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Following on from the notion of (first-order) causality, which generalises the notion of being trace-
preserving from CP-maps to abstract processes, we give a characterization for the most general kind
of map which sends causal processes to causal processes. These new, second-order causal processes
enable us to treat the input processes as ‘local laboratories’ whose causal ordering needs not be fixed
in advance. Using this characterization, we give a fully-diagrammatic proof of a non-trivial theorem:
namely that being causality-preserving on separable processes implies being ‘completely’ causality-
preserving. That is, causality is preserved even when the ‘local laboratories’ are allowed to have
ancilla systems. An immediate consequence is that preserving causality is separable processes is
equivalence to preserving causality for strongly non-signalling (a.k.a. localizable) processes.

1 Causality and non-signalling

Throughout this extended abstract, we will work in a self-dual compact closed categoryC , that is, a
symmetric monoidal category which has for every object a pair of morphisms:

ηA : I → A⊗A εA : A⊗A→ I

which we refer to ascupsandcapsrespectively, satisfying the following ‘yanking’ identities:

(εA⊗1A)◦ (1A⊗ηA) = 1A γA◦ηA = ηA εA ◦ γA = εA

whereγA : A⊗A → A⊗A is the symmetry natural isomorphism. Furthermore, we will adopt string
diagram notion for depicting compositions of morphisms (see e.g. [9]). Using this notion, cups and caps
resemble their namesakes:

ηA := εA :=

and hence the equations above become:

= = =

Note that the monoidal unitI is depicted as empty space. Throughout the paper, we will think of mor-
phisms in this category as physical processes of some kind, hence we adopt ‘process-theoretic’ language.
Namely, we refer to objects assystemsand morphisms asprocesses. Furthermore, we give special names
to processes from and to the trivial system:

states := ψ effects := π

http://dx.doi.org/10.4204/EPTCS.236.6
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In addition to the compact closed structure, we also assumeC has a distinguished effectdA : A→ I
for every systemA calleddiscarding. This is pictured as:

dA :=

and is compatible with⊗ andI as follows:

=dA⊗B = = dA⊗dB dI = = 1I

The utility of the discarding process is it enables us to define causality, following [7, 3]:

Definition 1.1. A processΨ : A→ B is calledcausalif dB ◦Ψ = dA, or pictorially:

Ψ =

The motto for causal processes is therefore:

If we discard the output of a process, it doesn’t
matter which process happened.

In the category whose objects are quantum state spaces and whose morphisms are CP-maps, causality
corresponds to being a trace-preserving CP-map, i.e. aquantum channel.

The utility of causality is that it enables us to use diagramsto represent the causal relationships
between processes [7]. For example, if we wish to express that Alice can signal to Bob (but not vice-
versa!), we can require that a causal process:

Φ : A1⊗A2 → B1⊗B2

factorises as:

Φ =

ΨA

ΨB

whereΨA andΨB are also causal. Following [6], we see from this factorisation, that it is indeed impos-
sible for Bob to signal Alice. Indeed, if we discard Bob’s output (to which Alice does not have access),
the whole process disconnects:

Φ =

ΨA

ΨB

ΨA

= Ψ′=:

We say such a process isnon-signallingfrom B to A, and writeA � B. Similarly, a process is non-
signalling fromA to B if it factorises as:

Φ =
ΨA

ΨB
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and we say it is simplynon-signallingif it admits both factorisations.
A typical example of a non-signalling process is a Bell-typescenario. That is, Alice and Bob share

some bipartite state, to which they perform local operations:

Φ =
ΨA ΨB

ρ
(1)

This clearly admits the two factorisations forA� B andB� A:

ρ

ΨB

ΨA ΨB

ΨA

ρ

so one might ask if in factall non-signalling processes arise this way. In quantum theory, surprisingly
the answer is no.

Definition 1.2. A morphism is calledstrongly non-signallingif it factorises as in equation (1) for some
causal morphismsΨA, ΨB, andρ .

It was shown in [1] that there indeed exist quantum channels which are non-signalling but not strongly
non-signalling (conditions referred to as ‘causal’ and ‘localizable’ in [1], respectively).

2 Second-order causality

Recently, frameworks have been proposed to discuss quantumcorrelations which do not necessarily
have a fixed causal ordering [8, 4]. Both of these frameworks rely on the notion of a ‘higher-order
quantum channel’ [2], i.e. a mapping which sends channels tochannels. In this section, we will provide
a characterisation of such a map in any compact closed category with discarding.

As is the usual trick in a compact-closed category, we can obtain higher-order maps by first turning
first order maps into states by ‘bending up’ the input wire:

Φ 7→ Φ

This bending is sometimes calledprocess-state duality, which induces a bijection between:
{

processesΦ : A→ B
}

∼=
{

statesΦ̃ : I → A⊗B
}

(2)

Hence, we can express a map which sends a process of typeA1 → A2 to a process of typeB1 → B2

as a map of the form:

W

A1 A2

B2B1

:: Φ 7→ W

Φ
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Definition 2.1. A process is calledsecond-order causal(SOC) if it sends causal processes (encoded via
process-state duality (2)) to causal processes. Diagrammatically, W is SOC if for allΦ:

Φ = =⇒ W

Φ
= (3)

It is often more enlightening to write SOC maps using ‘comb’ notation (cf. [5]):

W

A1 A2

B2B1

 

A2

A1

B1

B2

W (4)

Then processes are composed from the inside-out, rather than bottom-to-top. Hence, (3) becomes:

Φ = =⇒ W =Φ

However, processes with just one ‘hole’ are not that interesting, so we will consider a more interesting
kind of second-order causal map, which has two holes:

Definition 2.2. A process:
W : (A1⊗A2)⊗ (B1⊗B2)→C1⊗C2

is calledbipartite second-order causal(SOC2) if for all causalΦA,ΦB:

W ΦBΦA

is causal.

Particularly simple examples of SOC2 maps simply wireΦA together withΦB in some order:

(5)
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However, interestingly, the order that they are wired together is hidden if we treatW as a black box, and
it can be shown (see for example [8]) that we can even define SOC2 maps which don’t admit any fixed
causal order.

It is natural to ask whether separate notions ofbipartite (or more generally,n-partite) second-order
causal maps is really necessary. We could, after all, define an SOC map as in (4) whereA1 := X1⊗Y1

andA2 := X2⊗Y2, i.e. of the form:

X2

X1

B1

B2

W
Y1

Y2

but this is very restrictive since it needs to send anycausal map to a causal map, rather than just separable
ones. In fact, the simple example of an SOC2 map which wires two processes together in some fixed
order is already not SOC. Suppose for instance that we plug a (non-separable) swap map into the leftmost
process in (5):

=

Then we introduce a loop, which for most categoriesC (including CP-maps) will immediately kill nor-
malisation, and hence causality.

Definition 2.3. We say a categoryC hasenough causal statesif:






∀ρ causal .

ρ

Φ
=

ρ

Φ′






=⇒ Φ = Φ′

SinceC is compact closed, we can prove that ifC has enough states, it also has enoughseparable
causal states:









∀ρ1, . . . ,ρn causal .
Φ

ρ1 ρn

=

ρ1

Φ′

ρn

· · · · · ·

· · ·· · ·








=⇒ Φ = Φ′

because we can simply apply Definition 2.3 one input at a time,via:

Φ
ρ

=
ρ

Φ′
⇐⇒ Φ

ρ
=

ρ

Φ′
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3 Second-order causality and non-signalling

Now we are ready to prove the main theorem of this extended abstract and give a simple corollary.

Theorem 3.1. If a process in a category with enough causal states is SOC2, then it is ‘completely’ SOC2
in the sense that, for any causal processes:

ΦA : A′
1⊗A1 → A′

2⊗A2 ΦB : B′
1⊗B1 → B′

2⊗B2

the process:

W ΦBΦA

is causal.

Proof. For any causal statesρA,ρB, the following processes are causal:

ΦA

ρA

ΦB

ρB

(6)

which can be seen just by discarding the respective outputs and applying causality ofΦA,ΦB,ρA andρB

individually. Then, ifW is SOC2, plugging in the causal maps (6) yields a causal map. Hence, for any
ρW, we have:

ρW

W

ρA

ΦBΦA

ρB

=
ρW

=

Since the process above agrees with discarding for allρA,ρB,ρW:

ρA ρW ρB

=

we can conclude, using the fact thatC has enough causal states (and hence enough separable causal
states) that:

W ΦBΦA =
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We can now show that SOC2 processes not only preserve causality for separable processes, but also
for strongly non-signalling processes:

Corollary 3.2. If a processW is SOC2, then it sends every causal, strongly non-signalling process:

Φ : A1⊗B1 → A2⊗B2

to a causal process.

Proof. If Φ is strongly non-signalling, it factors as in (1). Then:

W

Φ ΨBΨA

ρ

W

=
ΨB

ρ

=

W

ΨA

= =
(3.1)

ρ

In [4] it is shown that preserving causality for product channels is equivalent to preserving causality
for all non-signalling channels. This can be shown straight-forwardly in the concrete case of CP-maps
using the fact that non-signalling channels always arise asaffine combinations of separable channels.
One could therefore extend the proof above to work for all non-signalling processes if we replaceρ with
a ‘pseudo-state’ given by, e.g.

rrr
:= ∑

i

r i |i〉〈i|⊗ |i〉〈i|

for (possibly negative) coefficientsr i summing to 1. Then we still have:

rrr
=

and we can furthermore realise any affine combination of separable CP-maps (hence any non-signalling
channel) via:

Φ =
ΨA ΨB

rrr

Then the proof of Corollary 3.2 proceeds identically, replacing ρ with rrr . However, this has the undesir-
able property that we have to go outside of the category of ‘physically realisable’ processes to get this
(non-positive) pseudo-staterrr. Whether one can give a fully diagrammatic proof without resorting to such
tricks is an open question.
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