description of what is globally the case in the bipartite system to a
description of what is locally the case in Alice’s subsystem—this is a tool crucial for the purpose of this
paper, of capturing non-locality and contextuality. We will see, for instance, that this projection has a
role in characterizing the no-signalling property in fibrational terms in section 3.

It may need stressing thatSAB described above is just a cartesian product (taken fiberwiseoverL∅)—
rather than anything similar to a tensor product—ofSA andSB; hence it does not by itself express any



K. Kishida 119

correlation between Alice’s and Bob’s measurement outcomes. It is rather a transition-system expression
for the 4×4 entries in a probability table describing a(2,2,2)-scenario. Any correlation will be expressed
by assigning probabilities to transitions inSAB; we will see how in section 3.

3 Adding Probabilities to Presheaves

This short section lays out how to add probabilities to the presheaf representation of non-deterministic
processes given in section 2. The definitions provided here will later be generalized in subsection 4.2,
after a generalization of the presheaf representation is proposed in subsection 4.1.

3.1 Stochastic Presheaves

Recall that in a description of a non-deterministic processwith a presheafS : Lop→ Sets, for any edge
e= (x,y) of L and states∈ S(x), the inverse imageS(e)−1(s) ⊆ S(y) is the set of states to which the
system may internally choose to transition froms whene is externally chosen. Now we want to give
probability to such an internal choice; so let us achieve just that, with the following series of definitions.
They use the notion ofR-distribution for a commutative semiringR; see [1,§2.3] for its definition. In
particular, throughout this paper all distributions are assumed to be normalized and with finite support.

Definition 2. Fix a commutative semiringR. Given any setsX andY, we define anR-mapfrom X to Y
as any surjectionf : Y։ X (note the opposite direction) equipped with, for eachs∈ X, anR-distribution
on f−1(s)⊆Y, writtend f

s . (We say that anR-map ison its underlying surjection.)

Obviously, we can achieve what we wanted above with anR>0-map f onS(e) : S(y)→S(x) (assum-
ing S(e) is surjective): The distributiond f

s assigns to eacht ∈ S(e)−1(s) the probabilityd f
s (t) with which

the system transitions froms to t (whene is chosen). To do this for the entire presheaf, we give

Definition 3. Given any twoR-mapsf R on f : Z։Y andgR ong : Y։X, let their compositionf R ◦ gR

be ong ◦ f : Z։ X with, for eachs∈ X, anR-distributiondg◦ f
s on f−1(g−1(s)) ⊆ Z such that

dg◦ f
s (u) = dg

s( f (u)) ·d f
f (u)(u). (3)

Write R-Map for the category of sets andR-maps. (Clearly, the uniqueR-map on the identity map
1X : X→ X is the identity onX in R-Map.)

The point of (3) should be clear: Whens= g(t) and t = f (u), the system transitions froms to t
with probability r = dg

s(t) and fromt to u with probability r ′ = d f
t (u); so it transitions froms to u with

probability r · r ′ = dg
s(t) ·d

f
t (u) = dg◦ f

s (u). (Note that the system can go froms to u through at most one
t, since f is a function.) Then, finally,

Definition 4. An R-presheafover a categoryC is a contravariant functor fromC to R-Map. (We say
that anR-presheaf ison its underlying presheaf.)

So, given a presheafS: Lop→ Setsover a treeL as anL-LTS, we assign probabilities to the internal
choices inSby simply taking anR-presheaf onS.

The presheaf-fibration equivalence (Fact 1) partially extends toR-presheaves: We can define “R-
fibrations” and prove that the equivalence extends to an essentially surjective and full functor from the
category of rootedR-presheaves over a rooted treeL to that of rootedR-fibrations overL (we however
omit the definitions and proof in this abstract). This extended version is limited and no longer an equiv-
alence, but good enough for practical purposes. The core idea is that, given anR-presheafS: Lop→ Rel
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that has a roots∈ S(x), the “horizontal” assignment of probabilitiesdS(x,y)
s (t) to all statest ∈ Scan be

turned into a “vertical” assignment of probabilitiesdπ
y (t) on the fibrationπ : S→ L that corresponds to

the underlying presheaf ofS.
Lastly, note that, although it may be proper to reserve the term “probability” to values ofR>0-

distributions, in this paper I apply the term broadly to values ofR-distributions in general. Other inter-
esting cases ofR includeB, the booleans, andR, all the reals, both of which are discussed in [1].

3.2 Example: No-Signalling

Let us say that a commutative semiringR is “normalizable” if, for every family{r i}i∈I of elements ofR
such thatc := ∑i∈I r i 6= 0, there is a family{r ′i}i∈I of elements ofRsuch thatr ′j ·c= r j for eachj ∈ I and

Z

h

��
✲✲
✲✲
✲✲
✲✲
✲✲
✲

f
// Y

g

��✑✑
✑✑
✑✑
✑✑
✑✑
✑

=

X

∑i∈I r ′i = 1. For instance,R>0 is normalizable. Now, inR-Map for normalizableR, we
have the following fact (a proof is omitted since it is straightforward).

Fact 2. SupposeR is normalizable. Then a factorization of a surjection into surjections,
h = g ◦ f : Z։ Y։ X, induces the following functionφ : For anyR-maphR on h,
φ(hR) is the (unique)R-map ong through whichhR factors (inR-Map); that is,hR =

f R ◦ φ(hR) for someR-map f R on f . More explicitly, φ(hR) is defined bydφ(hR)
s (t) =

∑u∈ f−1(t)dhR

s (u) for s∈ X andt ∈Y; in other words,φ(hR) is themarginalof hR along
the identification of statesu ∈ Z by the quotient mapf : Z։ Y. In addition,φ is a
surjection from theR-maps onh to those ong.

SAB

πAB ��
✲✲
✲✲

pS
// SA

πA

��✑✑
✑✑
✑✑
✑✑
✑✑
✑

=
LAB

pL ��
✲✲
✲✲

LA

Let us apply this fact to the diagram in (2), writingpS : SAB։SA andpL : LAB։
LA for the pair of projections. Takeh = pL ◦ πAB andg = πA, with f = pS. Then
φ(hR) (on πA) is the marginal ofhR (on pL ◦ πAB) along the restriction of description
from the bipartite system to Alice’s. Note that, however, this involves probabilities
on pL, that is, with which Bob chooses from measurementsb and b′. Different
probabilities onpL may lead to differentφ(hR)—or maybe not, if the probabilities
on πAB satisfy the no-signalling property. More precisely, we have the following (in
which we writeπAB so as to connect to (2), but the system can consist of any number
of parties).

Theorem 1. An R-presheafπR
AB on the presheafπAB for a multipartite system satisfies no-signalling iff,

for each pair of projections pS and pL, φ(πR
AB ◦ pR

L) is the same regardless of the choice of R-map pR
L on

pL.

Proof. First observe that, for eacht ∈ SA, sincepS
−1(t) = ∑v∈pL

−1(πA(t))(pS
−1(t)∩πAB

−1(v)), we have

d
φ(πR

AB◦p
R
L)

πA(t)
(t) = ∑

u∈pS
−1(t)

d
πR

AB◦p
R
L

πA(t)
(u) = ∑

u∈pS
−1(t)

dpR
L

πA(t)
(πAB(u)) ·d

πR
AB

πAB(u)
(u)

= ∑
v∈pL

−1(πA(t))
∑

u∈pS
−1(t)∩πAB

−1(v)

dpR
L

πA(t)
(v) ·d

πR
AB

v (u)

= ∑
v∈pL

−1(πA(t))

dpR
L

πA(t)
(v) · ∑

u∈pS
−1(t)∩πAB

−1(v)

d
πR

AB
v (u). (4)

Now supposeπR
AB satisfies no-signalling. This means that eacht ∈ SA is assigned a reale(t) such

that everyv∈ pL
−1(πA(t)) satisfies∑u∈pS

−1(t)∩πAB
−1(v) d

πR
AB

v (u) = e(t). (Note that this is independent of
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choice ofR-map onpL.) So, plugging this into (4) we see that, for anyR-mappR
L on pL, eacht ∈ SA has

d
φ(πR

AB◦p
R
L)

πA(t)
(t) = ∑v∈pL

−1(πA(t))d
pR

L
πA(t)

(v) ·e(t) = e(t), which is independent of the choice ofpR
L .

On the other hand, supposeφ(πR
AB ◦ pR

L) is the same regardless of the choice ofpR
L . Fix anyt ∈SA and

anyv0,v1 ∈ pL
−1(πA(t)). Obviously, for eachi = 0,1, there is anR-mappRi

L on pL such thatdpRi
L

πA(t)
(vi) =

1. Then∑u∈pS
−1(t)∩πAB

−1(v0)d
πR

AB
v0 (u) = d

φ(πR
AB◦p

R0
L )

πA(t)
(t) = d

φ(πR
AB◦p

R1
L )

πA(t)
(t) = ∑u∈pS

−1(t)∩πAB
−1(v1)d

πR
AB

v1 (u) by (4).

Since this holds for any pair of projectionspS andpL, πR
AB satisfies no-signalling.

4 Stochastic Relational Presheaves

In section 2 we saw how presheaves over trees—which are themselves trees—can be used as LTSs; and
in section 3 we saw how to add probabilities to such systems. Generalizing this, this section obtains
similarly labelled transition systems with probabilitiesthat are however not trees.

4.1 Relational Presheaves

We first show how to implement LTSs of a non-tree shape using a presheaf-like structure. The core idea
in using presheaves as LTSs was the following, functorial one: Let a treeL represent a series of external
choices; assign to each stage inL the set of possible states at that stage; and connect states from different
stages with internally chosen transitions. This idea involves no intrinsic reason why this connection of
transitions should be (reverse) functional, i.e., why the functor we take should be a presheaf.

In fact, here is a reason the functor we take shouldnot always be a presheaf. Consider the following
two objectives, each of which may, conceivably, be well motivated.

(i) For our functorS from the treeL, we may like to take, as valuesS(x) for stagesx∈ L, the sets of
states in Hilbert spaces instead of just any sets, to expressquantum processes straightforwardly.

(ii) We may consider a non-deterministic process that involves both branching and colliding (so cannot
be a tree, forward or backward). In fact, when we do a quantum measurementa in one basis and
then anothera′ in another basis, the system may transition from a states to t0 (aftera) to u (after
a′), but may also transition froms to t1 6= t0 (aftera) to the sameu (aftera′).

The use of a presheaf, and in particular of functionsS(e) for edgese of L—which forces the transition
system to be a tree—cannot accommodate both (i) and (ii). To accommodate a non-tree as in (ii) in a
tree formalism, it is a standard technique to “unfold” or “unravel” the non-tree into a tree, duplicating
the single stateu to u0 following t0 andu1 following t1. This, however, does not go well with (i), since
the setS(x) encompassingu0, u1, and all the required duplicates may have to be much more complicated
than just the set of states of a Hilbert space. This is why we should at least sometimes letS(e), for edges
e of L, be relations in general rather than functions. Then, in (ii), the states can be connected to botht0
andt1 while botht0 andt1 connected tou.

So, instead of the categorySetsof sets and functions, we take the categoryRel of sets and relations
as the codomain of our functors (see [6] and [10, esp. Ch. II] for categorical characterizations ofRel and
its generalizations). For the sake of notation, let us enter

Definition 5. Rel is the category of sets and relations. Its objects are sets, and its arrows from a setX to

anotherY are relationsf ⊆ X×Y, written f : X→p Y as well. We writes
f
−→ t instead of(s, t) ∈ f , and,

identifying f : X→p Y with f : X→P(Y), sometimes writef (s) = {t ∈Y | s
f
−→ t }. The composition

g ◦ f : X→p Z of f : X→p Y andg : Y→p Z is defined so thats
g◦ f
−−→ u iff s

f
−→ t

g
−→ u for somet ∈Y.
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Rel is a dagger compact category. Firstly, it has a † structure: Any f : X→p Y has a unique opposite

relation f † : Y→p X, so thats
f †

−→ t iff t
f
−→ s. Also, even though the cartesian product is no longer the

product in the categorical sense inRel, it is still a monoidal product⊗. In addition, the identification of
f : X→p Y with f : X→P(Y) is just one aspect of the fact thatRel is the Kleisli category Kl(P) of the
powerset monadP on Sets. Now, let us finally provide

Definition 6. A relational presheafover a categoryC is a covariant functor fromC to Rel.1

So we generalize presheaves with relational presheaves as our LTSs. We must note that relational
presheaves are covariant and not contravariant. Thus, given an edgee= (x,y) of a treeL, the system’s
transition from states at stagex to ones at stagey is represented by a relationS(e) : S(x)→p S(y) in a
relational presheafS: L→ Rel, whereas by a functionS(e) : S(y)→ S(x) in a presheafS: Lop→ Sets.

It may be worth noting that, although relational presheavesover a tree of labels are themselves LTSs,
they are also a generalization of the ordinary kind of LTSs inthe following sense. As Hermida [15]
observes, given a setL of labels, the (ordinary) transition systems labelled byL are, in our terminology,
the relational presheaves over the free monoidL∗ generated byL. Our notion of relational presheaf as
a LTS generalizes this by replacingL∗—a tree in which every (type of) edge is followed by every other
(type of) edge—with a general tree, and permitting different stages to have different sets of states.

It is also worth noting that a small part of the presheaf-fibration equivalence (Fact 1) applies to
relational presheaves, as relational presheaves over a tree L can be regarded as “open” bundles overL:
The equivalence extends to an essentially surjective and faithful functor from the category of rooted and
open bundles over a rooted treeL to that of rooted relational presheaves overL. (Again, we omit the
definitions and proof in this abstract.)

4.2 Adding Probabilities to Relational Presheaves

We added probabilities to presheaves as LTSs in section 3. Inthis subsection, we add probabilities to
relational presheaves, which we introduced in subsection 4.1. This can be done by simply replacing the
functional elements of the definitions in section 3 with relational elements. (We should recall that, in
the generalization given in subsection 4.1, a relationf : X→p Y generalizes a functionf : Y→ X of the
opposite direction.)

Definition 7. We define anR-relationfrom a setX to anotherY as an “entire” relationf : X→p Y (i.e.,

such that eachs∈ X has somet ∈Y with s
f
−→ t; note that, unlike the case ofR-maps, we do not flip the

direction of f for R-relations) equipped with, for eachs∈ X, anR-distributiond f
s onY with support

supp(d f
s )⊆ f (s). (5)

(We say that anR-relation ison its underlying relation.) Given twoR-relations f : X→p Y andg : Y→p Z,
let their compositiong ◦ f : X→p Z have, for eachs∈ X, anR-distributiondg◦ f

s onZ such that

dg◦ f
s (u) = ∑

t∈Y

d f
s (t) ·d

g
t (u). (6)

Write R-Rel for the category of sets andR-relations. (It should be clear that the uniqueR-relation on the
identity relation 1X : X→p X is the identity onX in R-Rel.)

1Rosenthal [24] defines a relational presheaf as a “lax” functor; Sobociński [25] follows this “lax” definition in his account
of relational presheaves as LTSs. In contrast, I define a relational presheaf “strongly”.
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This notion ofR-relation is closely related to that ofstochastic map. We discuss this relationship in
subsection 4.3; it will be significant to the discussion that(5) has “⊆” as opposed to “=”.

Let us compare the equation (6) with the one (3) forR-maps. ForR-mapsf : Z→Y andg : Y→ X,
there is at most one statet ∈Y through which the system may transition from a givens∈ X to a given
u∈ Z; so the probability of the transition froms to u is just the probability of this particular path, given
by the product of the two transitions, froms to t and fromt to u. In contrast, forR-relations f : X→p Y
andg :Y→p Z, there can be many paths through which the system may transition froms∈X to u∈ Z; yet,
since these paths are mutually exclusive, we can just sum their probabilities up to obtain the probability
of the transition froms to u. Lastly, enter

Definition 8. An R-relational presheafover a categoryC is a covariant functor fromC to R-Rel. (We
say that anR-relational presheaf ison its underlying relational presheaf.)

This definition provides a structure that integrates the three frameworks (i)–(iii) mentioned in Intro-
duction: AnR-relational presheafS: L→ R-Rel over a treeL forms anL-LTS in which internal choices
take place with probabilities and possibly in a non-tree fashion.

Example 1. Let a treeL represent a branching family of series of quantum measurements, gates, and
other operations that can be performed. Then, for stagesx ∈ L, let S(x) be sets of states in (possibly,
though not necessarily, identical) Hilbert spaces, and, for each edgee= (x,y) of L, let S(e) : S(x)→p S(y)
be theR>0-relation that models the operatione in Hilbert-space terms, such as projections (branching
with probabilities) to the suitable measurement basis. IfL is moreover a free monoid andS(x) are all
identical (as in Hermida’s [15] formulation of transition systems mentioned in subsection 4.1), models
amount essentially to ones given in Baltag and Smets [4].

This example gives a straightforward representation of quantum protocols. So it is not surprising at
all that we can find non-local or contextual behaviors in suchrepresentations. Yet, using more general
values than Hilbert spaces,R-relational presheaves can model not only the presence but also the absence
of non-locality and contextuality, and indeed characterize contextuality, as we will see in section 5.

4.3 Relation to Other Work and Formulations

The notion ofR-relation is closely related to that ofstochastic map, or equivalently to Kleisli maps of
the distribution monad.2 A stochastic map from a setX to anotherY is anX-indexed family ofR>0-
distributions onY, with the composition defined exactly by (6). This can also berewritten using

Definition 9. Given any setX, write DR(X) for the set ofR-distributions onX. This gives rise to the
R-distribution functorDR : Sets→ Sets(see [16] as well as [1,§2.3]), which is in fact a monad onSets
(see [16]).

Then the stochastic mapsf from a setX to anotherY are exactly the functionsf : X→DR>0(Y), the
Kleisli maps ofDR>0. Moreover the Kleisli composition amounts to (6), and so thecategoryStoch of
sets and stochastic maps is the Kleisli category Kl(DR>0) of DR>0 (see [17,§2]).

This is closely related toR-Rel, but not exactly the same (aside fromRgeneralizingR>0): In short, an
R>0-relation on a relationf is a stochastic map with an extra piece of information, namely, the underlying
relation f . To express this formally, consider the following subfunctor of P×DR : Sets→ Sets.

T : X 7→ ∑
S∈P(X)

DR(S) = {(S,d) ∈P(X)×DR(X) | d ∈DR(S)}.

2I thank an anonymous referee for his/her comments regardingthe relation betweenR-Rel and Kl(DR>0), which prompted
me to write this subsection as a reply.
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(We identify d ∈ DR(X) andd ∈ DR(S), as long as supp(d) ⊆ S,X.) Then theR-relations f from a set
X to anotherY are exactly the functionsf : X → T(Y), with a P(Y) component. The two setsT(Y)
andDR(Y) are related by the projectionp : (S,d) 7→ d and a sections : d 7→ (supp(d),d), but s◦ p 6= 1
since we have “⊆” as opposed to “=” in (5). Thus anR-relation f : X → T(Y) carries properly more
information, of the underlying relation, than a stochasticmap f : X→ DR(Y). More categorically put,
postcomposingp andswith Kleisli maps gives a retraction and a section of categories so that

Fact 3. Stoch= Kl(DR>0) is a retract ofR>0-Rel, but the retraction is not faithful.

The extra piece of information may appear redundant, as longas we are concerned with probabilities
of transitions; yet that piece of information sometimes proves useful. In such a model as in (1) or (2),
the underlying relational presheafSdescribes the “logical” constraint of which states can be “logically”
connected to which states; for instance, on the left of (1), state 00 can follow 0 but cannot 1. When we
add the “physical” information of probabilities toSby taking anR-relational presheaf onS, the “logical”
information is sometimes entailed by supports, but not always so: If the edge connecting states 0 and 00
in (1) has probability 0, then the support cannot tell us whether state 00 can “logically” follow state 0 or
1. It is useful to retain the “logical” constraint so as to consider a family of physical models satisfying
it, as opposed to just one model—it is as useful as having a table of 4×4 entries that accommodates a
family of probability assignments to outcomes in a(2,2,2)-scenario. And for this purpose we need to
retain the underlying relations, hence usingR-Rel as opposed toStoch.

Lastly, it may be useful to note that the unit and multiplication of the cartesian product monadP×
DR restrict to the subfunctorT,3 and that the composition inR-Rel is the Kleisli composition ofT; thus

Fact 4. T is a monad onSets, andR-Rel is its Kleisli category Kl(T).

This putsR-Rel in the tradition [18, 12, 21, 22, 8, 17, etc.] of using algebras for monads to represent
stochastic relations.

5 Dynamic Logic for Contextuality

So far we have laid outR-presheaves andR-relational presheaves as labelled and stochastic transition
systems. Now we demonstrate that these models are good enough for representing essential features
of stochastic dynamics such as shown in quantum systems, by showing that they can characterize non-
locality and contextuality; in fact, the dynamic logic of those transition systems is expressive enough to
express this characterization in logical terms.

5.1 Deterministic Hidden-Variable Models

In their sheaf-theoretic approach to non-locality and contextuality, Abramsky and Brandenburger [1]
provided a characterization of non-locality and contextuality in terms of “global sections” of certain
presheaves; see [1, esp.§3 and§8]. We can “translate” this characterization into our setting of stochastic
relational presheaves as follows.

Suppose we have anR>0-presheaf representing an “empirical model” for a(n,k, ℓ)-scenario that sat-
isfies no-signalling in the sense of subsection 3.2. (The characterization given in [1] is more general than
just about(n,k, ℓ)-scenarios, though I only take(n,k, ℓ)-scenarios here. We can translate the characteri-
zation in full generality, but omit it in this abstract.) As an example, let us take anR>0-presheafE on the
presheafSAB in (2) (and assume no-signalling). ThenE is realized by a (factorizable) hidden-variable

3See Definition 2.1.2 of [19] for a concrete description of a cartesian product monad and its unit and multiplication.
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model if and only if it has a “global section” (Theorem 8.1 of [1])—meaning, in our terms, that there
exists anR>0-relational presheafH on the relational presheafSh

AB in
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(complete the picture by adding edgesab′, a′b, anda′b′ to Lh
AB) from whichE is obtained by forgetting

the middle stagey with the change-of-base operation as on the left of (1), thatis, E = H ◦mop for the
embeddingm: LAB Lh

AB that omitsy. HereE =H ◦mop means thatE(ab) =H(ab◦ i) =H(ab) ◦H(i),
and hence that, by (6),

dE(ab)
s (u) = ∑

t∈H(y)

dH(i)
s (t) ·dH(ab)

t (u). (8)

This is exactly to “reproduce the empirically observed probabilities [dE(ab)
s ] by averagingover the hidden

variables with respect to the distribution [dH(i)
s ]” ([1], p. 11).

From this characterization, the following features ofH should be obvious: The setH(y), which is
forgotten inE, is a set of latent “instruction sets” (see [20]); moreover,they aredeterministic, asH(ab)
is anR>0-relation on afunction, as opposed to just any relation, fromH(y) to H(zab) = E(zab). Thus,
the contextuality in a labelled and stochastic transition systemE amounts to the failure ofE to have such
a deterministic hidden-variable modelH. A little more formally,

Theorem 2. For an empirical model E (in the sense of [1]), the following are equivalent.

(i) E has a realization by a factorizable hidden-variable model.

(ii) E has a global section.

(iii) The R>0-relational presheaf for E is obtained by forgetting the middle stage of a deterministic
hidden-variable model.

Proof. “(i) iff (ii)” is Theorem 8.1 of [1]. “(ii) iff (iii)” is essentially due to the fact that the equation for
“averaging over” in [1] (p. 11) is identical to (8).

Note that the underlying relational presheafSh
AB of H (or any general ones for(n,k, ℓ)-scenarios)

is not providedad hoc, but canonically obtained, in the manner of (2), as the fibered cartesian product
Sh

A⊗Lh
∅

Sh
B of the obvious hidden-variable modelsSh

A : Lh
A→ Rel for Alice (as in (7) above) and for Bob.
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•
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To extract an essential idea from the discussion so far, contextuality means, in
transitional terms, that a model is inconsistent with the first shape of branching to
the right (in which the system internally chooses from latent instruction sets before
external choices are made), but has to have the second shape (in which the system
internally chooses outcomes when external choices are made). And the distinction
between these two shapes is one of the things modal logic is good at. Thus we carry on to consider the
modal logic of our labelled and stochastic transition systems.

5.2 Dynamic Logic of Stochastic Relational Presheaf Models

We lay out here how to useR-relational presheaves as a semantic structure for modal, dynamic logic. It
turns out that the logic it gives rise to is expressive enoughto capture in logical terms the characterization
of contextuality we saw in subsection 5.1. (See [14] for general exposition of dynamic logic. A modal
logic of stochastic relations expressed by algebras for a monad is also found in [8].)

Let us fix some (propositional) language; for our purposes itneeds to have∧ and¬. Then we fix a
set of labelse of transition (for instance, we use labelsa, b, ab, ab′, etc., for a measurement scenario
of (2,2,2)-type). For each such labele, we add “dynamic modalities”[e] and〈e〉 to the language; we
may also like to use probability modalitiesP(− | e) T r for realsr. Since we take the base logic to be
classical,〈e〉 can be defined as¬ [e]¬, and⊤, ∨, biconditional↔ and exclusive disjunction⊕ can be
defined as usual. So we put

ϕ ::= p | ϕ ∧ϕ | ¬ϕ | [e]ϕ | P(ϕ | e)> r | P(ϕ | e) = r | P(ϕ | e)< r

for propositional lettersp and the labelse. For the sake of application to the contextuality in quantum
measurements, we let each label be a measurement context (i.e., a jointly performable set of measure-
ments), and each propositional letter have the forma= k for a measurementa and an outcomek of a.
(We will mention this application shortly in section 5; the semantics laid out in the remainder of this
subsection can apply equally to other languages of the sort just defined.)
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For this modal language,R>0-relational presheaves provide models.
Firstly, the labels need interpreting in trees of labels. Wetake a family of
trees—but not necessarily a single tree—and fibrations among them with
an initial treeL0, so that each labele is an edge of one of the trees. For
instance, the(2,2,2)-scenario of Alice and Bob described in (2) has four
treesL− of labels and fibrations among them, withLAB initial; the picture
to the right describesL0 = LAB, L1 = LA, and the fibrationp : LAB→ LA.
Labelsabandab′ lie in L0, which takes both Alice and Bob as external to
the system;a lies inL1, which takes Alice as external but Bob as internal.
In general,p may fail to be a fibration or a function toL1 (because, e.g.,
L0 may have edgesab, bc, ca while L1 has onlya, so thatbc cannot be
projected down to any edge inL1); but it has to be a partial functiononto
L1, so thatp† is an entire relation on which there can beR-relations.

Then we take anR-relational presheafπ : E→ L0 over the initial treeL0; to keep describing the
(2,2,2)-scenario as an example, let us takeE on SAB in (2). Now, finally, we can provide interpretations
JϕK for sentencesϕ of the language above by first assigning subsetsJpK to propositional lettersp and by
then extendingJ−K recursively. We use the classical clauses for the Boolean connectives.

The new clauses of recursion forJ−K concern[e]ϕ andP(ϕ | e)T r. Sinceemay not lie in the initial
treeL0, let p : L0→ L1 be the (perhaps partial) function onto the treeL1 in whiche lies. Then we express
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the ideas

• [a]ϕ means thatϕ will be the case when Alice choosesa, regardless of which ofb andb′ Bob may
choose;

• P(ϕ | a) T r means that the probability with whichϕ will be the case when Alice choosesa is
greater than (equal to, or less than)r, regardless of which ofb andb′ Bob may choose;

with the following clauses:

• s∈ J[e]ϕK iff supp(dE(e′)
s )⊆ JϕK for all e′ = (π(s),x) ∈ p−1(e);

• s∈ JP(ϕ | e)T rK iff ∑t∈S(e′)(s)∩JϕK dE(e′)
s (t)T r for all e′ = (π(s),x) ∈ p−1(e).

It is worth noting thatsmay fail to be in any ofJP(ϕ | e)> rK, J· · ·= rK andJ· · ·< rK, when no-signalling
fails (this is why the three sentences cannot define each other). On the other hand,s∈ JP(ϕ | a) = rK
implies that the model satisfies no-signalling regardinga.

Given this semantics, the following axioms and rules are sound (we omit ones regarding probability
modalities; a complete axiomatization is an open problem):

• Classical propositional logic.

• Standard axioms and rules for every[e]:

ϕ ⊢ ψ
[e]ϕ ⊢ [e]ψ , ⊢ [e]⊤, [e]ϕ ∧ [e]ψ ⊢ [e](ϕ ∧ψ).

• Moreover, whenevere0, e1 are such thatp(e1) = e0 for one of the fibrationsp,

[e0]ϕ ⊢ [e1]ϕ . (9)

• In addition, becauseR-relations are on entire relations and distributions have nonempty supports,
the semantics validates

〈e0〉〈e1〉⊤ ⊢ [e0]〈e1〉⊤.

5.3 Dynamic-Logical Characterization of Contextuality

The dynamic logic and its semantics introduced in subsection 5.2 can provide characterization for con-
textuality, taking advantage of the kind of semantic structures we studied in subsection 5.1.

Recall the characterization of contextuality in Theorem 2.That is, a modelE fails to be contextual
iff obtained from a deterministic hidden-variable modelH by forgetting the middle stage—that is, iff
consistent with the possibility that, at the middle stage, i.e., afteri and beforeab as in (7), the states are
deterministic instruction sets. So, using labels and propositional letters for measurements and outcomes
(as mentioned above in subsection 5.2), let us introduce thesentence Det expressing determinacy:

Det(a) := [a](a= 0)∨ [a](a= 1), Det := Det(a)∧ ·· ·∧Det(b′).

Then the description of the Popescu-Rohrlich box [23] of(2,2,2)-type,

∆PR := 〈ab〉⊤∧ ·· ·∧ 〈a′b′〉⊤∧ [ab](a= 0↔ b= 0)∧ [ab′ ](a= 0↔ b′ = 0)

∧ [a′b](a′ = 0↔ b= 0)∧ [a′b′ ](a′ = 0⊕b′ = 0),



128 Dynamic Logic for Contextuality

entails¬Det, using the axioms and rules mentioned above, including the suitable ones of the form (9)
such as[a]ϕ ⊢ [ab]ϕ . Also, a (partial) description∆Hardy of the Hardy model [13],

∆Hardy := 〈i〉 〈ab〉⊤∧ ·· ·∧ 〈i〉〈a′b′〉⊤∧〈i〉〈ab〉(a= 0∧b= 0)∧ [i ] [ab′ ](a= 1∨b′ = 1)

∧ [i ] [a′b](a′ = 1∨b= 1)∧ [i ] [a′b′ ](a′ = 0∨b′ = 0)

(note that this description involves labeli), entails¬ [i ]Det using the same axioms.
We can generalize these examples. The upshot, roughly put, will be as follows.

• The sentence¬ [i ]Det characterizes contexuality.

• In addition, the sentence[i ]¬Det characterizes “strong contextuality” (see [1,§6] for definition).

To put this more precisely and to prove it, we need some notation and definitions. First, fix a setM of
measurements, along with a family of measurement contexts (i.e., jointly performable sets of measure-
ments), and for each measurementa a set of outcomesOa—we assumeM andOa to be finite. Then, in
the vocabulary forM andOa, write

• Λ for the set of axioms of the form (9), for any pair of measurement contextse0,e1⊆M such that
e0⊆ e1; and

• Det for the sentence
∧

a∈M Det(a), where Det(a) :=
∨

k∈Oa
[a](a= k).

Moreover,

• By a “legal” sentence, let us mean a sentence of the form either [i ] [e]ϕ , 〈i〉 〈e〉ϕ , or P(ϕ | e ◦
i) T r in which e is a jointly performable set of measurements andϕ is a Boolean compound of
propositional letters referring to no measurements other than those ine.

It is clear that legal sentences can be used to describe empirical models (again, in the sense of [1]). More
precisely, letE be any empirical model involvingR>0- (or B-) distributions; i.e., for each measurement
contexte, Ee is aR>0- (or B-) distribution on the set∏a∈eOa. Then

• legal[i ] [e]ϕ describesE iff ϕ holds of every support of the distributionEe;

• legal〈i〉 〈e〉ϕ describesE iff ϕ holds of some support of the distributionEe;

• legalP(ϕ | e◦ i)T r describesE iff ∑ f∈supp(Ee) andϕ holds of f Ee( f )T r.

Then we finally have

Theorem 3. Let ∆ be a set of legal sentences that contains〈i〉 〈e〉⊤ for every maximal measurement
context e. Then the following are equivalent.

(i) Every empirical model E that∆ describes is contextual.

(ii) Every stochastic relational presheaf model that satisfies no-signalling and validatesΛ validates
∆ ⊢ ¬ [i ]Det.

Moreover, the following are equivalent.

(iii) Every empirical model E that∆ describes is strongly contextual.

(iv) Every stochastic relational presheaf model that satisfies no-signalling and validatesΛ validates
∆ ⊢ [i ]¬Det.



K. Kishida 129

Proof. Suppose (i) fails; that is, there is an empirical modelE that∆ describes but that is not contextual,
so thatE has a global sectionEM. Then construct a stochastic relational presheaf modelπ : H → L0 as
follows. First build a treeL0 with the edgei : x→ y followed by the edgese : y→ ze for all the maximal
measurement contextse. Then, for each non-maximal measurement contexte, build a treeLe with i
followed bye : y→ ze. BetweenL0 andLe, we take a (typically partial) functionpe : L0→ Le that maps
i to i and anye′ such thate⊆ e′ to e; and, whenevere0 ⊆ e1, we take a functionpe1,e0 : Le1 → Le0 that
mapsi to i ande1 to e0. Now letH(x) = {s}; H(y) = ∏a∈M Oa; H(ze) = ∏a∈eOa; and, moreover, writing
|H(i)| and|H(e)| for the underlying relations of theR>0- (or B-) relationsH(i) andH(e),

• Let |H(i)|(s) = ∏a∈M Oa anddH(i)
s ( f ) = EM( f ) for each f ∈∏a∈M Oa.

• For eachf ∈ ∏a∈M Oa and maximal contexte, let |H(e)|( f ) = { f ↾e} (so thatdH(e)
f is trivially

deterministic).

• For eacha∈M andk∈Oa, let Ja= kK = ∑e is a maximal context anda∈e{g∈∏a∈eOa | g(a) = k}.

Then it is straightforward to check thatH satisfies no-signalling, thatH validatesΛ, and thats∈ JψK for
eachψ ∈∆ sinceψ describesE. Yet, since eachf ∈∏a∈M Oa satisfiesf ∈

⋂

a∈MJ[a](a= f (a))K⊆ JDetK,
we haves∈ J[i ]DetK, sos /∈ J¬ [i ]DetK. ThereforeH does not validate∆ ⊢ ¬ [i ]Det. Thus (ii) fails.

On the other hand, assuming (ii) fails, letπ : H → L0 be a stochastic relational presheaf model that
validatesΛ but that has somes∈

⋂

ψ∈∆JψK with s /∈ J¬ [i ]DetK. Sinces∈ J〈i〉 〈e〉⊤K for each maximal
contexte, L0 has edgesi : π(s)→ y ande : y→ ze for all the maximal contextse. Then define aR>0- (or
B-) distributionEM on ∏a∈M Oa so that, for eachf ∈∏a∈M Oa,

EM( f ) = ∑
t∈|H(i)|(s)∩

⋂

a∈MJ[a](a= f (a))K

dH(i)
s (t).

Also, for each maximal contexte, define a distributionEe on ∏a∈eOa so that, for eachf ∈∏a∈eOa,

Ee( f ) = ∑
u∈|H(e)|◦|H(i)|(s)∩

⋂

a∈eJa= f (a)K

dH(e)◦H(i)
s (u).

Then it is easy to check that the familyE= {Ee}e satisfies the compatibility condition (i.e., no-signalling)
and hence is an empirical model, that∆ describesE, and thatEM is a global section forE. Thus (i) fails.

Suppose (iii) fails; that is, there is an empirical modelE that ∆ describes but that is not strongly
contextual, so that there is a functionf : ∏a∈M Oa such thatf ↾e∈ supp(Ee) for every contexte. Then
construct a stochastic relational presheaf modelπ : H → L0 as follows. First build treesL0 andLe as in
the first paragraph of this proof. Now letH(x) = {s}; H(y) = { f , t}; H(ze) = ∏a∈eOa for each maximal
contexte; and, moreover, defineH(i) and eachH(e) as the followingR>0- (or B-) relations (we lay out
how to defineR>0-relations, since we can use their supports to defineB-relations).

• |H(i)|(s) = { f , t}, anddH(i)
s ( f ) = min{Ee( f ↾e) | e is a maximal context}, so thatdH(i)

s (t) = 1−

dH(i)
s ( f ).

• |H(e)|( f ) = { f ↾e} (so thatdH(e)
f is trivially deterministic).

• |H(e)|(t) = ∏a∈eOa. If dH(i)
s (t) = 0, thendH(e)

t (g) = 1 for all g∈∏a∈eOa. Otherwise

dH(e)
t (g) =



















Ee(g)−dH(i)
s ( f )

dH(i)
s (t)

if g= f ↾e,

Ee(g)

dH(i)
s (t)

otherwise.
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Lastly, for eacha∈M andk∈Oa, let Ja= kK=∑e is a maximal context anda∈e{g∈∏a∈eOa | g(a) = k}. Then
it is straightforward to check thatH satisfies no-signalling, thatH validatesΛ, and thats∈ JψK for each
ψ ∈ ∆ sinceψ describesE. Yet f ∈

⋂

a∈MJ[a](a= f (a))K ⊆ JDetK impliess /∈ J[i ]¬DetK. ThereforeH
does not validate∆ ⊢ [i ]¬Det. Thus (iv) fails.

On the other hand, assuming (iv) fails, letπ : H → L0 be a stochastic relational presheaf model that
validatesΛ but that has somes∈

⋂

ψ∈∆JψK with s /∈ J[i ]¬DetK. As before, sinces∈ J〈i〉 〈e〉⊤K for each
maximal contexte, L0 has edgesi : π(s)→ y ande : y→ ze for all the maximal contextse. Then, as
before, for each maximal contexte, define a distributionEe on ∏a∈eOa so that, for eachf ∈∏a∈eOa,

Ee( f ) = ∑
u∈|H(e)|◦|H(i)|(s)∩

⋂

a∈eJa= f (a)K

dH(e)◦H(i)
s (u).

Again it is easy to check that the familyE = {Ee}e is an empirical model that∆ describes. Now note that,

sinces /∈ J[i ]¬DetK, that is, sinces∈ J〈i〉DetK, somet ∈ supp(dH(i)
s ) lies inJDetK and therefore we have a

function f ∈∏a∈M Oa with which eacha∈M hast ∈ J[a](a= f (a))K; this implies that, for each maximal

contexte, there isu∈ |H(e)| ◦ |H(i)|(s)∩
⋂

a∈eJa= f (a)K such thatdH(e)◦H(i)
s (u)> dH(i)

s (t) ·dH(e)
t (u)> 0,

which means thatf ↾e∈ supp(Ee). HenceE is not strongly contextual. Thus (iii) fails.

6 Conclusion

In this paper, we have integrated the three frameworks mentioned in the Introduction for capturing non-
deterministic processes, (i)–(iii), by introducing the categoryR-Rel of R-relations and takingR-relational
presheaves—functors from trees toR-Rel. The resulting structure captures stochastic dynamics with a
good enough expressive power, as demonstrated by the fact that it provides a labelled transitional formu-
lation for the sheaf-theoretic approach of Abramsky and Brandenburger [1] to non-locality and contex-
tuality, and moreover yielding dynamic logic with a modal-logical characterization of contextuality. (In
fact, our formalism is partially equivalent to the sheaf-theoretic approach, extending the equivalence be-
tween presheaves and fibrations.) Whereas the sheaf-theoretic approach can take advantage of methods
of cohomology to calculate conditions for contextuality (see [2]), our approach on the other hand has
a certain flexibility in the base trees of measurement labels, so that it can readily express contextuality
in not just one round of measurements but within a sequence orprotocol of measurements. Thus our
approach is expected to complement the sheaf-theoretic approach and extend it to various applications.
Needless to say, applications to other kinds of stochastic dynamics can be expected as well.
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