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Various frameworks that generalise the notion of contextuality in theories of physics have been
proposed; one is the sheaf-theoretic approach by Abramsky and Brandenburger; an other is the
equivalence-based approach by Spekkens. We show that these frameworks are equivalent for sce-
narios with preparations and measurements, whenever factorizability is justified. This connection
gives rise to a categorical isomorphism between suitable categories. We combine the advantages of
the two approaches to derive a canonical method for detecting contextuality in such settings.

1 Introduction

Two Formalisms for Contextuality

Contextuality of quantum mechanics entails the impossibility of assigning predetermined outcomes to
observables in a way that is independent of the context or method of observation. It was first described
by Kochen and Specker in [16]. Such an assignment would provide a hidden variable model, which is an
explanation for observations of the physical world according to the laws of classical mechanics. Hence,
the study of contextuality offers a way to specify the manner in which quantum mechanics deviates from
the theory of classical mechanics.

Recently, various formalisms of different scope and nature have been proposed, which generalise the
currently known examples of contextuality: [3], [10],[12], [13], [22], [24]. The relation between some
of the formalisms has been studied in [23], [25]. In this paper, we unify the sheaf-theoretic formalism
by Abramsky and Brandenburger [3] with the equivalence-based notion of contextuality developed by
Spekkens in [24]. These approaches share the goal of expressing the notion of non-contextuality in
a manner that is independent of the quantum formalism. They are applicable to any operational or
empirical theory, which is a high-level description of an experimental setting.

The Sheaf Approach

In the sheaf approach to contextuality, one defines contextuality as the non-existence of a joint proba-
bility distribution over the outcomes of a set of measurements. It is formulated within the mathematical
framework of sheaf theory, as the non-existence of a global section for a presheaf of distributions over
measurement outcomes. The mathematical framework provides algorithmic methods based on sheaf-
cohomology to detect contextuality [5], as well as means of quantifying contextuality [1] and a structural
method for deriving non-contextuality inequalities [9]. The sheaf approach is applicable to measurement-
based quantum computing. In [21], it was shown that any mod-2 nonlinear computation in measurement
based quantum computing with a linear classical processor requires sheaf-theoretic contextuality.
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2 Almost Equivalent Paradigms of Contextuality

The Equivalence-Based approach

Contextuality in the equivalence-based approach is defined as the non-existence of certain hidden vari-
able models, called ontological representations, of operational theories. Such an ontological representa-
tion must be determined by the statistical data of the experiment only. It cannot depend on any additional
data, regarded as the ’context’. This gives a natural explanation for operational equivalence of measure-
ments and preparations: we cannot distinguish them because they correspond to the same ontological
values. The formalism distinguishes three different types of contextuality: contextuality for prepara-
tions, transformations and for (unsharp) measurements. Unlike traditional notions of contextuality, the
formalism does not presuppose outcome assignments in a hidden-variable model to be deterministic. In
doing so, it provides a framework for contextuality tests which are robust to noise [17] [19].

Overview

In this paper, we draw a formal connection between the sheaf-theoretic approach to contextuality on
the one hand and general contextuality in the equivalence-based approach on the other hand. General
contextuality is defined as the existence of at least one of the three different types of equivalence-based
contextuality.

We expand the scope of the sheaf formalism to ensure that any scenario that can be described in
the sheaf formalism corresponds to an operational theory in the equivalence-based formalism and vice
versa. We call the type of theories in the extended sheaf-theoretic formalism ’empirical theories’. As
the notions of empirical and operational theories are interchangeable, we will often simply call them
’theories’. The joint distribution that is characteristic to a non-contextual empirical theory in the sheaf-
theoretic sense gives rise to an ontological model for the corresponding operational theory. A priori, this
operational theory may not be non-contextual in the equivalence-based sense, as the joint distribution
may depend on data other than the outcome statistics. Therefore, we show that whenever an empirical
theory is non-contextual in the sheaf sense, we can eliminate any statistically redundant data to obtain
a new ’minimal’ non-contextual empirical theory. We use this notion of a minimal theory to construct
a non-contextual ontological representation (in the equivalence-based sense) for each non-contextual
theory in the sheaf-theoretic sense. We call this the ’canonical’ ontological representation of a theory.
Finally, we derive that an operational theory can be realised by a factorizable non-contextual ontological
representation in the equivalence-based sense, if and only if it is non-contextual in the sheaf-theoretic
sense. This is a generalisation of a result by Abramsky and Brandenburger which was formulated in
terms of empirical models and the traditional notion of non-contextuality for ontological models [3]. As
a result, the contextuality argument for preparations and for unsharp measurements given by Spekkens
in [24] can be formulated in the sheaf-theoretic formalism. More generally, contextuality for preparations
and unsharp measurements is independent of the chosen formalism for contextuality. Furthermore, we
generalise the result in [24] that equivalence-based non-contextual representations of PVM’s in quantum
theory are outcome-deterministic, to an analogous result for an appropriate notion of sharp measurements
in general operational theories. We show that operational theories with such measurements are non-
contextual if and only if their ’canonical’ representations are non-contextual.

Outline

In Section 2 we recall the equivalence-based approach to contextuality. We discuss how known examples
of contextuality arise in this formalism by imposing additional assumptions which force the outcome as-
signments in an ontological model to be deterministic. We analyse the notion of contextuality beyond
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theories where outcome-determinism of ontological representations is justified. As an illustration, we
discuss Mermin’s All Versus Nothing argument and Bell’s scenario in the equivalence-based model. In
Section 3, we recall the sheaf-theoretic approach. We extend the framework to incorporate prepara-
tions. We explore the role of convexity in this formalism and derive a sheaf-theoretic contextuality proof
for the scenario of preparations and unsharp measurements [24]. In Section 4, we introduce a method
for constructing a canonical non-contextual ontological representation for any non-contextual empiri-
cal theory. We prove that such a canonical non-contextual ontological representation exists whenever
the theory admits a factorizable non-contextual ontological representation. In Section 5 we introduce the
categories E mp of empirical theories, OT of operational theories, and OR of ontological representations.
We show how the correspondence between empirical and operational theories gives rise to a categorical
isomorphism, which maps the subcategory of non-contextual empirical theories to the subcategory of
operational theories that can be realised by a factorizable non-contextual ontological representation. In
Section 6, we discuss contextuality for unsharp measurements and give an example for which the two
notions of contexuality are different.

2 The Equivalence-Based Approach

The notion of contextuality used in the classic examples [16], [15], [20] [11], is specific to the Hilbert
space formalism for quantum mechanics. The equivalence-based approach provides us with a more
general, operational principle for defining contextuality. In this section, we discuss the structure and
assumptions needed to derive various examples of contextuality from this principle. This has been done
previously in the specific cases of the Kochen-Specker scenario in [17] and Spekkens’ contextuality of 2-
dimensional quantum systems in [24]. Here, we define conditions under which the equivalence-based ap-
proach gives rise to any contextuality scenario that relies on the impossibility of a hidden variable model
with deterministic outcome assignments. As an illustration, we discuss Bell’s non-locality scenario and
Mermin’s all versus nothing argument from the equivalence-based point of view. Furthermore, we anal-
yse the notion of equivalence-based contextuality for the class of theories where outcome-determinism
cannot be justified.

Operational Theories

Firstly, we recall the equivalence-based approach to contextuality [24], [18]. Consider two sets, P and
M, of preparation procedures and measurement procedures, respectively. For each measurement m ∈M
there is a set finite set Om of possible measurement outcomes. For each pair (p,m) ∈ P×M, there exists
a probability distribution dp,m : Om → [0,1] over the set of possible outcomes Om. The value dp,m(k)
should be understood as the probability of obtaining the outcome k when a preparation p is performed,
followed by a measurement m. We write D for the indexed set of probability distributions {dp,m}p∈P,m∈M.
An operational theory is defined by a tuple (P,M,D,O), where O =∪mOm. In [24], operational theories
also contain a set of transformation procedures, but we will not consider these here. We can still account
for any transformation followed by a measurement by considering it as a new measurement. However,
we lose the significance of compositionality, which can result in additional statistical equivalences.

Preparations and measurements are statistically equivalent when they are not distinguishable based
on the measurement statistics in the operational theory. Let p, p′ ∈ P be preparations and let m,m′ ∈M
be measurements, this is expressed below.
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p∼ p′ ⇔ dp,m = dp′,m ∀m ∈M

m∼ m′ ⇔ dp,m = dp,m′ ∀p ∈ P

(m,k)∼ (m′,k′) ⇔ dp,m(k) = dp,m′(k′) ∀p ∈ P

Example (Quantum Mechanics). The standard example of an operational theory is the Hilbert space
formalism for quantum mechanics. Equivalence classes of preparation procedures correspond to density
matrices. Equivalence classes of measurement procedures correspond to POVM’s. Different decompo-
sitions of density matrices or POVM’s correspond to different preparation or measurement procedures,
respectively. The outcome set of each measurement procedure corresponds to its POVM elements. The
indexed set of distribution functions D is derived from the Born rule.

An ontological representation of the operational theory A = (P,M,D,O) consists of a discrete set
of ontological values Ω, together with sets of distribution functions µ = {µp : Ω→ [0,1]}p∈P and ξ =
{ξm(λ ) : Om → [0,1]}λ∈Ω,m∈M. The distribution functions are such that they realise the measurement
statistics of A, which is expressed by the formula below.

∑
λ∈Ω

ξm(λ )(k)µp(λ ) = dp,m(k) ∀p ∈ P,m ∈M (1)

An ontological representation, like a hidden variable model, should be thought of as representing
a physical system as it really is, while the operational theory merely describes our knowledge of the
system, which may not be accurate or complete.

In this paper, we will assume that all ontological values can be obtained by performing some prepa-
ration procedure. This means that for all λ ∈Ω there exists a preparation p ∈ P, such that µp(λ )> 0.

Definition 1. An ontological representation is called preparation non-contextual if µp = µp′ when-
ever p ∼ p′; it is called measurement non-contextual if ξk,m = ξk′,m′ whenever (m,k) ∼ (m′,k′); it is
called non-contextual if it is preparation non-contextual as well as measurement non-contextual. An
operational theory is called non-contextual whenever there exists a non-contextual ontological repre-
sentation that realises the theory. When there exists no such ontological representation, and operational
theory is called contextual.

Contextuality is characterised as the impossibility of any non-contextual hidden variable model. One
would therefore want to consider non-discrete infinite spaces of ontological values as well. We conjecture
that all results can be generalised to hold for topological measure spaces. We leave this for future work.

Nevertheless, the notion of non-contextuality without any further restictions is too permissive. We
can find a non-contextual ontological representation for any operational theory with discrete sets P,M.
This covers all classic examples of contextuality mentioned so far. The ontological representation is
defined as follows:

Ω := {[p]}p∈P µq([p]) := δp,q ξm([p])(k) := dp,m(k)

Here, [p] is the statistical equivalence class of p∈P. One could ask wether it is possible to find a non-
contextual ontological representation that satisfies specific properties. These can either be derived from
the formalism or justified by physical principles. In the rest of this section, we discuss which additional
properties we need to derive known examples of contextuality from the equivalence-based definition of
contextuality.
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Deriving Contextuality Arguments from Convex Structure

The following assumption is required for the contextuality proof of preparations and unsharp measure-
ments of 2-dimensional quantum systems given in [24].

Assumption 1 (Preservation of Convexity). Let p, p1, p2 ∈ P be preparation procedures, such that p =
cp1 +(1− c)p2 is a convex combination of p1 and p2; let m,m1,m2 ∈ M be measurement procedures,
such that m = cm1 +(1− c)m2 is a convex combination of m1 and m2. We have the following equalities
of distribution functions:

µcp1+(1−c)p2 = cµp1 +(1− c)µp2 (2)

ξcm1+(1−c)m2 = cξm1 +(1− c)ξm2 (3)

Example. In any physical experiment, the convex combination of two operations can be seen as a prob-
abilistic sample of these operations. In the Hilbert space formalism for quantum mechanics, it is the
convex combination of a set of density matrices or observables, respectively.

The contextuality examples arise from the fact that POVM’s and mixed density matrices can be
written as different convex combinations of projectors and pure density matrices, respectively. It is not
possible that the convex decompositions are preserved at the ontological level for all combinations at
once. We will discuss the two examples in detail in section 3.

Outcome-Determinism

An ontological representation is outcome-deterministic if ξm(λ )(k) ∈ {0,1} for all m ∈M,k ∈ O and
λ ∈Ω. In [24] it was shown that every non-contextual ontological representation for PVM’s in quantum
mechanics must be outcome-deterministic. We generalise this argument below for operational theories.
To characterize a class of operational theories in which outcome-determinism can be justified, we gen-
eralise the notion of sharp measurements and the maximally mixed state in quantum mechanics to the
operational notions below.

Definition 2. A measurement procedure m with outcome set Om is perfectly predictable if for all k ∈Om

there exists a preparation pk, such that dpk,m(k
′) = δk,k′ .

Definition 3. A preparation pmix is maximally mixed if the following two conditions hold.

1. For every preparation procedure p′, pmix is statistically equivalent to some preparation procedure
which is a convex combination of preparations containing p′.

2. For every perfectly predictable measurement procedure m, pmix is statistically equivalent to some
measurement procedure which is a convex combination of pk for k ∈ Om.

Example (Quantum Mechanics). In quantum theory, PVM’s are perfectly predictable. In the Hilbert
space model for quantum theory of a fixed dimension d, any linear decomposition of the maximally
mixed state I/2d is a maximally mixed preparation.

Lemma 1. Let m be a perfectly predictable measurement procedure in an operational theory that satisfies
assumption 1 and contains a maximally mixed preparation. If the distribution function ξm is part of a
preparation non-contextual ontological representation, it is outcome-deterministic.

Proof. Let Ωp := {λ ∈ Ω|µp(λ ) > 0} be the support of µp. Perfect predictability implies that for each
measurement m and outcome k of m, there exists a preparation pk, such that
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dpk,m(k
′) = ∑ξm(λ )(k′)µpk(λ ) = δk,k′ for all k′ ∈Om. If k = k′, this means that ξm(λ )(k) = 1 for all λ ∈

Ωpk , since µpk is a probability distribution and ξm(λ )(k)≤ 1. For k 6= k′, this implies that ξm(λ )(k) = 0
for λ ∈Ωpk′ . As a result, ξm(λ )(k) ∈ {0,1} for λ ∈ ∪kΩpk .

It is left to prove that Ω = ∪kΩpk . By preparation non-contextuality, there is one probability distri-
bution µpmix for all preparations that are statistically equivalent to the maximally mixed preparation pmix.
We use this to show that Ω = Ωpmix . It is clear that Ωpmix ⊂ Ω, so we need to show that for all λ ∈ Ω,
it is true that λ ∈ Ωpmix . We may assume that for every element λ ∈ Ω there exists a preparation p,
such that λ ⊂ Ωp. Otherwise, it is impossible to ever obtain the value λ . By the first condition of the
maximally mixed preparation and assumption 1, we know that λ ⊂Ωpmix . It follows that Ω = Ωpmix . By
the second condition and assumption 1, we know that µpmix = µ∑ck pk . It follows from the definition of
the support, that Ωpmix = Ω∑ck pk = ∪Ωck pk = ∪Ωpk , since all µpk are strictly positive functions. It follows
that Ω = ∪Ωpk , hence ξm is outcome-deterministic.

Beyond Outcome-Determinism

Another setup which imposes additional restrictions on non-contextual ontological representations is that
of joint measurements. We recall the definition given in [18].

Definition 4. A set of N measurements {m1,m2, ...,mN} is jointly measurable if there exists a measure-
ment m with the following features:
(i) The outcome set of m is the Cartesian product of the outcome sets of m1, ...,mN

(ii) Let S be a subset of the index set {1, ...,n}. The outcome distributions for every joint measurement
of any subset {ms|s ∈ S} ⊂ {m1, ...,mN} is recovered as the marginal of the outcome distribution of m
for all preparations p ∈ P. Denoting a joint measurement of the subset S by mS with a corresponding
section kS ∈ OmS , the condition can be expressed as

∀S,∀p : dp,mS(k) = ∑
k∈Om:πS(k)=kS

dp,m(k). (4)

Here, πS is the projection function on the subset E (mS)⊂ E (m).
(iii) The composition of functions πS ◦m corresponds to a measurement in the operational theory for
each subset S⊂ {1, ...,N}.

Condition (iii) was not given in the original definition. As we will see, with this additional condition,
equivalence-based non-contextuality implies that any ontological representation of an operational theory
with joint measurements is parameter independent. An ontological representation is called parameter
independent if for each measurement the effect on the ontological states is independent of any other mea-
surement performed simultaneously. We can restrict the distribution function of a joint measurement m
to a subset m′ by the restriction function ξm|m′ , which is defined as ξm|m′(k′)(λ ) := ∑k:πm′ (k)=k′ ξm(k)(λ ),
where πm′ : Om→ Om′ projects the outcomes of m to the set of outcomes of m′. Parameter independence
means that for two joint measurements m,n, the equality ξm|m∩n = ξn|m∩n holds.

Lemma 2. Any measurement non-contextual representation of an operational theory (P,M,D,O) is pa-
rameter independent. That is, for all joint measurements {m,n}, we have the following equalities:

ξ
k
m|m∩n(λ ) = ξ

k
m∩n(λ ) = ξ

k
n|m∩n(λ ) (5)

Proof. Let m = {m1, ...,mN} be a jointly measurable set of measurement procedures of M, let p be a
preparation procedure, let Ks be the set {k ∈ Om|πs(k) = ks}, for some s ∈ {1, ...,N},ks ∈ Oms .
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By joint measurability and basic probability theory, we have the following sequence of equalities on
the operational level:

dms,p(ks) = ∑
k∈Ks

dm,p(k)

= dm,p(Ks)

= dπs◦m,p(ks)

By condition (iii) of Definition 4, πS ◦m is a well-defined measurement. It then follows from mea-
surement non-contextuality that ξms(ks) = ξπs◦m(ks), which implies

ξmS(ks) = ∑
k|πs(k)=ks

ξm(k) =: ξm|ms(ks) (6)

A stronger restriction on ontological representations is factorizability. We call an ontological model
factorizable when for joint measurements m = (m1, ...,mn), we can write
ξm(λ )(o) = ∏i=1,...,n ξmi(λ )(πi(o)). It was shown in Theorem 6 of [18] that any ontological model
which is outcome-deterministic and measurement non-contextual, is factorizable. In fact, we will show
in Section 4 that an operational theory admits a factorizable non-contextual ontological representation
iff it admits a deterministic non-contextual ontological representation. This is a generalisation of Fine’s
theorem [14] for the equivalence-based notion of contextuality.

Bell’s Scenario

Consider the following experiment where two parties can each choose from two different measurements
with outcome set {1,−1}: a and a′ for the first party; b and b′ for the second party. The outcome statistics
of each possible combination of measurements after a preparation p is organised in the table below. Each
entry ai, j of the table represents the probability of obtaining outcome i for measurement j.

(1,1) (-1,1) (1,-1) (-1,-1)
(a,b) 1/2 0 0 1/2
(a′,b) 3/8 1/8 1/8 3/8
(a,b′) 3/8 1/8 1/8 3/8
(a′,b′) 1/8 3/8 3/8 1/8

(7)

This setup can be realised in the operational theory given by the Hilbert space formalism of quantum
mechanics. Consider the quantum states

φa+ ,φb+ =(|0〉+ |1〉)/
√

2) φa− ,φb− = (|0〉− |1〉) /
√

2)

φa′+ ,φb′+ =(|0〉+ eπ/3i |1〉)/
√

2) φa′− ,φb′− = (|0〉+ e(π/3+π)i |1〉)/
√

2)

φGHZ =(|00〉+ |11〉)/
√

2

and observables Px+ and Px− that project onto the state φx+ and φx− , respectively; as well as the
measurement x := (Px+ ,Px−) for x ∈ {a,b,a′,b′}.
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We are interested in measurement procedures (a,b), (a′,b), (a,b′), and (a′,b′) corresponding to the
PVM’s a⊗b,a′⊗b,a⊗b′ and a′⊗b′, respectively, as well as the restriction to each of the components
for each of the measurements, which are obtained by taking the partial trace.

We have seen before that the Hilbert space formalism of fixed dimension has a well-defined notion of
convex combinations and contains a maximally mixed preparation. Furthermore, all measurements are
perfectly predictable as they are PVM’s. The tuples are joint measurements of their restrictions, which
fall into four equivalence classes a,a′,b,b′. Since any non-contextual ontological representation is in par-
ticular preparation non-contextual, it follows that any such representation must be outcome-deterministic
under assumption 1, hence factorizable. As a result, every ontological state can be associated with a func-
tion {a,a′,b,b′}→{0,1} from the set of equivalence classes of elementary measurements to the outcome
set. This morphism maps each measurement to the outcome that occurs with probability 1 when the sys-
tem is in ontological state λ . In other words, we can identify each ontological value λ with the outcome
(α,β ,α ′,β ′) ∈ {0,1}4. We obtain the presupposed probability that a = α,b = β ,a′ = α ′,b′ = β ′ after
the preparation of φGHZ by integrating according to equation 1 over all ontological values that correspond
to this outcome. We denote this probability by pαβα ′β ′ . These probabilities should sum up to the values
given in the table. The entries a1,1,a2,2,a3,3, and a1,4, give us the 4 equations below.

a1,1 : p0000 + p0010 + p0001 + p0011 = 1/2 a2,2 : p0010 + p1010 + p0011 + p1011 = 1/8

a3,3 : p0001 + p0101 + p0011 + p0111 = 1/8 a1,4 : p0000 + p0100 + p1000 + p1100 = 1/8

The left-hand-side of the sum of a2,2,a3,3 and a1,4 should be greater than 1/2, since it contains all
summands of a1.1. However, the right-hand side of these equations sums to 3/8. As a result, the equations
cannot be satisfied. As a consequence of this contradiction, a non-contextual ontological representation
cannot exist.

Mermin’s All Versus Nothing Argument

For the next example, we again consider the operational theory defined by the Hilbert space formalism
of quantum mechanics. Suppose that we are given a GHZ state φGHZ = (|000〉+ |111〉)/

√
2 and we

may perform Pauli X or Y measurements on each of its components. One can verify that for a choice
of joint measurements, the following equalities hold with certainty. The right-hand-side of the equalities
are given by the product of the outcomes of the three individual measurements:

X1Y2Y3 =−1 Y1Y2X3 =−1 Y1X2Y3 =−1 X1X2X3 = 1

As in the previous example, the measurements are perfectly predictable, and the operational theory
contains a maximally mixed state. Furthermore, the triples are joint measurements of their restrictions
to the three different components, given by the partial trace. These restrictions fall into the equivalence
classes X1,Y1,X2,Y2,X3,Y3. We will show that no ontic state λ in a non-contextual representation allows
for probability distributions µ−(λ ) that are consistent with this scenario. Suppose that there exists a
non-contextual ontological representation for this operational theory. In particular, this representation is
preparation non-contextual. Perfect predictability and the maximally mixed preparation imply outcome
determinism and factorizability. Hence, µX1Y2Y3 = µX1 µY2 µY3 , and similarly for the other joint measure-
ments. Given any ontological state λ of such representation, we can identify each of the measurements
Xi,Yi with the outcome that occurs with certainty for µXi(λ ) and µYi(λ ), respectively. By factorizability,
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the outcomes of the joint measurements correspond to the product of the outcomes of the three compo-
nents. In other words, µ assigns −1 or 1 to each Xi,Yi, in a way that the equalities above are satisfied. It
is easy to see that this is impossible: The product of the expressions on the left-hand-side must equal 1,
since every measurement occurs twice, while the product of the right-hand-sides equals -1.

3 The Sheaf Approach

We recall the sheaf-theoretic approach to contextuality and non-locality, which was introduced by Abram-
sky and Brandenburger in [3] and [2]. We consider the version of the formalism given in [7] and extend
it to incorporate preparations. As we will show later, an extension of this version is applicable to any
operational theory.

Sheaves are a mathematical tool for describing how local data can be combined to obtain global
information about a system. In this setting, a system type consists of a discrete set X of measurement
labels, together with a measurement cover M = {Ci}i∈I . This is an antichain of subsets Ci ⊂ X , such
that ∪i∈ICi = X . This means that for C,C′ ∈M , we have the implication C ⊂ C′ =⇒ C = C′. The
measurement cover M represents the maximal sets of measurements that can be performed jointly. We
write ↓MA for the simplicial complex generated by M .

We shall fix a set O of outcomes, which is the union of the sets of possible outcomes for each of
the measurements in X . For each set of measurements U ⊂ X , a section over U is a function U → O.
We write OU for the set of sections over U . The assignment U 7→ OU defines a sheaf over the discrete
topological space E : P(X)→ Set, which we call the sheaf of events. The restriction function, which is
the remaining part of the data defining this sheaf, is given below.

ρ
U
U ′ := E (U ⊂U ′) : OU ′ 7→ OU :: s→ s|U

We call elements of E (X) global sections of measurement outcomes. Each global section consists of an
assignment of an outcome to each of the measurements.

For any commutative semiring R and set X, an R-distribution d on X is a map d : X → R of finite
support, such that

∑
x∈X

d(x) = 1

We write DR(X) for the set of R-distributions on X . For a function of sets f : X → Y , we define

DR( f ) : DR(X)→DR(Y ) :: d 7→ [y 7→ ∑
f (x)=y

d(x)]

It is easy to see that DR is functorial. Hence, we can compose E with DR to obtain a presheaf DRE :
P(X)op→ Set, which maps each set of measurements to the set of R-distributions over their sections.
When R is the ring of non-negative reals R+, DRE (m) corresponds to probability distributions over the
outcomes of m; if R is the ring of booleans B, it represents the possibility of outcomes of m.

The approach can be generalised to a presheaf over a small, thin category DRE : C→ Set, as in [7].
A category is called thin when for each two objects A,B and each two morphisms f ,g : A→ B, we have
the equality f = g. This is the categorical way to characterise a preorder. The order relation is given
by a notion of joint measurement. Depending on the interpretation of an empirical theory, one could
adopt different notions of joint measurement. In this paper, we will use the notion of joint measurability
given in Definition 4. We recover the set of measurement labels X as the set of objects that are jointly
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measurable sets of at most one element. These are all objects A, such that there is an arrow A→ B to
each object B, for which there exists an arrow B→ A. The measurement cover M corresponds to the
maximal jointly measurable sets. This cover contains those objects A, such that there is an arrow B→ A
from every object B, for which there exists an arrow A→ B. Note that when the thin category is a poset,
we obtain the usual notions of measurement labels and a measurement cover.

A state for a system type C determines a distribution σC ∈ DRE (C) for each measurement context
C ∈M . A state is called no-signalling when for all C,C′ ∈M

σC|C∩C′ = σC′ |C∩C′

When a state σ is no-signalling, the restriction σC|m for m ∈ Ob(C) corresponds to the same probability
distribution over the outcomes of m for each C ∈M . We will denote this distribution by σm. There may
be several states corresponding to the same distribution. These are statistically equivalent states. We
call the tuple (C,S,O), where S is a collection of states for a system type C, an empirical theory. An
empirical theory is no-signalling if all states in S are no-signalling. A global section for the presheaf
DRE is given by an indexed set d = {dσ}σ∈S, such that for each σ ∈ S, dσ ∈DRE (X) and we have the
following equality

dσ
m := dσ

X |m = σm

We define contextuality of an empirical theory as the non-existence of a global section for the
presheaf DRE .

Example (Quantum Mechanics). The Hilbert space model for quantum mechanics gives rise to an empir-
ical theory. The measurement labels correspond to POVM’s; the measurement cover consists of maximal
sets of joint measurement as in Definition 4; and states are given by density matrices, which determine
the corresponding families of probability distributions according to the Born rule.

Convexity in Empirical Theories

Many of the classic contextuality results about quantum mechanics, including Kochen-Specker scenar-
ios [16], Hardy’s paradox [15], Bell’s scenario [11] and Mermin’s all versus nothing argument [20] can
be derived from the sheaf approach, as shown in [3] and [6]. In this section, we show that the same is
true for the contextuality of preparations and unsharp measurements [24]. Therefore, these contextu-
ality arguments are independent from the chosen notion of contextuality. We will demonstrate that the
arguments are a direct consequence of assumption 1.

As assumption 1 is formulated in terms of operational theories and ontological representations, we
introduce an analogue for empirical theories. In this setting, global sections can be seen as the counterpart
of the non-contextual ontological representations. We explain this in Section 4.

Assumption 2 (Preservation of convexity). Let d be a global section for an empirical theory. Let
σ p1 ,σ p2 ,σ c1·p1+c2·p2 ∈ S be states, where σ c1·p1+c2·p2 := c1 ·σ p1 + c2 ·σ p2 is the formal convex com-
bination of σ p1 and σ p2 . Let m1, m2,c1 ·m1 + c2 ·m2 ∈ X be measurement labels, where c1 ·m1 + c2 ·m2
is the convex combination of m1 and m2. The equalities below hold.

dσc1 ·p1+c2 ·p2 = c1 ·dσp1 + c2 ·dσp2 (8)

dσ
c1·m1+c2·m2

= c1 ·dσ
m1

+ c2 ·dσ
m2

∀σ ∈ S (9)
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Note that σ c1·p1+c2·p2 is a formal convex combinations of states σ p1 and σ p2 , not the convex combi-
nations of their corresponding probability distributions.
Lemma 3. Let (C,S) be an empirical model with a global section d. Assumption 2 implies that convexity
in an empirical model is preserved by the probability distributions defined by states.

σ
c1 p1+c2 p2
C = c1 ·σ p1

C + c2 ·σ p2
C ∀C ∈M

σc1m1+c2m2 = c1 ·σm1 + c2 ·σm2

Proof. This follows immediately from the definition of a global section.

The probability distributions in the empirical model of quantum mechanics do not preserve the con-
vexity of the states and measurements. This is due to the fact that the Born rule does not preserve
convexity of POVM’s or density matrices. We show this below by considering different decomposi-
tions of the maximally mixed state and of the maximally mixed POVM; hence, we prove sheaf-theoretic
contextuality for preparations and unsharp measurements in 2-dimensional quantum mechanics.

Contextuality for Preparations

Consider the following set of states in the Hilbert space formalism of quantum mechanics:

ψa =(1,0) ψb = (1/2,
√

3/2) ψc =(1/2,−
√

3/2)

ψA =(0,1) ψB = (
√

3/2,−1/2) ψC =(
√

3/2,1/2)

We define the empirical theory below, where each Px is the measurement label that corresponds
to the projection onto the quantum state φx. Furthermore, σφx is the state in the empirical model that
corresponds to the quantum state φx. The state σφmix corresponds to the maximally mixed state φmix =
(1/
√

2,1/
√

2).

X = {Pa,PA,Pb,PB,Pc,PC} M = {{Pa,PA},{Pb,PB},{Pc,PC}}
S = {σφa ,σφA ,σφb ,σφB ,σφc ,σφC ,σφmix} O = {0,1}

The outcome set O indicates if the outcome corresponding to the projector of the POVM element
occurs (1), or if it does not (0). For instance, for the section s : Pa 7→ 0, σ

φa
Pa
(s) = 0, σ

φb
Pa
(s) = 1

4 , and
σ

φc
Pa
(s) = 1

4 .
The linear combination of density matrices 1

3 φa +
1
3 φb +

1
3 φc is equal to the maximally mixed state

φmix for any observable Px. Suppose that there exists a global section d, by assumption 2 and Lemma 3,
this gives us the following equality.

1
2
=

1
3

σ
φa
Pa
+

1
3

σ
φb
Pa
+

1
3

σ
φc
Pa

It is easy to see that this cannot hold for any section. Working out the outcome probabilities for
Pa 7→ 0 gives us the contradiction below.

1
2
=

1
3
·0+ 1

3
· 1

4
+

1
3
· 1

4
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Contextuality for Unsharp Measurements

Consider the following empirical theory

X = {Pa,PA,Pb,PB,Pc,PC,Pabc,PABC}
M = {{Pa,PA},{Pb,PB},{Pc,PC},{Pabc,PABC}}
S = {σa,σA,σb,σB,σ c,σC}
O = {0,1}

The measurement label Pabc is the convex combination 1
3 Pa +

1
3 Pb +

1
3 Pc, PABC is defined similarly,

and the other elements are as defined in section 3. In quantum theory, this is the uniform sample over
the respective projectors. This gives us the measurement context {Pabc,PABC} = {1

2 ,
1
2}. Suppose that

this scenario has a global section. By assumption 2 and Lemma 3, we have the equalities below for any
state σ .

1
2
= σPabc = 1/3σPa +1/3σPb +1/3σPc (10)

1
2
= σPABC = 1/3σPA +1/3σPB +1/3σPC (11)

It is easy to see that this does not hold for the given states. For example, if we take the state σa,
the convexity condition together with the Born rule give us σa

pabc
(1) = σa

PABC
(0) = 3+

√
3

6 and σa
PABC

(1) =

σa
Pabc

(0) = 1+
√

3
6 . This contradicts the outcome statistics of {pabc, pABC}, which assign equal probability

to each outcome for any measurement.

4 Unifying Approaches

In this section, we will explore the relation between empirical theories, operational theories, and onto-
logical representations. We establish a link between general equivalence-based contextuality and sheaf-
theoretic contextuality. In other words, between theories that admit no ontological representation that is
preparation non-contextual and measurement non-contextual according to equivalence-based formalism
and theories that admit no global section d ∈DR(E (X)) in the sheaf-theoretic formalism, respectively.

Any no-signalling empirical theory A = (CA,SA,OA) corresponds to an operational theory Op(A) =
(POp(A),MOp(A),DOp(A),OA) in the sense that the two theories describe the same experimental setting.
The elements of the operational theory are defined below.

POp(A) := SA

MOp(A) := Ob(CA)

dm,σ (k) := σm(s) for dm,σ ∈ DOp(A) and s(m) = k

Conversely, every set of preparation procedures P together with the set distributions D give rise to a set
of states S; every set of measurement procedures M gives rise to a set of measurement labels X consisting
of 1-element joint measurements; and the preorder defined by joint measurements in M gives rise to the
thin category CA.
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Remark 1. Signalling empirical theories cannot be described as an operational theory. The reason is
that while the ’same’ measurement can have different outcome statistics in the empirical theory, depend-
ing on the context, this is not possible in an operational theory. A way to get around this is by treating
restrictions of a context to a measurement as elementary measurements.

We will show that every sheaf-theoretic non-contextual empirical theory A gives rise to a non-
contextual ontological representation for Op(A). We will call this a canonical ontological representa-
tion for the operational theory. Finally, we prove the theorem below, which connects sheaf-theoretic
contextuality to equivalence-based contextuality. This theorem generalises the result in [3], as well as
Fine’s Theorem [14], to the more general setup of sheaf-theoretic contextuality in empirical theories and
equivalence-based contextuality in operational theories.

Theorem 4. The following statements are equivalent for any no-signalling empirical theory A and its
corresponding operational theory Op(A)

1. The empirical theory A admits a global section

2. The operational theory Op(A) admits a canonical non-contextual ontological representation

3. The operational theory Op(A) admits a factorizable non-contextual ontological representation

A Canonical Ontological Representation

As a warm-up, we recall the canonical ontological representation for empirical models with a global
section d, which was introduced in [3]. An empirical model corresponds to an empirical theory with
only one state. The ontological states are given by the global sections of outcomes, the distributions µ

correspond to the global section of distribution functions and ξm(s)(k) indicates whether s assigns the
outcome k to the measurement m.

Ω = E (X) µσ (s) = d(s) ξm(s)(k) = δs|m(m),k

It is easy to see that this ontological representation is generally not non-contextual. The sections
may assign different outcomes to statistically equivalent measurements. Suppose that s is a section of
measurement outcomes such that s|m 6= s|n for m ∼ n, then ξm(s)(k) 6= ξn(s)(k). To get around this,
we will prove that whenever a global section exists, we can find another global section that depends on
equivalence classes of measurements only. It is not hard to see that the same holds for states.

Statistical Equivalence in Empirical Theories

We call two states σ ,σ ′ ∈ S and two measurement labels m,m′ ∈ Ob(C) statistically equivalent when
σm = σ ′m for all m ∈ Ob(C) and σm = σm′ for all σ ∈ SA, respectively. In that case we write σ ∼ σ ′ and
m∼ m′.

Let A = (CA,SA) be an empirical theory. We construct a new empirical theory Ã := (CA/∼, S̃A) by
quotienting the objects of C by the equivalence relation. The new category CA/ ∼ contains an arrow
between two equivalence classes if there exists an arrow between two representatives of the classes. It
is instructive to unfold the structure of this new empirical theory. For each object [C] of CA/∼ the new
set of sections E ([C]) contains a (not necessarily unique) section s̃ for each s ∈ E (C). This section is
defined as s̃([C]) := s(C). The states in S̃A := {σ̃}σ∈SA , are defined as σ̃[C](s̃) := σC(s). The set S̃A is
well-defined, because [C] = [D] if and only if σC = σD for each σ ∈ SA.
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Lemma 5. Any empirical theory A admits a global section iff it admits a global section that only depends
on equivalence classes of measurements of A.

We will prove this Lemma formally in Section 5. Intuitively, it can be understood as follows: Any
global section d of SA can be restricted to a global section over a subcategory of CA of representatives
of CA/∼. This restriction defines a global section for S̃A. Conversely, any global section d̃ of Ã defines
a global section d for A, defined as d(s) := d̃(s̃) when s assigns the same value to all elements of an
equivalence class, and d(s) := 0 otherwise.

We have shown how to deal with equivalence on the level of measurements. However, individual
outcomes of measurements can be statistically equivalent, even when the measurements as a whole are
not. This means that for some s ∈ Om and s′ ∈ Om′ , σm(s) = σm′(s′) for all σ ∈ SA. To eliminate this last
form of statistical redundancy, we rewrite any such system type A as a system type A′ with outcome set
{0,1}. The measurement labels of A′ are given by the individual observables in each measurement. We
denote each observable by a tuple (m,k) of a measurement and an outcome, so XA′ := {(m,k)}m∈XA,k∈O.
The measurement cover is given by the sets of observables that form a measurement in the original
cover: MA′ := {{(m,k)|k ∈ O,m ∈ C}C∈MA}. The outcomes 0 and 1 indicate whether the outcome
corresponding to the observable is observed, hence SA′ := {σ ′|σ ′(m,k)(1) = σm(k)}. The support E (m)
of each measurement m consists of those sections where exactly one observable in each measurement is
assigned a 1, and all others are assigned a 0.

Note that the model A has a global section iff A′ has a global section under the given restrictions. As
a consequence of Lemma 5, A has a global section iff Ã′ has a global section. Hence, A contains a global
section induced by a global section d for Ã′, which is only defined on equivalence classes.

Non-contextual Canonical Ontological Representations

We can now define a canonical ontological representation that preserves non-contextuality. Let A be an
empirical theory with a global section dσ for each state σ ∈ SA, which only depends on the equivalence
classes of the preparations. We make use of the minimal empirical theory Ã′ and its induced global
sections d̃σ̃ to define the canonical ontological representation R(A) = (ΩNC

A ,{µNC
σ }σ∈SA ,{ξ NC

m }m∈↓M ):

ΩR(A) := E (X(C/∼)), µ
NC
σ (s) := d̃σ̃ (s̃), ξ

NC
m (s)(k) := δs̃([m]),[k]

Note that ξ NC
m (s)(k) is only defined when s is a section over n, so when this is not the case, we will

take ξ NC
m (s)(k) to be 0. This representation generates the required outcome statistics, as shown below.

∑
s∈ΩNC

A

µ
NC
σ (s)ξ NC

m (s)(k) = ∑
s̃∈E (X(C/∼))

d̃σ̃ (s̃)δs̃|[m]([m]),[k]

= ∑
s∈E (X(C))

dσ (s)δs|m(m),k

= dA
σ ,m(k)

The first equality holds by unfolding definitions of the canonical representation. The second equality
holds because dσ (s) is only nonzero on those sections s that assign the same outcome to all equivalent
measurements; therefore, we can extend the sum over E (X/∼) to the sum over E (X). The last equality
holds as both expressions are equal to σm(s)(k).
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This canonical ontological representation is by definition preparation non-contextual. On measure-
ments, it is defined such that m∼ m′ implies ξ NC

m = ξ NC
m′ ; hence it is measurement non-contextual.

It is left to determine under which conditions an operational theory can be realised by a non-
contextual empirical theory. To this end, we generalise Theorem 8.1 of [3].

Lemma 6. For every factorizable, non-contextual ontological representation B, there exists an empirical
theory A with a global section, such that R(A) and B realise the same operational theory.

Proof. Let B be a factorizable, measurement non-contextual ontological representation. The operational
theory realised by B induces an empirical theory A where XA is given by the minimal elements of the
preorder of joint measurements. By Lemma 2, B is parameter independent. Every preparation p ∈ PB

realises a state σp with a global section dp for the sheaf of distributions induced by A. These are defined
below for r ∈ E (m) and s ∈ E (X):

σp(r) := ∑
λ∈ΩB

ξm(λ )(r(m))µP(λ ) dp(s) := ∑
λ∈ΩB

∏
m∈XA

ξm(λ )(s|m(m))µP(λ ) (12)

We need to verify that R(A) and B realise the same measurement statistics. This follows from the
equalities below, where we denote the canonical ontological representation by Ω′A,µ

′, and ξ ′.

∑
s̃∈Ω′A

ξ
′
m(s̃)(k)µ

′
p = ∑

s̃∈E (XA/∼)
δs̃|[m]([m]),[k]

[
d̃σ̃P(s̃)

]
= ∑

s∈E (XA)

δs|m(m),k

[
∑

λ∈ΩB

∏
n∈XA

µp(λ )ξn(λ )(s|n(n))
]

= ∑
λ∈ΩB

ξm(λ )(k)
[

∑
s∈E (XA\m)

∏
n∈XA\m

ξn(λ )(s|n(n))
]

µp(λ )

= ∑
λ∈ΩB

ξm(λ )(k)µp(λ )

The first two equalities result from expanding definitions. For the third, we apply Fubini’s theo-
rem, split the sum and product, and rewrite the expression. The last equality holds because probability
distributions sum to one over all the inputs.

Proof of Theorem 4. For any empirical theory A, the canonical non-contextual ontological representation
for Op(A) is given by R(A), which means that 1)⇒ 2). The canonical ontological representation R(A)
is factorizable; therefore, 2)⇒ 3). Finally, 3)⇒ 1) holds by Lemma 6.

Corollary 7. For the class of perfectly predictable operational theories with a maximally mixed prepara-
tion, an operational theory is non-contextual iff its canonical ontological representation is non-contextual.

Proof. By Lemma 1, all preparation non-contextual ontological representations of operational theories
in this class are outcome-deterministic. By Theroem 6 of [18] that implies that all non-contextual onto-
logical representations are factorizable. The result follows directly from Theorem 4.
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5 A Categorical Isomorphism

In this section, we show that the two formalisms can be used to represent the no-signalling world in
equivalent ways. To give a formal proof, we use the mathematical framework of category theory. We
show that the correspondence between no-signalling empirical theories, operational theories and ontolog-
ical representations discussed in the previous section gives rise to functors between suitable categories.
In particular, there is an isomorphism between the categories E mpns of no-sigmalling empirical theories
and OT operational theories. This isomorphism maps non-contextual empirical theories to operational
theories that admit a factorizable non-contextual ontological representation.

The Category of Empirical Theories

We will define the category E mp of empirical theories and transformations that preserve contextuality
and statistical equivalence. The category E mp is an extension of the category of empirical models
introduced in [8].
Definition 5. A transformation between empirical theories is given by a triple f = ( f S, f M , f O) of maps
between the set of states, the measurement cover and the set of outcomes, respectively. In addition, each
assignment C 7→ f M (C) consists of a functor f C : C→ f M (C) of the subcategories of objects with an
arrow to C and f M (C), respectively.

Note that if CA and CB are posets, f is a simplicial map ↓MA→↓MB. We write f for either com-
ponent when it is clear from the context which one we mean. If a transformation satisfies the following
equation, we can recover the statistical data of the domain from the statistical data of the image.

σC(s) = ∑
s′◦ f C= f O◦s

f S(σ) f C(C)(s
′) ∀C ∈MA (13)

We will call such transformations contextuality preserving due to the following Lemma.
Lemma 8. Let f : A→ B be a transformation of empirical theories that satisfies equation (13) and let σ

be a state of A. If σ does not admit a global section, then f (σ) does not admit a global section.

Proof. Suppose that f (σ) ∈ B has a global section ν ∈ DRE ( f (XA)). This means that ν |C′ = f (σ)C′ for
all C′ ∈ X . This induces a global section for σ , given by µ(s) = ∑s′◦ f M= f O◦s ν | f (XA)(s

′) in DR(E (XA)).

When A and B are no-signalling theories, f M is simply a functor of categories CA→CB. Equation 13
then simplifies to the equation below.

σm(s) = f S(σ) fC(m)(s
′) ∀ f O ◦ s(m) = s′ ◦ f C(m) ∀m ∈ XA (14)

In addition to equation 13, we require morphisms to preserve statistical equivalence:

m∼ m′ ⇒ f (m)∼ f (m′) σ ∼ σ
′ ⇒ f (σ)∼ f (σ ′) (15)

We can now prove the statement in Lemma 5, that any global section gives rise to a global section
defined on equivalence classes.

Proof of Lemma 5. Consider the quotient map A
q−→ Ã and any inclusion map Ã i−→ A, which is defined as

follows: [C] is mapped to some representative C such that iC is a functor, and σ̃ is mapped to σ . It is
easy to see that q and i are morphisms in E mp. consequently, the proof follows from Lemma 8.
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Remark 2. Another way to define transformations between empirical theories is given in [4]. Here,
empirical models are defined in terms of Chu spaces and the function on states goes in the opposite
direction. By that definition, contextuality of states would only be preserved by transformations that are
surjective on states.

In the rest of this paper we will restrict our attention to the subcategory E mpns of no-signalling
empirical theories. We write E mpNC

ns for the subcategory of non-contextual empirical theories.

The Category of Operational Theories

Operational theories form a category Ot. Morphisms are tuples f = ( f M, f P, f O) : A→ B, such that
f M : MA→MB, f P : PA→ PB and f O : OA→ OB preserve outcome statistics and statistical equivalence:

d f P(p), f M(m)( f O(k)) = dp,m(k) (16)

m∼ m′⇒ f (m)∼ f (m′) p∼ p′⇒ f (p)∼ f (p′) (17)

This category is similar to the category of operational theories defined in [4].

The Category of Ontological Representations

Objects in the category OR of ontological representations correspond to a pair of an ontological repre-
sentation and its induced operational theory. Morphisms consist of triples of maps ( f , f µ , f ξ ), where
f : A→ B is a morphism of operational theories, and f ξ : ξ 7→ ξ ′ and f µ : µ 7→ µ ′ are functions of sets.
We require that the image of ( f , f µ , f ξ ) realises the operational theory in the image of f . This means
that the images of the elements of µ and ξ coincide with the elements corresponding to the images of f P

and f M. We express this as f µ(µp) = f µ(µ) f P(p) and f ξ (ξm) = f ξ (ξ ) f M(m). In addition, one can deduce
from equations 1 and 16 that the equality below holds.

∑
λ∈ΩB

f ξ (ξm)(λ )( f O(k)) f µ(µp)(λ ) = ∑
λ∈ΩA

ξm(λ )(k)µp(λ ) (18)

Remark 3. Note that the morphisms do not contain a component that maps between the sets of ontolog-
ical values. This is because our goal is not to understand individual ontological representations, but to
explore the existence of certain classes of ontological representations for operational theories.

There is a forgetful functor G : OR→ OT that maps each ontological representation to its corre-
sponding operational theory. More precisely, it maps (Ω,ξ ,µ) to ({µp}p∈P,{ξm}m∈M,D,O), where
dp,m := ∑λ∈Ω µp(λ )ξm(λ ). The elements µP and ξM no longer represent distribution functions, but
merely label the preparations and measurements.

Lemma 9. Contextuality of operational theories is preserved by morphisms in OT

Proof. Let f : A→ B be a morphism of operational theories. Let (ΩB,{µp}p∈PB ,{ξm}m∈MB) be a non-
contextual ontological representation of B. This induces an ontological representation
(ΩB,{µ ′p}p∈PA ,{ξ ′m}m∈MA), which is defined as µ ′p := µ f p, ξ ′m := ξ f m. Non-contextuality of this on-
tological representation is guaranteed by the equivalence preservation condition on f . It follows by
contradiction that when A is contextual, B must be contextual.
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The Isomorphism

The assignment A 7→Op(A) of an operational theory to each no-signalling empirical theory described in
Section 4 gives rise to the functor below.

E mpns OT

A Op(A)

( f S, f C, f OA) ( f M, f P, f OOp(A))

Op

Here, f M is defined as the assignment on objects of f M , f P := f S and f OA = f OOp(A) , since OA =
OOp(A). To verify that this is well-defined on morphisms, one needs to check that equations 16 and 17
hold. Since we only consider no-signalling empirical theories, this follows directly from equations 14
and 15. Functoriality is straightforward.

Proposition 10. The functor E mpns
Op−→ OT is an isomorphism

Proof. As discussed in section 4, the assignment is bijective on objects. To see that it is injective on
morphisms, note that the functor f M is completely determined by its assignments on objects, since CA

and CB are thin categories. Surjectivity follows from the fact that equations 14 and 15 imply equations 16
and 17.

We will show that the isomorphism E mpns
Op−→ OT maps non-contextual empirical theories to oper-

ational theories that admit a factorizable non-contextual ontological representation. In order to do so, we
first examine how the canonical ontological representation described in Section 4 gives rise to a functor
E mpNC

ns
R−→ OR. This functor maps each non-contextual empirical model to its canonical non-contextual

ontological representation. It maps each morphism of empirical models to a morphism of ontological
representations in an obvious way, such that the effect on the outcome statistics is the same in either
model. It turns out that the composition of this functor with the forgetful functor OR→ OT equals

E mpns
Op−→ OT on the class of non-contextual empirical models.

Proposition 11. For any choice of global sections, the assignment A 7→ R(A) defines an equivalence
between the subcategory of non-contextual empirical theories and the subcategory of non-contextual,
factorizable ontological representations. The image R f = (R f ,(R f )µ ,(R f )ξ ) of each morphism f =
( f S, f M , f O) has the following components

R f := Op( f ) (R f )µ(σm) := f σ f (m), (R f )ξ (ξm)(s)(k) := δs( f (m)),k

Proof. We need to verify that for each f : A→B in E mp, R f : R(A)→R(B) is a well-defined morphism in
the category of ontological representations. It is easy to see that since f preserves statistical equivalence,
R f does too. By the following equations, R f also satisfies equation 18.

∑
λ∈ΩR(A)

ξm(λ )(k)µσ (λ ) = ∑
λ∈E (m)

δλ (m),kσm(λ ) (19)

= ∑
λ ′∈E ( f (m))

δλ ′( f (m)), f O(k) f σ f (m)(λ
′) (20)

= ∑
λ ′∈ΩR(B)

F f (ξm)(λ
′)( f O(k))R f (µσ )(λ

′) (21)
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The equalities are obtained by unfolding definitions, application of equation 14 and rewriting the
summation.

By Lemma 6, R is essentially surjective on the subcategory of factorizable non-contextual ontological
representations. We will show that the functor R is injective on hom-sets. First of all, δs( f (m)),k =
δs(g(m)),k) for all k ∈ O implies that f S = gS. Similarly, R( f )µ = R(g)µ implies f C = gC. We will prove
that F is surjective on hom-sets. Let (g,gµ ,gξ ) : RA→ RB be a morphism in OR. This corresponds to
the morphism g′ : A→ B in E mp with components g′M (m) = gM(m) and g′S(σ)g′M (m(s)) = gP(µσ )(s)
for s ∈ E (m). Since each ξ in the image of g is a delta function, it must be equal to δλ (g(m)),k. Finally, to
show that equation 17 holds, we take equation 18 and unfold the definitions of ΩA, ΩB, g(ξM), and ξM.
This gives us the equality below, which reduces to the second condition for transformations of empirical
theories.

∑
s∈E (m)

δs(m),kµσ (s) = ∑
s∈E ( f (m))

δs( f (m)),kgµ(µσ )(s) (22)

Theorem 12. The isomorphism Op restricts to an isomorphism between the subcategory of non-contextual
empirical theories and the subcategory of operational theories that do not admit a factorizable non-
contextual ontological representation.

Proof. Note that the following diagram commutes, where we write E mpNC and ORFNC for the subcate-
gories of non-contextual empirical theories and factorizable non-contextual ontological representations,
respectively.

E mp OT

E mpNC OR

ORFNC

Op

G

R

Corollary 13. For models with perfectly predictable measurements and a maximally mixed preparation,
R restricts to an isomorphism between non-contextual empirical theories and non-contextual operational
theories.

6 Non-factorizable representations and POVM’s

In general, equivalence-based measurement contextuality implies sheaf-theoretic contextuality, but not
necessarily the other way around. The two formalisms coincide in any scenario where factorizability can
be justified, such as in the following three cases:

• For theories with perfectly predictable measurements and a maximally mixed preparation, non-
contextuality of an ontological representation implies factorizability.
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• Any non-local scenario rules out non-factorizable ontological representations, as these would vio-
late local causality.

• In theories that do not contain joint measurements, the notion of factorizability is vacuous.

The following example, which is known as Specker’s Triangle, shows that the two formalisms are
not equal for all scenarios.

Example 1 (Specker’s Triangle). There are three parties, A,B,C, that each conduct a measurement with
two outcomes, {0,1}. It is possible for two parties to apply the measurement at the same time, but it is
not possible to apply all three measurements simultaneously. The measurement statistics is such that for
any joint measurement, the obtained outcome is (0,1) half of the time, and (1,0), half of the time.

This scenario cannot be realised by sharp measurements in quantum mechanics. However, one can
find a POVM for each joint measurement that margnalises to the required outcomes: (0 ·P0,0,

1
2 ·P0,1,

1
2 ·

P1,0,0 · P1,1), where Pi, j is the projector onto outcome (i, j). Note however, that this POVM can be
classically realised, by flipping a coin to decide on outcome (0,1) or (1,0).

Lemma 14. The scenario in Example 1 is contextual in the sheaf sense, but non-contextual in the
equivalence-based sense

Proof. The marginal probabilities for each of the individual measurements are 1
2 for either of the out-

comes. It follows that all measurements are statistically equivalent, and hence, should not be distinguish-
able on the ontological level. This means that we can define the set Ω := {∗} to be a singleton set. We
set µp(∗) = 1 for any preparation of this scenario, ξm(∗)(0) = ξm(∗)(1) = 1

2 for each of the elementary
measurements, and ξm(∗)(0,1) = ξm(∗)(1,0) = 1

2 , for each of the joint measurements. On the other
hand, it is not possible to define a factorizable non-contextual ontological representation. It is easy to
see this, since without loss of generality, any global section of measurement outcomes to the presheaf
describing this scenario must assign the same outcome to measurement A and B. But that means that it
does not marginalise to an admissible outcome for the joint measurement of A and B.

For a complete comparison of the two notions, a better understanding of unsharp measurements is
required. Another point of consideration is the extent to which the functors respect additional assump-
tions. We have shown that for all known examples of contextuality conditional to assumptions in the
equivalence-based framework, the two notions coincide. However, this may not be the case in general.
Ideally, one would like to have a specification of the class of scenarios and assumptions for which the
formalisms are different. We leave this for future work.
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