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Effect algebras are one of the generalizations of Boolean@g@iboposed in the quest fogaantum
logic. Frobenius algebras are a toolaategorical quantum mechanijassed to present various fam-
ilies of observables in abstract, often nonstandard fraoniesv Both éfect algebras and Frobenius
algebras capture their respective fragments of quantunhamécs by elegant and succinct axioms;
and both come with their conceptual mysteries. A partidylalegant and mysterious constraint,
imposed on Frobenius algebras to characterize a claspaftite entangled states, is taetispecial
law. A particularly contentious issue on the quantum logile $s themodularitylaw, proposed by
von Neumann to mitigate the failure of distributivity of quam logical connectives. We show that,
if quantum logic and categorical quantum mechanics aredbred in the same framework, then the
antispecial law of categorical quantum mechanics cormedpdo the natural requirement ofect
algebras that the units are each other’s unique complepamshat the modularity law corresponds
to the Frobenius condition. These correspondences ledtteduivalence announced in the title.
Aligning the two formalisms, at the very least, sheds neWtlon the concepts that are more clearly
displayed on one side than on the other (such as e.g. thegorthtty). Beyond that, it may also open
up new approaches to deep and important problems of quanaaianics (such as the classification
of complementary observables).

1 Introduction

That”nobody understands quantum mechani¢as Richard Feynman announced) may be the state of
the world. That the standard mathematical formalisms ohtiwa mechanics contain features that do
not correspond to any features of their subject (as John v@amdnn pointed out [33] almost imme-
diately after he published his treatise [25] about thoseherattical formalisms) is definitely a social
phenomenon. Von Neumann attacked the problem, and gediepzatum logic$26, (5], which became

a popular research area of lattice theory. Many years latathematicians and computer scientists at-
tacked the same problem, and generaigiggorical quantum mechani®, [34,[8,[9], which became a
popular research area of category theory. Most recentlgnaitious €ort has been initiated to incorpo-
rate both families of structures, and much more, under a trexstare calledeffectus[21,[7]. The present
note is, of course, incomparable with thdlogt in its scope, but it also attempts to relate two families
of structures, one from quantum logic, the other one fromegatcal quantum mechanics, and is thus
concerned with a closely related conceptual bridge. Beingmsmaller, our bridge does not require any
new material: we simply translate between the two languaayes try to align the concepts underlying
the diferent models that turn out to be structurally equivalent.

More precisely, we relate the realm dfext algebras |4, 15, 18], intended to capture qguantum propo-
sitions just like Boolean algebras capture classical pitjpms, and the realm of Frobenius algebras
[6,113,12] 31/, 14], used to capture classical data in a quanoniverse, viewed as a category. Although
the two research programs have been driven lfigrdint goals and realized by substantiallffetient
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mathematical methods, they turn out to lead to equivalentstral components. Understanding this
equivalence means uncovering the common conceptual canisunderlying both theories. Instanti-
ating Frobenius algebras to the categBg} of sets and relations, and generalizirfiget algebras to an
abstract dagger compact categ@rywe get the equivalences announced in the title of the paper.

Outline of the paper

We begin by defining fect algebras in SeCl 2. As usuaffeet algebras are defined as sets with some
partial operations, but the defining conditions are forpealiin categorical terms, since our goal is to
align them with the similar conditions that arise in catégmrquantum mechanics. Towards this goal,
in the rest of the paper we work with an abstract dagger cohgadegoryC. The original definition of
effect algebras is recovered fGr= Rel, the category of sets and relations. Since its compactmestha
self-dualities of its objects are an important tool of thalgsis, the restriction to partial maps, prominent
in the definition of #&ect algebras, is not hardwired in the definition of the emument category, but
imposed in the definition of the analyzed structures. Befoeeget to that restriction, we analyze the
general operation of orthocomplementation in general $eofindagger compactness in SEt. 3,. The
reasons and the tools for the restriction to partial mapsda®ussed in Se€l 4. The tools boil down
to a small fragment of the categorical theory of maps, deedrin Sed. 412, relative to the convolution
operations in Se€. 4.1. In Séc. 4.3, we finally reach the stdugee we can propose a categorical version
of the dfect algebra structure. The claim is that the special andrtispgcial requirements, that play an
interesting role in categorical quantum mechanics, in ¢apture the same structure dkeet algebras.
The main claim is Prop. 4.4, which says that special and@ettial algebras (christenasdperspeciafor
this occasion) are just those that satisfy the categoriefihition of efect algebras, simply lifted from
sets and partial functions to dagger compact categories. td¢hnical gain from this characterization
is that the superspecial strucutre is a standard piece ef@atal algebra, well oiled for diagrammatic
analyses in categorical quantum mechanics, whereas thgocaial version of the original definition of
effect algebras involves pullbacks, and requires subtle ateth @umbersome arguments, as illustrated
already in the proof of Prop.4.4. Finally, in SEE. 5, we shbat the modularity law, satisfied by some
effect algebras, corresponds to the Frobenius law in supéaspdgebras. This not only connects two
laws that are studied extensively in two research areasalbatgeneralizes the concept of modularity
from sets to dagger compact categories, while providinguitive view of the Frobenius law. In Ség. 6,
we comment about applications of the results and aboutdurtiork suggested by the results.

2 Effect algebras

Background. Effect algebras/ |4, 15, 18] are affshoot of the &ort towards generalizing classical
propositional logic into a putative quantum logic, inigdtby von Neumanmn [26] 5]. Théfert never led

to a logical system in the traditional sense, perhaps bediesdeduction and abstraction mechanisms
that the logicians use to define such systems, actually ctesize classical data in a quantum universe,
whereas quantum data disobey such abstraction mechanystheibvery nature[[31]. At the proposi-
tional level, these abstraction mechanisms manifest thkes as the distributivity laws. Without such
laws, quantum logics remained as unintuitive for the lagisias quantum physics has been for the physi-
cists. This provided a business opportunity for some madtierans and philosophers.ffEct algebras
are a result of this opportunity.
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Idea. Quantum propositions, viewed as the elements offeackalgebra, can be thought of as sub-
spaces of a Hilbert space. They are operated on by the qudotical connectivesy, ® and-, which

are analogous to the classical disjunctionconjunctionA and negation~. The diference is that any
two classical propositionp andq can be composed infpV g, pA g, whereas the quantum propositions
u andv can only be composed into@ v, u® v if the corresponding Hilbert subspaces are orthogonal;
otherwise these compositions are undefined. The complemenare always defined. The partiality
of the quantum logical connectives and® is induced by the fact that non-orthogonal quantum states
cannot be reliably distinguished, which implies that quambbservables, which are denoted by quan-
tum propositions, and reasoned about in quantum logic, cdnle formed from orthogonal Hilbert
subspaces. fEect algebras thus attempt to capture the essence of quamgiorin terms ofpartiality of
quantum logical operations.

Definition 2.1. An gffect algebrais a setA together with the partial functions
9 - 0
AxA—- A—Ac Q)
1

wherel is a singleton set, and moreover
e (A, ©,0)is a commutative monoid,

¢ the following conditions are satisified for adly € A

XQy=1 & x=-y (2)
x@l=1 < x=0 )

Remarks. Itis easy to see that the above definition is equivalent wghariginal one in[[15]. Proving
that ——x = X, that the partial elements D: | — A must be total, and that must be a map (total and
single-valueE are instructive exercises.

A category theorist might interpret the above definition Bwing the dfect algebra signature, dis-
played in[1), as a diagram in the categ®fy of sets and partial maps. The requirement thaty( 0) is
a commutative monoid is expressed by familiar commutatisgrdms, and conditions](2) arid (3) mean
that the following squares must be pullback$in.

1 <o,o>| lo (4)

A®A ®—>A ARA TA

The tensors and the pairing are induced by the cartesiaugiodf sets. The arrow !A— | is the map
sending all elements @& into the singleton element ¢f While the left-hand pullback is easily seen to
capture [(R), the right hand pullback actually says thaty=0 < x= 0=y, or that the monoid is
torsion-free, which is equivalent withl(3) becausk (2) iepthatx© 1=y < xQ1lQ-y=1 <
XQ-y=0.

IHere we usenaps or functions defined as total and single-valued relations in basic s&rth In Sed4]2 we shall see
how these definitions extend to much more general cated/érdraeworks, including dagger-compact categories widtssical
structures.
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But a categorical quantum mechanic might be inclined to gmdurther, and draw the the above
pullbacks as string diagrams:

= ()

The left-hand diagram should be read as saying that for exery) - A® A andu; : U — | such that
@oUg = 1ouy, there is a uniquel : U — A with ug = (id,=)ou andu; = ! ou. The left-hand diagram
in (B) just says in string diagrams that the left-hand sqirafd) is a pullback. The right-hand diagram
in (B) says that the right-hand square in[ih (4) is a pullbacild it should be read as saying that every
Vo:V— A®Aandv; : V— | such thaty o vg = 0o vy, must satisfyg = (0,0) o v4. The unique pullback
factorization must b&,, because the top side of the right-hand squarglin (4) is #itgi.

If these conditions are accepted as a high level view of theggsitional” operations on quantum
observables, then it is natural to ask what they mean beyaré partial functions, in the categories
with more features of quantum mechanics. The immediateaolasto a straightforward lifting of the
above definition is that most categories that we encounteatiegorical quantum mechanics lack most
pullbacks, and condition§l(4) do not capture the intendedning. Restricting them to abstract partial
functions, like we shall do in D€eff. 4.6, narrows the meanifi@, but the pullbacks remain inconvenient
to work with. The relief comes from a surprising directiohe tpullbacks requirements il (4) and (5)
turn out to be equivalent to some more convenient conditimiependently encountered in categorical
guantum mechanics.

3 Orthocomplemented algebras

3.1 Dagger-compact categories and classical structures

While efect algebras are normally presented as sets with essgatigdibraic structuﬁa we now broaden
the scope, and study the components of their structure ialibract framework of dagger-compact
categoryC. The standard definition offect algebras will be recovered as the special case viherRel,
the category of sets and relations, concrete or abstrdt6]6as used i [17, 20, 20, 31].

The idea of lifting the &ect algebra structure beyond sets, and expressing it inagbstategorical
terms, is that studying theffect algebra operations in other models of quantum mechastiasdard
and nonstandard [30], will reveal their relationships wdther quantum operations and axiomatizations.
For instance, it seems interesting to ask what is the seitablion of €fect algebra in the framework
of Hilbert spaces. Although thefect algebra operations were conceptualized as an abstraiftithe

2An algebraic structure is presented by operations and iemsatAn essentiallyalgebraic structure is presented by opera-
tions andconditionalequations, which are the statements in the fpr g, andp andq are equations. Besideffiect algebras,
the examples of essentially algebraic structures incladiegories and the varieties of categorical algebra, defigedgebraic
theories using functors and natural transformatidns [3].



D. Pavlovic and P.-M. Seidel 149

relevant "propositional” operations over the families afhmgonal subspaces of a Hilbert space, it is
remarkable that these operations are not expressible ifatigeiage of Hilbert spaces themselves, or
even in terms of categorical operations over Hilbert spatesee this, note that, the category of Hilbert
spaces has very few pullbacks, and that lifting the pullba@, or [%) to Hilbert spaces does not give
usable requirements.

Recall that dagger-compact categories are just compaxte@) categories, going back all the way
to [22], but extended with an additional duality, the@ggerfunctori : C°— C, which commutes with the
compact duality: : C°— C up to an coherent isomorphiski* = X#*. The standard model is the category
of finite-dimensional complex Hilbert spaceklilb. One of the main points of working with an abstract
categorical signature, rather than with concrete Hilbpdces, is that nonstandard and toy models [1,
32,[23) 30| 35] often provide important information. Anatpeint, going back to von Neumann, is that
many features of the Hilbert space structure do not correspo any features of quantum mechanics
that they are used to descriBePresented in terms of the functdt, = X**, and equipped with the
biproducts, such categories were proposed as the framdaodategorical quantum mechanics lin [2].
The biproducts were eliminated usiolgssical structure [13E. The availability of classical structures
over the objects of a dagger-compact category is analogotietavailability of bases in the category
of Hilbert spaces. Instantiated to this category, classitactures([13| 12, Def. 2.2] in fact exactly
correspond to bases [14]. Although classical structureg@nerally not preserved by the morphisms of
the surrounding dagger-compact category (just like thedarse not preserved by linear operators), they
do influence the compact structure, by providing an isomerplbetween each object and its dual, and
thus allow us to choose the dual to ¥&= X, and thus make each object self-dliall[12, Prop. 2.4]. The
Frobenius conditionmposed on adjoint monoid-comonoid pair$ [6] is just anpbihiay to express this

self-duality [31, Thm. 4.3]. Yet another expression of theng is arentangledvector | KA X®X, ie.
such that £* ® X) o (X®n) = id [31, Prop. 2.6]. We use such vectors below. Dagger-cotgategories
with such self-dualities, or classical structures, plgytine role of bases to capture classical data, were
studied asategories of classical structures [12, Sec. 2.2].

3.2 Orthocomplement

Let Abe an object in a dagger-compact cateddrgiven with a classical structure induced by the monoid
v !
AA— A—|
Suppose that, in addition to this classical monoid, we ae given another commutative monoid
0
ARA-L5 A |

Definition 3.1. An orthocomplementvith respect to the commutative monoid, {»,0) is an operation
- : A— Asuch that the equations

3In terms of categorical semantics, this means that the Hiace model is ndully abstract it always displays some
“irrelevant implementation details [24].

“4We first called them classicabjects but too many people pointed out that they had a structurdofgh one of the main
points of category theory is to make structures into objézts. groups have a structure, but they are objects of tiegagt of
groups), it seemed simpler to change the name than to expiainf the main points of category theory.
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(6)

hold for some € A.

Remark. These equations can be construed as a string diagrammediorvef the equations
XQ-X=1 =X =X (7)

However, the formal correspondence between of the leftHeauation in[(6) and the left-hand equation
in (@) depends on the single-valuedness assumption, whithendiscussed in the next section.

It turns out that the orthocomplement operations over a rdog@ in bijective correspondence with
theunbiasedvectors with respect to it. We first define and then explaintwiia means.
Definition 3.2. An element € Ais said to bainbiasedwith respect to the commutative monoid structure
(A, @,0) if it satisfies the equation

= (8)

Explanation. In the terminology of([3[l, Definitions 2.5 and 5.1], a vectop A is unbiased with

respect to an algebra with the underlying mondidd, 0) in a dagger-compact category just when the
L # . . .

vector| 5 A L, A®A is entanglegl and the entanglement is defined by the equafion (8). Ergengl

vectors are often also calldell stateq12, Sec. 2.1]. Intuitively, a vectdr 5 A® A is entangled if it

implements an inner producalb) = ¢* o (a, ® b) [31, Prop. 2.6], which means that the induced linear

operatorA % Ais unitary [31, Prop. 5.2(a)]. Ddf._3.2 is also equivalenf8ioDef. 7.13] up to a scalar.

Proposition 3.1. The orthocomplement operations-AA with respect to a commutative mon¢ ©, 0)

are in a bijective correspondence with its unbiased veckessA.

Proof. Given an orthocomplement, condition$ (6) immediately ynpl

A A
A N\

which shows that the orthocomplementand the elementuniquely determine each other. But if the
orthocomplement satisfies the left hand equation, ther#sy to see thdf](8) holds if and only-if =id,
as in [6). i
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Definition 3.3. An orthocomplemented monoider a classical structurkis a tuple A, @,0, 1, -), where
¢ (A, ©,0)is a commutative monoid,

1. .
e | = Alis an unbiased vector, and

e A Ais the induced orthocomplementation.

Proposition 3.2. (A,©,0,1,-) is an orthocomplemented monoiff (A, ®,1,0,-) is an orthocomple-
mented monoid, where

‘ T ‘ T

(@) Q@

BECERERRECE:

Definition 3.4. An orthocomplemented algebower a classical obje& is the structure&, @, ®,0,1,-),
where A, ©,0,1,-) and @A, ®,1,0,-) are orthocomplemented monoids related by De Morgan’s &svs
in Prop[3.2.

Comment. On one hand, orthocomplemented algebras can be thoughagfeaeralization of Boolean
algebras, which also have involutive negation and satigfiviorgan’s laws, and are indeed a special case.
But on the other hand, they are a very special case, as sorhe afdin features of Boolean algebras
do not survive in orthocomplemented algebras, and make foothe main features offiect algebras.
An orthocomplemented algebra structure is derived overlaitrary commutative monoidX, ©,0) from

an arbitrary unbiased elemen¢ A, which becomes 1, and determinesand ®. The monoid is thus
not extended by any new elements, but the structure of asthptemented algebra is derived from the
monoid as it is — by the magic of the entanglement engendeosd the unbiased element.

Truth be told, though, the monoid(©, 0) cannot be completely arbitrary without causing degenera
cies. For instance, if we také\(©,0) to be a classical monoid\(v,!), giving rise to a special commu-
tative Frobenius algebra, then the induced orthocompléméroils down to the identity and the whole
structure collapses t0 = v = @, with x@ —-x = =X = x. Many other monoidsA, @,0), different from the
classical ones, also cause degeneracies. To avoid thatusteimpose somspecialrequirements, and
someantispecialrequirements.

4 Special, antispecial and superspecial algebras

4.1 Convolution

Every internal monoidd® B % B <& 1 inamonoidal categorg induces an external monoid on the vectors
(states) of typd, with the same unit, and

x, : C(1,B)xC(I,B) — C(I,B) (9)
(XY) P uo(x®y) (10)

Dually, any internal comonoiA@Ai AS | induces an external monoid on the covectoriefds) of
type A, with the same counit and

ax D CA)XCA L) - C(Al (11)
vy - (UeVv)od (12)
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Putting the two together, any comonoid-monoid péairi AL A®A BB Lel B> induces a&onvo-
lution monoid
ax, - C(ALB)xC(A,B) — C(A,B) (13)
(.90 = po(f®g)od (14)
with the unitA-5 1 5 B.
Definition 4.1. A convolution algebran a monoidal categor({ is the tuple A, u,t, A, €), where @, u,1)
is a commutati\@monoid and A, 1, €) is a commutative comonoid.
A convolution monoidk = %, : C(A, A)xC(A,A)— C(A A) is induced by a convolution algebra

as in [I3), or as in the following string diagram
A A A

AN
N

Definition 4.2. A convolution algebraA, u,t, 4, €) is called
i. specialif id xid is unitary, and
ii. antispecialif id xid is a scaled projector.

Remarks. Recall thatee C(A,A)is a
i. unitarywheneoef =efoe=id;
ii. scaled projectowhene = ao b for somea,be C(I,A).
In addition to [9), any internal monoidB(u,:) also induces th€ayleyrepresentation

T: C(B) — C(B,B)
b » po(b®B)
When this monoid is a part of a classical structure, then veiipect to this structure, the vectois
i. unbiasedf and only if Tbis a unitary, and

ii. abasisvector if and only ifTbis a pure projector.
This is spelled out in [8, 31, Prop. 5.2]

Examples. Every classical structuréX(v, j,a,!) induces a convolution algebra [12]. Whén= FHilb,
then classical structures correspond to bases [14], whahice the representations of morphisfng e

FHilb(A, B) as matrices andixg = (fij ‘gij)nxm is the entrywise multiplication of the matrix representa-

tions f = (fij)nxm andg = (gij)nxm. WhenC = Rel, then classical structures are disjoint unions of abelian
groups([29]. With the additive notation for these groupdintes, the convolution of relations is

a(RxS)b < duveAdxyeB.u+v=a A URXA VSYA x+y=Db

The standard classical structuresRiel can be viewed as the disjoint unions of the trivial grap and
for these standard classical structures, the convolutds down to the intersection, i.8xS =RNS.

5The commutativity requirement is usually not imposed orvotutions. Here we only work with commutative monoids
and comonoids, so we restrict the usual definition of corti@iuto avoid repeating the requirement.
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Remark. If every object in a dagger-compact categ@rirave classical structures (like, e.g., all vector
spaces have bases), then the induced convolutions makenals&tsC(A, B) into abelian groups. This
does not maké€ into an abelian category, because these convolutions asraly not preserved under
composition. E.g., the relatior®;(RN'S) and P;R) N (P;S) coincide only if the relatiorP is single-
valued, i.e. a partial map.

It turns out that &ect algebras are defined in terms of partial functions witb@geason.

4.2 Maps

Definition 4.3. The convolution preordeiinduced byx : C(A, B) x C(A, B) — C(A, B) is the transitive
reflexive relation< on C(A, B) defined by

f<g & 3IeCAB).fxt=g

Definition 4.4. A morphismf € C(A, B) in a dagger-compact categdtyis said to be
i. totalifida< f¥of
ii. single-valuedor apartial map if fo f* <idg

iii. a mapif it is total and single-valued.

The subcategories @f spanned by total, single-valued morphisms, and maps amgeat&®;, Cs andCh,,
respectively.

In a bicategory, a 1-cellf € C(A, B) is called a map if it has a right adjoifit € C(B, A). Remarkably,
the maps within an arbitrary bicategory form an ordinaryegaty. In particular, restricted to partial
maps, the convolution preorder becomes a partial ordehersénse thatf(<g A g<f) = f=g;
and restricted to total maps, it becomes discrete, in theestmatf < g— f = g. This remains true in
a large family of bicategories [2[7, 28]. Here we do not neezhgesults in full generality, but we will
need the following lemma, instantiated to convolution pdecs.

Lemma 4.1. For partial maps fg e Cg(A, B) the following holds

°
= and =[] = [f]<[9] (15)

If a dagger-compact categoB/admits a classical structure on every object, a fixed fanfighosen
convolution preorders on all hom-sets give rise ttagesian bicategory6]. The following proposition
is proved in[[6, Thm. 1.6, Lemma 2.5].

Proposition 4.2. In the cartesian bicategorg induced by a dagger-compact category with fixed classi-
cal structures (and the induced convolution preordersg, fibllowing equivalences hold for every mor-
phism fe C(A, B)

i. fistotalifandonlyiflgo f =14a;

ii. fissingle-valued ifand onlyikgo f=(f®f)oan

iii. fisamap ifand only if it is a comonoid homomorphism begw the classical structures on A and
B.
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4.3 Hfect algebras are superspecial

One direction of the following lemma follows directly frorne definition of single-valuedness. The other
direction also requires the observation that every monitesrery comonoid must be total (because they
has the unit, and the counit, respectively).

Lemma 4.3. A commutative monoi@A, ©,0) in a dagger-compact categor@ with classical struc-
tures is single-valued with respect to these structuresnd anly if the induced convolution algebra
(A, ©,0,0% 0%) is special.

The specialtyrequirement from Def. 412 thus lifts to general dagger-cachgategories the set the-
oretic restriction of Def_2]1, thatfiect algebra structure consists of partial maps, i.e. thatsingle-
valued. Jéheantispecialtyrequirement, on the other hand, lifts the rest of Defl 2.1&gg#r-compact
categories.

Definition 4.5. An orthocomplemented algebra,©, ®,0,1,-) in a dagger-compact categotyis said
to besuperspecialf it satisfies the following conditions:

(@) the convolution algebrad(©,0, ¥, 0%) is special, (or equivalently,
the convolution algebrad @, 1, ®*, 1%) is special), and

(b) the convolution algebrad(©,0, ®*, 1%) is antispecial.

Definition 4.6. Let C be a dagger-compact category with classical structuresCarthe subcategory
of single-valued morphisms. general gfect algebrais a diagram[(11) irCs, such that A, ©,0) is a
commutative monoid, and the diagrams in figlie (5) are pckba

Proposition 4.4. An orthocomplemented algeb(a, ©,®,0,1,-) in a dagger-compact categor§ is
superspecial if and only A, @,0,1,-) is a general gect algebra inC.

Proof. Since the equivalence between the specialty and the siagjledness is clear from Lemmal4.3,
the task boils down to proving the equivalence between thematialty and the pullback conditions from
Sec[2. In the context of sets and partial functions of Ddll, this equivalence means that conditions
(243) hold if and only if the equations©® y = uandx®y = v are satisfied only fon = 1 andv = 0.

To prove this in the context of a dagger-compact cate@oifirst note that the square

Y

ARA

J

ARA

A

A (16)

is a pullback. Composing the left-hand square of diagfdmv{#) this pullback, and using the commu-
tativity of the monoids, we conclude that all of the followgithree squares are pullbacks if and only if
any of them is a pullback.

O

|
I A——| ARA —— |

A
J J J
(id,—) ll = (id,~) 0 — <7To,—',ﬂ1,—'>| l<1,0>
ASA —o A ABA — A ABARARA  —o> ABA

60ther interesting instances of the special and the anigeguirements have been consideredin [11, 19].
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Towards the third square, we prove the first equation in theviing diagram.

b

(17)

ZANVAON

where = . But since the second equation in that diagram also holdgjrilqueness part
of the pullback condition implies that the factorizationghe dashed rectangles must be equal, i.e.

A A L]
&

(18)

Dualizing both sides yields the antispecialty:

P ¢

- <> (19)
4
To complete the proof, we proceed to transform the left-hsidd of [17). Sincep and® are single-

valued, Prop.4]2ii. says that we can we can distribute ebittem above the black dots on the left-hand
side of [1T). Applying the associativity, the left-handesiof (17) is transformed into the left-hand side

of the following equation.
A A A A

O
/DN O
= =
D) - (20)

, \\//

OHI
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The right-hand side is a path around the third pullbackin).(Factoring the left-hand side through the
pullback, postcomposing one of the branches witland reducing® to ©@ precomposed and postcom-
posed with—s, we get

| | | |
|
iV SO\ /U
‘
L O\ A = @ k ﬁ = v (21)
from which the result follows using the second pullback[dfgad [5). m|

5 Frobenius and modularity
In lattice theory, the modularity condition is usually veit in the form

X<z = (XVY)AZ=XV(YA2)
In an dfect algebrax©@y is defined if and only i < -y, whereay/ ® z is defined if and only ity < z,
whereu < w abbreviateslv. ugQ v=w. Bothx®@y andy® z are thus defined if and only K< -y <z
The modularity law for &ect algebras is thus

X<-y<z = (XQY)Bz=X0 (YD 2) (22)

The following definition, stated in an arbitrary dagger-gaut categonC, is equivalent to[{22) when
restricted to partial functions, i.e. to single-valued piasms inC = Rel.

Definition 5.1. A convolution algebra&, ©,0,®,1) over a self-dual objed in a dagger-compact cate-
gory C is said to bemodularwhen the following equation holds

DN k AN SO\ /BN 23)
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Explanation. The inputs of the morphisms on both sides[of] (23) correspondandz of (22). The
equation says that the range where its left-hand side pes\ath output coincides with the range where
its right-hand side provides an output. The right-hand rhigimp provides an output whenever therg is
such that botk@y andy® zare defined. Whe and® are single-valued, then according to Lenima 4.1,
the left-hand morphism provides an output whenexep YY) ® zandx @ (y® 2) are equal.

Definition 5.2. A convolution algebra&, ©,0,®,1) over a self-dual objed in a dagger-compact cate-
gory C is said to satisfy th&robenius conditiorwhen the following equation holds

NN o0
AN N

The following lemma is proved by straightforward geometramsformations using the duality @n

Lemma 5.1. For a convolution algebrgA, ©,0,?®,1) over a self-dual object A in a dagger-compact
categoryC, each of the following two equations is equivalent with thebEnius condition.

A ]
M\‘—‘@v@‘ o

Lemma 5.2. If the convolution algebrgA,@,0,®,1) over a self-dual object A in a dagger-compact
categoryC consists of single-valued operations, then the Frobenamition is also equivalent with

equation(23).
Proof. We use Lemma4l1. Let be the right-hand side of the second equationof (25)gleé the
left-hand side of[(25). Lemnia 4.1 says tHat g if and only if !o((g* o f)*id) =fxg="0f. Butitis

easy to see thato!((giE o f)*id) reduces to the left-hand side 6f {23), whereas Is the right hand side
of (Z3). Equation[(Z13) thus holds if and only if the secondatiun of [2%) holds. m|

Remark. The correspondence between the modularity and the Frabenidition is reflected in the
geometry of the left-hand diagram &f {23), as displayed emixt figure.

Modularity

Frobenius
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The vertical line splits the diagram into two sides of the mladty condition. Mutatis mutandis, the
horizontal line through the middle of this diagram splitsitb two sides of the Frobenius condition.

Corollary 5.3. A superspecial algebréA, @, ®,0,1,-) over a self-dual object A in a dagger-compact
categoryC satisfies the Frobenius condition if and only if it is modular

6 Further work

The first task is to extend the correspondences between (arpdffect algebras and (Frobenius) su-
perspecial algebras, spelled out in Proposition$ 4.4[a8dnfo functors between the corresponding
categories. The flierent components were built into thes#elient structures to capturefidirent con-
cepts. The fact that thesdi@irent conceptual components, when combined, lead to éeguniveategories
suggests that there are underlying conceptual connedtiatsnay be of interest. What is the connec-
tion between the entanglement type of Westate, realized by the antispecial law on one side, and the
sharpness of the units of th&ect algebra operations on the other side?

Another immediate task is to lift the characterization ofotalar) dtfect algebras as (Frobenius)
superspecial algebras from the concrete categafyof sets and relations, wheréect algebras seem
to normally live, to the abstract framework of dagger-contipzategories, where the usual pointwise
definition of dfect algebras cannot be stated. If definean dfect algebra in a dagger-compact cate-
gory to be a superspecial algebra, then the convenient anithie language of #ect algebras (suitably
extended by the scalar factors, which are triviaRiel) becomes available not only in the richer nonstan-
dard models of quantum mechanics|[30], but ironically evetihé standard Hilbert space model, whose
relevant features were originally intended to be separfxtad the irrelevant ones by the language of
effect algebras.

Last but not least, since every superspecial Frobeniubdeplements a GHEV-pair of [10], and
every GHZW-pair implements a ZX-pair of complementary observables, moduldieet algebras in any
of these frameworks may provide a useful new mathematitaifate to complementary observables.
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