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Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for aquantum
logic. Frobenius algebras are a tool ofcategorical quantum mechanics, used to present various fam-
ilies of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius
algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms;
and both come with their conceptual mysteries. A particularly elegant and mysterious constraint,
imposed on Frobenius algebras to characterize a class of tripartite entangled states, is theantispecial
law. A particularly contentious issue on the quantum logic side is themodularitylaw, proposed by
von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that,
if quantum logic and categorical quantum mechanics are formalized in the same framework, then the
antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect
algebras that the units are each other’s unique complements; and that the modularity law corresponds
to the Frobenius condition. These correspondences lead to the equivalence announced in the title.
Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly
displayed on one side than on the other (such as e.g. the orthogonality). Beyond that, it may also open
up new approaches to deep and important problems of quantum mechanics (such as the classification
of complementary observables).

1 Introduction

That ”nobody understands quantum mechanics”(as Richard Feynman announced) may be the state of
the world. That the standard mathematical formalisms of quantum mechanics contain features that do
not correspond to any features of their subject (as John von Neumann pointed out [33] almost imme-
diately after he published his treatise [25] about those mathematical formalisms) is definitely a social
phenomenon. Von Neumann attacked the problem, and generated quantum logics[26, 5], which became
a popular research area of lattice theory. Many years later,mathematicians and computer scientists at-
tacked the same problem, and generatedcategorical quantum mechanics[2, 34, 8, 9], which became a
popular research area of category theory. Most recently, anambitious effort has been initiated to incorpo-
rate both families of structures, and much more, under a new structure calledeffectus[21, 7]. The present
note is, of course, incomparable with that effort in its scope, but it also attempts to relate two families
of structures, one from quantum logic, the other one from categorical quantum mechanics, and is thus
concerned with a closely related conceptual bridge. Being much smaller, our bridge does not require any
new material: we simply translate between the two languages, and try to align the concepts underlying
the different models that turn out to be structurally equivalent.

More precisely, we relate the realm of effect algebras [4, 15, 18], intended to capture quantum propo-
sitions just like Boolean algebras capture classical propositions, and the realm of Frobenius algebras
[6, 13, 12, 31, 14], used to capture classical data in a quantum universe, viewed as a category. Although
the two research programs have been driven by different goals and realized by substantially different
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mathematical methods, they turn out to lead to equivalent structural components. Understanding this
equivalence means uncovering the common conceptual components underlying both theories. Instanti-
ating Frobenius algebras to the categoryRel of sets and relations, and generalizing effect algebras to an
abstract dagger compact categoryC, we get the equivalences announced in the title of the paper.

Outline of the paper

We begin by defining effect algebras in Sec. 2. As usual, effect algebras are defined as sets with some
partial operations, but the defining conditions are formalized in categorical terms, since our goal is to
align them with the similar conditions that arise in categorical quantum mechanics. Towards this goal,
in the rest of the paper we work with an abstract dagger compact categoryC. The original definition of
effect algebras is recovered forC =Rel, the category of sets and relations. Since its compactness and the
self-dualities of its objects are an important tool of the analysis, the restriction to partial maps, prominent
in the definition of effect algebras, is not hardwired in the definition of the environment category, but
imposed in the definition of the analyzed structures. Beforewe get to that restriction, we analyze the
general operation of orthocomplementation in general terms of dagger compactness in Sec. 3,. The
reasons and the tools for the restriction to partial maps arediscussed in Sec. 4. The tools boil down
to a small fragment of the categorical theory of maps, described in Sec. 4.2, relative to the convolution
operations in Sec. 4.1. In Sec. 4.3, we finally reach the stagewhere we can propose a categorical version
of the effect algebra structure. The claim is that the special and the antispecial requirements, that play an
interesting role in categorical quantum mechanics, in factcapture the same structure as effect algebras.
The main claim is Prop. 4.4, which says that special and antispecial algebras (christenedsuperspecialfor
this occasion) are just those that satisfy the categorical definition of effect algebras, simply lifted from
sets and partial functions to dagger compact categories. The technical gain from this characterization
is that the superspecial strucutre is a standard piece of categorical algebra, well oiled for diagrammatic
analyses in categorical quantum mechanics, whereas the categorical version of the original definition of
effect algebras involves pullbacks, and requires subtle and often cumbersome arguments, as illustrated
already in the proof of Prop. 4.4. Finally, in Sec. 5, we show that the modularity law, satisfied by some
effect algebras, corresponds to the Frobenius law in superspecial algebras. This not only connects two
laws that are studied extensively in two research areas, butalso generalizes the concept of modularity
from sets to dagger compact categories, while providing an intuitive view of the Frobenius law. In Sec. 6,
we comment about applications of the results and about further work suggested by the results.

2 Effect algebras

Background. Effect algebras [4, 15, 18] are an offshoot of the effort towards generalizing classical
propositional logic into a putative quantum logic, initiated by von Neumann [26, 5]. The effort never led
to a logical system in the traditional sense, perhaps because the deduction and abstraction mechanisms
that the logicians use to define such systems, actually characterize classical data in a quantum universe,
whereas quantum data disobey such abstraction mechanisms by their very nature [31]. At the proposi-
tional level, these abstraction mechanisms manifest themselves as the distributivity laws. Without such
laws, quantum logics remained as unintuitive for the logicians as quantum physics has been for the physi-
cists. This provided a business opportunity for some mathematicians and philosophers. Effect algebras
are a result of this opportunity.



D. Pavlovic and P.-M. Seidel 147

Idea. Quantum propositions, viewed as the elements of an effect algebra, can be thought of as sub-
spaces of a Hilbert space. They are operated on by the quantumlogical connectives>,? and¬, which
are analogous to the classical disjunction∨, conjunction∧ and negation¬. The difference is that any
two classical propositionsp andq can be composed intop∨q, p∧q, whereas the quantum propositions
u andv can only be composed intou> v, u? v if the corresponding Hilbert subspaces are orthogonal;
otherwise these compositions are undefined. The complements ¬u are always defined. The partiality
of the quantum logical connectives> and? is induced by the fact that non-orthogonal quantum states
cannot be reliably distinguished, which implies that quantum observables, which are denoted by quan-
tum propositions, and reasoned about in quantum logic, can only be formed from orthogonal Hilbert
subspaces. Effect algebras thus attempt to capture the essence of quantum logic in terms ofpartiality of
quantum logical operations.

Definition 2.1. An effect algebrais a setA together with the partial functions

A×A
>

−→ A
¬
←− A

0
⇔
1

I (1)

whereI is a singleton set, and moreover

• (A,>,0) is a commutative monoid,

• the following conditions are satisified for allx,y ∈ A

x>y= 1 ⇐⇒ x= ¬y (2)

x>1= 1 ⇐⇒ x= 0 (3)

Remarks. It is easy to see that the above definition is equivalent with the original one in [15]. Proving
that¬¬x = x, that the partial elements 0,1 : I −→ A must be total, and that¬ must be a map (total and
single-valued1 are instructive exercises.

A category theorist might interpret the above definition by viewing the effect algebra signature, dis-
played in (1), as a diagram in the categoryPfn of sets and partial maps. The requirement that (A,>,0) is
a commutative monoid is expressed by familiar commutative diagrams, and conditions (2) and (3) mean
that the following squares must be pullbacks inPfn.

I

AA⊗A

A

1〈id,¬〉

!

>

I

AA⊗A
>

0〈0,0〉

I id

(4)

The tensors and the pairing are induced by the cartesian products of sets. The arrow ! :A−→ I is the map
sending all elements ofA into the singleton element ofI . While the left-hand pullback is easily seen to
capture (2), the right hand pullback actually says thatx> y = 0 ⇐⇒ x = 0 = y, or that the monoid is
torsion-free, which is equivalent with (3) because (2) implies thatx> 1 = y ⇐⇒ x> 1>¬y = 1 ⇐⇒
x>¬y= 0.

1Here we usemaps, or functions, defined as total and single-valued relations in basic set theory. In Sec. 4.2 we shall see
how these definitions extend to much more general categorical frameworks, including dagger-compact categories with classical
structures.
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But a categorical quantum mechanic might be inclined to go even further, and draw the the above
pullbacks as string diagrams:

¬

=

∃!u
∃!u ∀u0

∀u1

>

1

A A

A A

AA

=

>

A A

AA

∀v1∀v1

∀v0

000

U U V V

(5)

The left-hand diagram should be read as saying that for everyu0 : U −→ A⊗A andu1 : U −→ I such that
> ◦u0 = 1◦u1, there is a uniqueu : U −→ A with u0 = 〈id,¬〉 ◦u andu1 = ! ◦u. The left-hand diagram
in (5) just says in string diagrams that the left-hand squarein (4) is a pullback. The right-hand diagram
in (5) says that the right-hand square in in (4) is a pullback,and it should be read as saying that every
v0 : V −→ A⊗A andv1 : V −→ I such that>◦v0 = 0◦v1, must satisfyv0 = 〈0,0〉 ◦v1. The unique pullback
factorization must bev1, because the top side of the right-hand square in (4) is the identity.

If these conditions are accepted as a high level view of the ”propositional” operations on quantum
observables, then it is natural to ask what they mean beyond mere partial functions, in the categories
with more features of quantum mechanics. The immediate obstacle to a straightforward lifting of the
above definition is that most categories that we encounter incategorical quantum mechanics lack most
pullbacks, and conditions (4) do not capture the intended meaning. Restricting them to abstract partial
functions, like we shall do in Def. 4.6, narrows the meaning of (4), but the pullbacks remain inconvenient
to work with. The relief comes from a surprising direction: the pullbacks requirements in (4) and (5)
turn out to be equivalent to some more convenient conditions, independently encountered in categorical
quantum mechanics.

3 Orthocomplemented algebras

3.1 Dagger-compact categories and classical structures

While effect algebras are normally presented as sets with essentially algebraic structure2, we now broaden
the scope, and study the components of their structure in theabstract framework of adagger-compact
categoryC. The standard definition of effect algebras will be recovered as the special case whereC=Rel,
the category of sets and relations, concrete or abstract [6,16], as used in [17, 20, 29, 31].

The idea of lifting the effect algebra structure beyond sets, and expressing it in abstract categorical
terms, is that studying the effect algebra operations in other models of quantum mechanics, standard
and nonstandard [30], will reveal their relationships withother quantum operations and axiomatizations.
For instance, it seems interesting to ask what is the suitable notion of effect algebra in the framework
of Hilbert spaces. Although the effect algebra operations were conceptualized as an abstraction of the

2An algebraic structure is presented by operations and equations. Anessentiallyalgebraic structure is presented by opera-
tions andconditionalequations, which are the statements in the formp⇒ q, andp andq are equations. Besides effect algebras,
the examples of essentially algebraic structures include categories and the varieties of categorical algebra, definedby algebraic
theories using functors and natural transformations [3].
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relevant ”propositional” operations over the families of orthogonal subspaces of a Hilbert space, it is
remarkable that these operations are not expressible in thelanguage of Hilbert spaces themselves, or
even in terms of categorical operations over Hilbert spaces. To see this, note that, the category of Hilbert
spaces has very few pullbacks, and that lifting the pullbacks (4), or (5) to Hilbert spaces does not give
usable requirements.

Recall that dagger-compact categories are just compact (closed) categories, going back all the way
to [22], but extended with an additional duality, thedaggerfunctor‡ : Co −→ C, which commutes with the
compact duality∗ :Co−→C up to an coherent isomorphismX∗‡ � X‡∗. The standard model is the category
of finite-dimensional complex Hilbert spacesFHilb. One of the main points of working with an abstract
categorical signature, rather than with concrete Hilbert spaces, is that nonstandard and toy models [1,
32, 23, 30, 35] often provide important information. Another point, going back to von Neumann, is that
many features of the Hilbert space structure do not correspond to any features of quantum mechanics
that they are used to describe.3 Presented in terms of the functorX∗ = X∗‡, and equipped with the
biproducts, such categories were proposed as the frameworkfor categorical quantum mechanics in [2].
The biproducts were eliminated usingclassical structuresin [13]4. The availability of classical structures
over the objects of a dagger-compact category is analogous to the availability of bases in the category
of Hilbert spaces. Instantiated to this category, classical structures [13, 12, Def. 2.2] in fact exactly
correspond to bases [14]. Although classical structures are generally not preserved by the morphisms of
the surrounding dagger-compact category (just like the bases are not preserved by linear operators), they
do influence the compact structure, by providing an isomorphism between each object and its dual, and
thus allow us to choose the dual to beX∗ = X, and thus make each object self-dual [12, Prop. 2.4]. The
Frobenius conditionimposed on adjoint monoid-comonoid pairs [6] is just another way to express this

self-duality [31, Thm. 4.3]. Yet another expression of the same is anentangledvector I
η
−→ X⊗X, i.e.

such that (η‡ ⊗X)◦ (X⊗η) = id [31, Prop. 2.6]. We use such vectors below. Dagger-compact categories
with such self-dualities, or classical structures, playing the role of bases to capture classical data, were
studied ascategories of classical structuresin [12, Sec. 2.2].

3.2 Orthocomplement

Let A be an object in a dagger-compact categoryC, given with a classical structure induced by the monoid

A⊗A
H
−−→ A

!
←−− I

Suppose that, in addition to this classical monoid, we are also given another commutative monoid

A⊗A
>

−−−→ A
0
←−− I

Definition 3.1. An orthocomplementwith respect to the commutative monoid (A,>,0) is an operation
¬ : A−→ A such that the equations

3In terms of categorical semantics, this means that the Hilbert space model is notfully abstract: it always displays some
”irrelevant implementation details” [24].

4We first called them classicalobjects, but too many people pointed out that they had a structure. Although one of the main
points of category theory is to make structures into objects(e.g. groups have a structure, but they are objects of the category of
groups), it seemed simpler to change the name than to explainone of the main points of category theory.



150 (Modular) Effect= (Frobenius) Antispecial

>

ι

¬

¬

AA

==

A

AA

¬

(6)

hold for someι ∈ A.

Remark. These equations can be construed as a string diagrammatic version of the equations

x>¬x= ι ¬¬x= x (7)

However, the formal correspondence between of the left-hand equation in (6) and the left-hand equation
in (7) depends on the single-valuedness assumption, which will be discussed in the next section.

It turns out that the orthocomplement operations over a monoid are in bijective correspondence with
theunbiasedvectors with respect to it. We first define and then explain what this means.
Definition 3.2. An elementι ∈ A is said to beunbiasedwith respect to the commutative monoid structure
(A,>,0) if it satisfies the equation

>

ι

A

=

A

>

ι

A

(8)

Explanation. In the terminology of [31, Definitions 2.5 and 5.1], a vectorI
ι
−→ A is unbiased with

respect to an algebra with the underlying monoid (A,>,0) in a dagger-compact category just when the

vector I
ι
−→ A

>
‡

−−→ A⊗A is entangled; and the entanglement is defined by the equation (8). Entangled

vectors are often also calledBell states[12, Sec. 2.1]. Intuitively, a vectorI
ϕ
−→ A⊗A is entangled if it

implements an inner product〈a|b〉 = ϕ‡ ◦ (a∗ ⊗ b) [31, Prop. 2.6], which means that the induced linear

operatorA
ϕ̂
−→ A is unitary [31, Prop. 5.2(a)]. Def. 3.2 is also equivalent to[8, Def. 7.13] up to a scalar.

Proposition 3.1. The orthocomplement operations A
¬
−→A with respect to a commutative monoid(A,>,0)

are in a bijective correspondence with its unbiased vectorsI
ι
−→ A.

Proof. Given an orthocomplement, conditions (6) immediately imply

¬

A

>

ι

=

A

A

and

A

ι

A

¬

A

=

0

which shows that the orthocomplement¬ and the elementι uniquely determine each other. But if the
orthocomplement satisfies the left hand equation, then it iseasy to see that (8) holds if and only if¬¬= id,
as in (6). �
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Definition 3.3. An orthocomplemented monoidover a classical structureA is a tuple (A,>,0,1,¬), where

• (A,>,0) is a commutative monoid,

• I
1
−→ A is an unbiased vector, and

• A
¬
−→ A is the induced orthocomplementation.

Proposition 3.2. (A,>,0,1,¬) is an orthocomplemented monoid iff (A,?,1,0,¬) is an orthocomple-
mented monoid, where

> =

¬ ¬

¬

?>=

¬ ¬

¬

?

Definition 3.4. An orthocomplemented algebraover a classical objectA is the structure (A,>,?,0,1,¬),
where (A,>,0,1,¬) and (A,?,1,0,¬) are orthocomplemented monoids related by De Morgan’s lawsas
in Prop. 3.2.

Comment. On one hand, orthocomplemented algebras can be thought of asa generalization of Boolean
algebras, which also have involutive negation and satisfy De Morgan’s laws, and are indeed a special case.
But on the other hand, they are a very special case, as some of the main features of Boolean algebras
do not survive in orthocomplemented algebras, and make roomfor the main features of effect algebras.
An orthocomplemented algebra structure is derived over an arbitrary commutative monoid (A,>,0) from
an arbitrary unbiased elementι ∈ A, which becomes 1, and determines¬ and?. The monoid is thus
not extended by any new elements, but the structure of orthocomplemented algebra is derived from the
monoid as it is — by the magic of the entanglement engendered from the unbiased element.

Truth be told, though, the monoid (A,>,0) cannot be completely arbitrary without causing degenera-
cies. For instance, if we take (A,>,0) to be a classical monoid (A,H, !), giving rise to a special commu-
tative Frobenius algebra, then the induced orthocomplement ¬ boils down to the identity and the whole
structure collapses to? = H =>, with x>¬x= ¬x= x. Many other monoids (A,>,0), different from the
classical ones, also cause degeneracies. To avoid that, we must impose somespecialrequirements, and
someantispecialrequirements.

4 Special, antispecial and superspecial algebras

4.1 Convolution

Every internal monoidB⊗B
µ
−→ B

ι
←− I in a monoidal categoryC induces an external monoid on the vectors

(states) of typeB, with the same unit, and

⋆µ : C(I ,B)×C(I ,B) −→ C(I ,B) (9)

〈x,y〉 7→ µ◦ (x⊗y) (10)

Dually, any internal comonoidA⊗A
λ
←− A

ǫ
−→ I induces an external monoid on the covectors (effects) of

typeA, with the same counit and

λ⋆ : C(A, I )×C(A, I ) −→ C(A, I ) (11)

〈u,v〉 7→ (u⊗v)◦λ (12)
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Putting the two together, any comonoid-monoid pair
〈
I
ǫ
←− A

λ
−→ A⊗A, B⊗B

µ
−→ B

ι
←− B
〉

induces aconvo-

lution monoid

λ⋆µ : C(A,B)×C(A,B) −→ C(A,B) (13)

〈 f ,g〉 7→ µ◦ ( f ⊗g)◦λ (14)

with the unitA
ǫ
−→ I

ι
−→ B.

Definition 4.1. A convolution algebrain a monoidal categoryC is the tuple (A,µ, ι,λ, ǫ), where (A,µ, ι)
is a commutative5 monoid and (A,λ, ǫ) is a commutative comonoid.

A convolution monoid⋆ = µ⋆λ : C(A,A)×C(A,A) −→ C(A,A) is induced by a convolution algebra
as in (13), or as in the following string diagram

f

A

µ

=

AA

⋆ g

A A

f g

A

λ

Definition 4.2. A convolution algebra (A,µ, ι,λ, ǫ) is called
i. specialif id⋆id is unitary, and

ii. antispecialif id⋆id is a scaled projector.

Remarks. Recall thate∈ C(A,A) is a
i. unitary whene◦e‡ = e‡ ◦e= id;

ii. scaled projectorwhene= a◦b‡ for somea,b∈ C(I ,A).
In addition to (9), any internal monoid (B,µ, ι) also induces theCayleyrepresentation

Υ : C(B) −→ C(B,B)

b 7→ µ◦ (b⊗B)

When this monoid is a part of a classical structure, then withrespect to this structure, the vectorb is
i. unbiasedif and only ifΥb is a unitary, and

ii. a basisvector if and only ifΥb is a pure projector.
This is spelled out in [8, 31, Prop. 5.2]

Examples. Every classical structure (A,H, ¡,N, !) induces a convolution algebra [12]. WhenC = FHilb,
then classical structures correspond to bases [14], which induce the representations of morphismsf ,g ∈
FHilb(A,B) as matrices andf⋆g=

(
fi j ·gi j

)
n×m

is the entrywise multiplication of the matrix representa-

tions f =
(
fi j
)
n×m

andg=
(
gi j

)
n×m

. WhenC = Rel, then classical structures are disjoint unions of abelian
groups [29]. With the additive notation for these group structures, the convolution of relations is

a
(
R⋆S
)
b ⇐⇒ ∃uv∈ A ∃xy∈ B. u+v= a ∧ uRx∧ vS y∧ x+y= b

The standard classical structures inRel can be viewed as the disjoint unions of the trivial groupZ1, and
for these standard classical structures, the convolution boils down to the intersection, i.e.R⋆S = R∩S.

5The commutativity requirement is usually not imposed on convolutions. Here we only work with commutative monoids
and comonoids, so we restrict the usual definition of convolution to avoid repeating the requirement.
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Remark. If every object in a dagger-compact categoryC have classical structures (like, e.g., all vector
spaces have bases), then the induced convolutions make all hom-setsC(A,B) into abelian groups. This
does not makeC into an abelian category, because these convolutions are generally not preserved under
composition. E.g., the relationsP; (R∩S) and (P;R)∩ (P;S) coincide only if the relationP is single-
valued, i.e. a partial map.

It turns out that effect algebras are defined in terms of partial functions with a good reason.

4.2 Maps

Definition 4.3. The convolution preorderinduced by⋆ : C(A,B)×C(A,B) −→ C(A,B) is the transitive
reflexive relation≤ onC(A,B) defined by

f ≤ g ⇐⇒ ∃ℓ ∈ C(A,B). f⋆ℓ = g

Definition 4.4. A morphism f ∈ C(A,B) in a dagger-compact categoryC is said to be

i. total if id A ≤ f ‡ ◦ f

ii. single-valued(or apartial map) if f ◦ f ‡ ≤ idB

iii. a mapif it is total and single-valued.

The subcategories ofC spanned by total, single-valued morphisms, and maps are denotedCt, Cs andCm,
respectively.

In a bicategoryC, a 1-cell f ∈C(A,B) is called a map if it has a right adjointf ‡ ∈ C(B,A). Remarkably,
the maps within an arbitrary bicategory form an ordinary category. In particular, restricted to partial
maps, the convolution preorder becomes a partial order, in the sense that (f ≤ g ∧ g ≤ f ) =⇒ f = g;
and restricted to total maps, it becomes discrete, in the sense thatf ≤ g=⇒ f = g. This remains true in
a large family of bicategories [27, 28]. Here we do not need such results in full generality, but we will
need the following lemma, instantiated to convolution preorders.

Lemma 4.1. For partial maps f,g ∈ Cs(A,B) the following holds

=f g
f

g‡

=f g f f g⇐⇒and ≤ (15)

If a dagger-compact categoryC admits a classical structure on every object, a fixed family of chosen
convolution preorders on all hom-sets give rise to acartesian bicategory[6]. The following proposition
is proved in [6, Thm. 1.6, Lemma 2.5].

Proposition 4.2. In the cartesian bicategoryC induced by a dagger-compact category with fixed classi-
cal structures (and the induced convolution preorders), the following equivalences hold for every mor-
phism f∈ C(A,B)

i. f is total if and only if!B◦ f = !A;

ii. f is single-valued if and only ifNB◦ f = ( f ⊗ f )◦NA

iii. f is a map if and only if it is a comonoid homomorphism between the classical structures on A and
B.
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4.3 Effect algebras are superspecial

One direction of the following lemma follows directly from the definition of single-valuedness. The other
direction also requires the observation that every monoid and every comonoid must be total (because they
has the unit, and the counit, respectively).

Lemma 4.3. A commutative monoid(A,>,0) in a dagger-compact categoryC with classical struc-
tures is single-valued with respect to these structures if and only if the induced convolution algebra
(A,>,0,>‡,0‡) is special.

Thespecialtyrequirement from Def. 4.2 thus lifts to general dagger-compact categories the set the-
oretic restriction of Def. 2.1, that effect algebra structure consists of partial maps, i.e. that itis single-
valued. Theantispecialtyrequirement, on the other hand, lifts the rest of Def. 2.1 to dagger-compact
categories6.

Definition 4.5. An orthocomplemented algebra (A,>,?,0,1,¬) in a dagger-compact categoryC is said
to besuperspecialif it satisfies the following conditions:

(a) the convolution algebra (A,>,0,>‡,0‡) is special, (or equivalently,
the convolution algebra (A,?,1,?‡,1‡) is special), and

(b) the convolution algebra (A,>,0,?‡,1‡) is antispecial.

Definition 4.6. Let C be a dagger-compact category with classical structures, and Cs the subcategory
of single-valued morphisms. Ageneral effect algebrais a diagram (1) inCs, such that (A,>,0) is a
commutative monoid, and the diagrams in figure (5) are pullbacks.

Proposition 4.4. An orthocomplemented algebra(A,>,?,0,1,¬) in a dagger-compact categoryC is
superspecial if and only if(A,>,0,1,¬) is a general effect algebra inC.

Proof. Since the equivalence between the specialty and the single-valuedness is clear from Lemma 4.3,
the task boils down to proving the equivalence between the antispecialty and the pullback conditions from
Sec. 2. In the context of sets and partial functions of Def. 2.1, this equivalence means that conditions
(2-3) hold if and only if the equationsx>y= u andx?y= v are satisfied only foru= 1 andv= 0.

To prove this in the context of a dagger-compact categoryC, first note that the square

AA⊗A

A

¬¬⊗¬

>

?

A⊗A

(16)

is a pullback. Composing the left-hand square of diagram (4)with this pullback, and using the commu-
tativity of the monoids, we conclude that all of the following three squares are pullbacks if and only if
any of them is a pullback.

AA⊗A

A

1〈id,¬〉

!

>
AA⊗A

A
!

A⊗A

!
I I

⇐⇒ ⇐⇒

A⊗A

0〈id,¬〉

?
A⊗A⊗A⊗A

I

〈π0,¬,π1,¬〉 〈1,0〉

>⊗?

6Other interesting instances of the special and the antispecial requirements have been considered in [11, 19].
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Towards the third square, we prove the first equation in the following diagram.

¬

=

>

1

¬

>

0

?

? ω

¬

>

¬

?

1 0

ω

= (17)

where =

> ?

ω . But since the second equation in that diagram also holds, the uniqueness part
of the pullback condition implies that the factorizations in the dashed rectangles must be equal, i.e.

=
1

>
0

?

ω

(18)

Dualizing both sides yields the antispecialty:

=

1
>

0
?

ω (19)

To complete the proof, we proceed to transform the left-handside of (17). Since> and? are single-
valued, Prop.4.2ii. says that we can we can distribute each of them above the black dots on the left-hand
side of (17). Applying the associativity, the left-hand side of (17) is transformed into the left-hand side
of the following equation.

¬

=

>

¬

>

?

?

> ? > ?

¬ ¬

(20)
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The right-hand side is a path around the third pullback in (16). Factoring the left-hand side through the
pullback, postcomposing one of the branches with¬, and reducing? to > precomposed and postcom-
posed with¬s, we get

¬

=

>

¬

> ?

>

>

¬¬

> ?

>

> >

=

>

1 0 (21)

from which the result follows using the second pullback of (4) and (5). �

5 Frobenius and modularity

In lattice theory, the modularity condition is usually written in the form

x≤ z =⇒ (x∨y)∧z= x∨ (y∧z)

In an effect algebra,x>y is defined if and only ifx≤ ¬y, whereasy?z is defined if and only if¬y≤ z,
whereu ≤ w abbreviates∃v. u> v = w. Both x> y andy? z are thus defined if and only ifx≤ ¬y ≤ z.
The modularity law for effect algebras is thus

x≤ ¬y≤ z =⇒ (x>y)?z= x> (y?z) (22)

The following definition, stated in an arbitrary dagger-compact categoryC, is equivalent to (22) when
restricted to partial functions, i.e. to single-valued morphisms inC = Rel.

Definition 5.1. A convolution algebra (A,>,0,?,1) over a self-dual objectA in a dagger-compact cate-
goryC is said to bemodularwhen the following equation holds

=

>

>

?

? > ? (23)
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Explanation. The inputs of the morphisms on both sides of (23) correspond to x andz of (22). The
equation says that the range where its left-hand side provides an output coincides with the range where
its right-hand side provides an output. The right-hand morphism provides an output whenever there isy
such that bothx>yandy?zare defined. When> and? are single-valued, then according to Lemma 4.1,
the left-hand morphism provides an output whenever (x>y)?zandx> (y?z) are equal.

Definition 5.2. A convolution algebra (A,>,0,?,1) over a self-dual objectA in a dagger-compact cate-
goryC is said to satisfy theFrobenius conditionwhen the following equation holds

>

=

>

?

?

(24)

The following lemma is proved by straightforward geometrictransformations using the duality onA.

Lemma 5.1. For a convolution algebra(A,>,0,?,1) over a self-dual object A in a dagger-compact
categoryC, each of the following two equations is equivalent with the Frobenius condition.

= > ?> ? = > ?> ? (25)

Lemma 5.2. If the convolution algebra(A,>,0,?,1) over a self-dual object A in a dagger-compact
categoryC consists of single-valued operations, then the Frobenius condition is also equivalent with
equation(23).

Proof. We use Lemma 4.1. Letf be the right-hand side of the second equation of (25); letg be the
left-hand side of (25). Lemma 4.1 says thatf = g if and only if !◦

(
(g‡ ◦ f )⋆id

)
= f⋆g= ! ◦ f . But it is

easy to see that !◦
(
(g‡ ◦ f )⋆id

)
reduces to the left-hand side of (23), whereas !◦ f is the right hand side

of (23). Equation (23) thus holds if and only if the second equation of (25) holds. �

Remark. The correspondence between the modularity and the Frobenius condition is reflected in the
geometry of the left-hand diagram of (23), as displayed on the next figure.

>

>

?

?

Modularity

F
ro

be
ni

us
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The vertical line splits the diagram into two sides of the modularity condition. Mutatis mutandis, the
horizontal line through the middle of this diagram splits itinto two sides of the Frobenius condition.

Corollary 5.3. A superspecial algebra(A,>,?,0,1,¬) over a self-dual object A in a dagger-compact
categoryC satisfies the Frobenius condition if and only if it is modular.

6 Further work

The first task is to extend the correspondences between (modular) effect algebras and (Frobenius) su-
perspecial algebras, spelled out in Propositions 4.4 and 5.3 into functors between the corresponding
categories. The different components were built into these different structures to capture different con-
cepts. The fact that these different conceptual components, when combined, lead to equivalent categories
suggests that there are underlying conceptual connectionsthat may be of interest. What is the connec-
tion between the entanglement type of theW-state, realized by the antispecial law on one side, and the
sharpness of the units of the effect algebra operations on the other side?

Another immediate task is to lift the characterization of (modular) effect algebras as (Frobenius)
superspecial algebras from the concrete categoryRel of sets and relations, where effect algebras seem
to normally live, to the abstract framework of dagger-compact categories, where the usual pointwise
definition of effect algebras cannot be stated. If wedefinean effect algebra in a dagger-compact cate-
gory to be a superspecial algebra, then the convenient and intuitive language of effect algebras (suitably
extended by the scalar factors, which are trivial inRel) becomes available not only in the richer nonstan-
dard models of quantum mechanics [30], but ironically even in the standard Hilbert space model, whose
relevant features were originally intended to be separatedfrom the irrelevant ones by the language of
effect algebras.

Last but not least, since every superspecial Frobenius algebra implements a GHZ/W-pair of [10], and
every GHZ/W-pair implements a Z/X-pair of complementary observables, modular effect algebras in any
of these frameworks may provide a useful new mathematical interface to complementary observables.
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[3] Jiři Adámek & Jiři Rosický (1994):Locally Presentable and Accessible Categories. London Mathematical
Society Lecture Notes189, Cambridge University Press, doi:10.1017/CBO9780511600579.

[4] Enrico G. Beltrametti & Slawomir Bugajski (1997):Effect algebras and statistical physical theories. Journal
of Mathematical Physics38, pp. 3020–3030, doi:10.1063/1.532031.

[5] Garrett Birkhoff & John von Neumann (1936):The logic of quantum mechanics. Annals of Mathematics37,
pp. 823–843, doi:10.2307/1968621.

[6] Aurelio Carboni & Robert F.C. Walters (1987):Cartesian bicategories, I. J. of Pure and Applied Algebra49,
pp. 11–32, doi:10.1016/0022-4049(87)90121-6.

[7] Kenta Cho, Bart Jacobs, Bas Westerbaan & Abraham Westerbaan (2015):An Introduction to Effectus Theory.
Available athttp://arxiv.org/abs/1512.05813.

[8] Bob Coecke & Ross Duncan (2011):Interacting quantum observables: categorical algebra anddiagram-
matics. New Journal of Physics13(4), p. 80pp, doi:10.1088/1367-2630/13/4/043016. Arxiv:0906.4725.

http://dx.doi.org/10.1007/s11229-011-9912-x
http://dx.doi.org/10.1109/LICS.2004.1
http://dx.doi.org/10.1017/CBO9780511600579
http://dx.doi.org/10.1063/1.532031
http://dx.doi.org/10.2307/1968621
http://dx.doi.org/10.1016/0022-4049(87)90121-6
http://arxiv.org/abs/1512.05813
http://dx.doi.org/10.1088/1367-2630/13/4/043016


D. Pavlovic and P.-M. Seidel 159

[9] Bob Coecke, Chris Heunen & Aleks Kissinger (2013):Compositional quantum logic. In Bob Coecke, Luke
Ong & Prakash Panangaden, editors:Computation, Logic, Games, and Quantum Foundations, pp. 21–36,
doi:10.1007/978-3-642-38164-53.

[10] Bob Coecke & Aleks Kissinger (2010):The Compositional Structure of Multipartite Quantum Entanglement.
In: Proceedings of ICALP 2010, Part II, pp. 297–308, doi:10.1007/978-3-642-14162-125.

[11] Bob Coecke, Aleks Kissinger, Alex Merry & Shibdas Roy (2010): The GHZ/W-calculus contains rational
arithmetic. In Farid M. Ablayev, Bob Coecke & Alexander Vasiliev, editors: CSR Workshop on High Pro-
ductivity Computations, HPC 2010, EPTCS52, pp. 34–48.

[12] Bob Coecke,́Eric Oliver Paquette & Dusko Pavlovic (2009):Classical and quantum structuralism. In Simon
Gay & Ian Mackie, editors:Semantical Techniques in Quantum Computation, Cambridge University Press,
pp. 29–69, doi:10.1017/CBO9781139193313.003.

[13] Bob Coecke & Dusko Pavlovic (2007):Quantum measurements without sums. In G. Chen, L. Kauffman &
S. Lamonaco, editors:Mathematics of Quantum Computing and Technology, Taylor and Francis, p. 36pp,
doi:10.1201/9781584889007.ch16. Available athttp://arxiv.org/abs/quant-ph/0608035.

[14] Bob Coecke, Dusko Pavlovic & Jamie Vicary (2013):A new description of orthogonal bases.
Math. Structures in Comp. Sci.23(3), pp. 555–567, doi:10.1017/S0960129512000047. Available at
http://arxiv.org/abs/0810.0812.

[15] David J Foulis & Mary Katherine Bennett (1994):Effect algebras and unsharp quantum logics. Foundations
of Physics24(10), pp. 1331–1352, doi:10.1007/BF02283036.

[16] Peter Freyd & Andre Scedrov (1990):Categories, Allegories. Mathematical Library39, North-Holland.

[17] Stefano Gogioso (2015):A Bestiary of Sets and Relations. In Chris Heunen, Peter Selinger & Jamie Vi-
cary, editors: Proceedings QPL 2015,Electronic Proceedings in Theoretical Computer Science195, Open
Publishing Association, pp. 208–227, doi:10.4204/EPTCS.195.16.

[18] Stanley Gudder (1997):Effect test spaces and effect algebras. Foundations of Physics27(2), pp. 287–304,
doi:10.1007/BF02550455.

[19] Amar Hadzihasanovic (2015):A Diagrammatic Axiomatisation for Qubit Entanglement. In: Symposium on
Logic in Computer Science (LICS) 2015, IEEE Computer Society, pp. 573–584, doi:10.1109/LICS.2015.59.

[20] Chris Heunen & Sean Tull (2015):Categories of relations as models of quantum theory. In Chris Heunen,
Peter Selinger & Jamie Vicary, editors: Proceedings of QPL 2015, Electronic Proceedings in Theoretical
Computer Science195, Open Publishing Association, pp. 247–261, doi:10.4204/EPTCS.195.18.

[21] Bart Jacobs (2015):New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic.
Logical Methods in Computer Science11(3), doi:10.2168/LMCS-11(3:24)2015.

[22] G. Max Kelly & Manuel L. Laplaza (1980):Coherence for compact closed categories. Journal of Pure and
Applied Algebra19, pp. 193 – 213, doi:10.1016/0022-4049(80)90101-2.

[23] N. David Mermin (1985):Is the moon there when nobody looks? Reality and the quantum theory. Physics
Today, pp. 38–47, doi:10.1063/1.880968.

[24] Robin Milner (1977):Fully abstract models of typedλ-calculi. Theoretical Computer Science4(1), pp. 1 –
22, doi:10.1016/0304-3975(77)90053-6.

[25] John von Neumann (1955):Mathematical Foundations of Quantum Mechanics. Investigations in physics,
Princeton University Press.

[26] John von Neumann (1960):Continuous Geometry. Princeton Landmarks in Mathematics and Physics,
Princeton University Press.

[27] Dusko Pavlovic (1995):Maps I: relative to a factorisation system. J. Pure Appl. Algebra99, pp. 9–34,
doi:10.1016/0022-4049(94)00054-M.

[28] Dusko Pavlovic (1996):Maps II: Chasing diagrams in categorical proof theory. J. of the IGPL4(2), pp.
1–36, doi:10.1093/jigpal/4.2.159.

http://dx.doi.org/10.1007/978-3-642-38164-5{_}3
http://dx.doi.org/10.1007/978-3-642-14162-1{_}25
http://dx.doi.org/10.1017/CBO9781139193313.003
http://dx.doi.org/10.1201/9781584889007.ch16
http://arxiv.org/abs/quant-ph/0608035
http://dx.doi.org/10.1017/S0960129512000047
http://arxiv.org/abs/0810.0812
http://dx.doi.org/10.1007/BF02283036
http://dx.doi.org/10.4204/EPTCS.195.16
http://dx.doi.org/10.1007/BF02550455
http://dx.doi.org/10.1109/LICS.2015.59
http://dx.doi.org/10.4204/EPTCS.195.18
http://dx.doi.org/10.2168/LMCS-11(3:24)2015
http://dx.doi.org/10.1016/0022-4049(80)90101-2
http://dx.doi.org/10.1063/1.880968
http://dx.doi.org/10.1016/0304-3975(77)90053-6
http://dx.doi.org/10.1016/0022-4049(94)00054-M
http://dx.doi.org/10.1093/jigpal/4.2.159


160 (Modular) Effect= (Frobenius) Antispecial

[29] Dusko Pavlovic (2009):Quantum and classical structures in nondeterministic computation. In Peter Bruza,
Don Sofge & Keith van Rijsbergen, editors:Proceedings of Quantum Interaction 2009, Lecture Notes in
Artificial Intelligence5494, Springer Verlag, pp. 143–158, doi:10.1007/978-3-642-00834-413. Available at
http://arxiv.org/abs/0812.2266.

[30] Dusko Pavlovic (2011): Relating toy models of quantum computation: comprehension, complemen-
tarity and dagger autonomous categories. E. Notes in Theor. Comp. Sci.270(2), pp. 121–139,
doi:10.1016/j.entcs.2011.01.027. Available athttp://arxiv.org/abs/1006.1011.

[31] Dusko Pavlovic (2012): Geometry of abstraction in quantum computation. Proceedings of
Symposia in Applied Mathematics71, pp. 233–267, doi:10.1090/psapm/071/607. Available at
http://arxiv.org/abs/1006.1010.

[32] C. H. Randall & D. J. Foulis (1970):An Approach to Empirical Logic. The American Mathematical Monthly
77(4), pp. 363–374, doi:10.2307/2316143.
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