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The efficient certification of classically intractable quantum devices has been a central research ques-

tion for some time. However, to observe a “quantum advantage”, it is believed that one does not

need to build a large scale universal quantum computer, a task which has proven extremely challeng-

ing. Intermediate quantum models that are easier to implement, but which also exhibit this quantum

advantage over classical computers, have been proposed. In this work, we present a certification

technique for such a sub-universal quantum server which only performs commuting gates and re-

quires very limited quantum memory. By allowing a verifying client to manipulate single qubits, we

exploit properties of measurement based blind quantum computing to give them the tools to test the

“quantum superiority” of the server.

1 Introduction

Quantum computers are believed to be able to efficiently simulate quantum systems [15, 19] and outper-

form classical systems for specific tasks. Examples include Shor’s algorithm for prime factorisation [37],

Grover’s algorithm for unstructured search [20], and the BB84 [5] and Ekert91 [14] protocols for public

key exchange. That said, it may be some time before a large scale universal quantum computer capable

of demonstrating the computational power of these protocols is built. In the meantime, several inter-

mediate, non-universal models of quantum computation, which are still believed to not be classically

simulatable, may prove easier to implement. Examples include the one clean qubit model [25, 28], the

boson sampling model [1, 18, 30] and the Ising model [17, 29]. The Instantaneous Quantum Poly-time

(IQP) machine [36] is another such non-universal model with significant practical advantages [2,6]. IQP

uses only commuting gates but is believed to remain hard to classically simulate [6–8] even in a noisy

environment [6, 9]. Providing evidence that a machine can perform hard IQP computations would be a

proof of quantum superiority [33] before a universal quantum computer has been realised experimentally.

In [36], the authors present a hypothesis test which can be passed only by devices capable of per-

forming hard IQP computations. In order to accommodate a purely classical client, computational as-

sumptions (conjecturing the hardness of finding hidden sub-matroids) are required in order to prove

quantum superiority. In the present work, by endowing the client with the ability to perform simple

qubit manipulations similar to those used in Quantum Key Distribution schemes [5], we develop an

information-theoretically secure hypothesis test for IQP.

http://dx.doi.org/10.4204/EPTCS.266.14
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The remainder of the paper proceeds as follows. In Section 2, we formally introduce the IQP machine

and provide an implementation in Measurement Based Quantum Computing (MBQC) [34, 35] which is

more suitable for proving security in our framework than previous ones [22,36]. In Section 3 we use tools

from blind quantum computing [10,16] to derive a delegated protocol for IQP computations which keeps

the details of the computation hidden from the device performing it. We prove information-theoretical

security of that scheme in a composable framework. Finally, in Section 4 we develop a hypothesis test

that a limited quantum client can run to certify the quantum superiority of an untrusted Server.

2 Preliminaries

2.1 X-programs

The IQP machine introduced in [36] is defined by its capacity to implement X -programs.

Definition 2.1. An X -program consists of a Hamiltonian comprised of a sum of products of X operators

on different qubits, and θ ∈ [0,2π] describing the time for which it is applied. The hth term of the sum

has a corresponding vector qh ∈ {0,1}np , called a program element, which defines on which of the np

input qubits, the product of X operators which constitute that term, acts. The vector qh has 1 in the j-th

position when X is applied on the j-th qubit.

As such, we can describe the X-program using θ and the matrix Q = (Qh j) ∈ {0,1}na×np which has

as rows the program elements qh, h = 1, . . . ,na.

Applying the X -program discussed above to the computational basis state |0np〉 and measuring the

result in the computational basis can also be viewed as a quantum circuit with input |0np〉, comprised of

gates diagonal in the Pauli-X basis, and classical output. Using the random variable X to represent the

distribution of output samples, the probability distribution of outcomes x̃ ∈ {0,1}np is:

P(X= x̃) =

∣∣∣∣∣∣
〈x̃|exp




na

∑
h=1

iθ
⊗

j:Qh j=1

X j


 |0np〉

∣∣∣∣∣∣

2

(1)

Definition 2.2. Given some X-program, an IQP machine is any computational method capable of effi-

ciently returning a sample x̃ ∈ {0,1}np from the probability distribution (1).

2.2 IQP In MBQC

A common framework for studying quantum computation is the MBQC model [34,35], where a quantum

operation is expressed by a set of measurement angles on an entangled state described by a graph. This

entangled state is built by applying a controlled-Z operation between qubits when there is an edge in the

corresponding graph. The probabilistic nature of the measurements of the qubits in this state introduces

some randomness which may be corrected for by adjusting the angle of measurement of subsequent

qubits depending on the outcomes of the already performed measurements. The entangling, measuring

and correcting operations on a set of qubits are usually referred to as a measurement pattern [11, 12].

In this work, we will deal with a specific type of graphs, given in the following definition:

Definition 2.3. We define the IQP graph of an X-program (Q,θ), as the graph with biadjacency matrix

Q = (Qh j) ∈ {0,1}na×np . This means that there is a bipartition of vertices into two sets P and A of

cardinality np and na and that an edge exists in the graph between vertex ah of set A and vertex p j of set

P when Qh j = 1.



D.Mills, A.Pappa, T.Kapourniotis & E.Kashefi 211

a1 a2

p1 p2 p3

Q =

(
1 0 1

0 1 0

)

Figure 1: An example of an IQP graph described by matrix Q. Here, np = 3 and na = 2 while the partition

used is P = [p1, p2, p3] and A = [a1,a2].

In what follows, we will denote with Q both the matrix of the X -program and its corresponding IQP

graph (see Figure 1 for an example). The sets of vertices A = {a1, ...,ana
} and P =

{
p1, ..., pnp

}
will be

called primary and ancillary vertices respectively. A result which is vital to the remainder of this paper,

is the following:

Lemma 2.1. A measurement pattern can always be designed to simulate an X-program efficiently.

One can prove [27] that the distribution of (1) may be achieved by initialising np primary qubits in the

states
∣∣p j

〉
= |+〉, na ancillary qubits in the states |ah〉= |+〉, applying Controlled-Z operations between

qubits when there is an edge in the IQP graph described by the X -program matrix Q and measuring the

resulting state. We form this proof by demonstrating that sampling from the distribution in equation (1)

is equivalent to inputting the primary qubits into a circuit made from composing circuits like the one

in Figure 2 (one for each term of the sum in equation (1)) and measuring the result in the Hadamard

basis. We then argue that all measurements may be delayed to the end of the composed circuit while the

ancillary measurement basis is:

{|0θ 〉 , |1θ 〉}=
{

1√
2

(
e−iθ |+〉+ eiθ |−〉

)
,

1√
2

(
e−iθ |+〉− eiθ |−〉

)}
(2)

p̃1

...

p̃#h

p̃#h+1

...

p̃np

|+〉

. . .

Z

...

Z

Figure 2: The circuit implementing one term in the sum of equation (1). The input qubits {p j}np

j=1 are

rearranged so that if #h is the Hamming weight of row h of matrix Q, then for k = 1, . . . ,#h each p̃k

corresponds to one p j such that Qh j = 1 and for k = #h+1, . . . ,np they correspond to the ones such that

Qh j = 0. The ancillary qubit measurement is in the basis {|0θ 〉 , |1θ 〉} defined in expression (2).
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3 Blind Delegated IQP Computation

We now move to build a method for blindly performing an IQP computation in a delegated setting. We

consider a client with limited quantum power delegating an IQP computation to a powerful Server. The

novel method that we use in this work is to keep the X -program secret by concealing the quantum state

used. Intuitively, this is done by the client asking the Server to produce a quite general quantum state

and then ‘move’ from that one to the one that is required for the computation. If this is done in a blind

way then the Server only has knowledge of the general starting state from which any number of other

quantum states may have been built. Hence, there are three key problems to be addressed:

1. How to transform one state to another.

2. Which general quantum state to build and transform into the one required for the IQP computation.

3. How to do this transformation secretly in a delegated setting.

3.1 Break and Bridge

The break and bridge operations [16,21] on a graph G̃= (Ṽ , Ẽ), with vertex set Ṽ and edge set Ẽ describe

the operations necessary to solve problem 1.

Definition 3.1. The break operator acts on a vertex v ∈ Ṽ of degree 2 in a graph G̃. It removes v from Ṽ

and also removes any edges connected to v from Ẽ.

The bridge operator also acts on v ∈ Ṽ of degree 2 in a graph G̃. It removes v from Ṽ , removes edges

connected to v from Ẽ and adds an edge between the neighbours of v.

Figure 3: An example of a sequence of one bridge and one break operation.

Figure 3 gives an example of multiple applications of the bridge and break operators. We will now

define the general states required to solve problem 2.

Definition 3.2. An extended IQP graph is represented by Q̃ ∈ {−1,0,1}na×np . The vertex set contains

A = {a1, ...,ana
} and P =

{
p1, ..., pnp

}
while Q̃h j = 0 and Q̃h j = 1 denote if there is a connection or not

between vertices ah and p j in the same way as for the IQP graph of Definition 2.3.

We interpret Q̃h j = −1 as the existence of an intermediary vertex bk between vertices p j and ah,

and denote with nb the number of -1s in Q̃. The vertex set includes the bridge and break vertices B =
{b1, ...,bnb

} and the edge set includes edges between bk and ah as well as between bk and p j when

Q̃h j = −1. We define a surjective function g for which g(h, j) = k when bk is the intermediate vertex

connected to ah and p j.

An extended IQP graph Q̃ can be built from an IQP graph Q by replacing any number of the entries

of Q with −1. Throughout the remainder of this work we will use tilde notation to represent an extended

IQP graph Q̃ build from an IQP graph Q in this way. Figure 4 displays an example of an extended IQP

graph. By applying a bridge operator to b1 and a break operation to b2 in Q̃ of Figure 4 we arrive at Q of

Figure 1. It is in this sense that an extended IQP graph is ‘more general’ that an IQP graph.

To solve our three problems we must translate these graph theoretic ideas into operations on quantum

states. The following definition allows us to use graphs defined above to describe entanglement patterns.



D.Mills, A.Pappa, T.Kapourniotis & E.Kashefi 213

a1 a2

p1

b1

p2 p3

b2

Q̃ =

(
−1 0 1

0 1 −1

)

Figure 4: An extended IQP graph described by Q̃ with (na,np,nb)= (2,3,2), P= [p1, p2, p3], B= [b1,b2]
and A = [a1,a2]. Two vertices b1 and b2 are introduced and the function g : Zna×np

→ Znb
is defined as

g(1,1) = 1 and g(2,3) = 2.

Definition 3.3. Consider the extended IQP graph Q̃ ∈ {−1,0,1}na×np and use function g(h, j) = k to

define indices k = 1, . . . ,nb for the elements Q̃h j = −1. The circuit E
Q̃

on (na + np + nb) qubits applies

controlled-Z operations between qubits p j and ah if Q̃h j = 1 and, between qubits bg(h, j) and ah, and,

bg(h, j) and p j, when Q̃h j =−1.

Now we reformulate a lemma from [16] in order to translate bridge and break operations from graph

theoretical ideas into operations on quantum states.

Lemma 3.1. Consider a quantum state EQ |φ〉 where |φ〉 is arbitrary. If Q̃ is an extended IQP graph

built from Q then there exists a state E
Q̃
|ψ〉, which can be transformed into the state EQ |φ〉 through a se-

quence of Pauli-Y basis measurements on qubits and local rotations around the Z axis on the unmeasured

qubits through angles
{

0, π
2
,π, 3π

2

}
.

The detailed proof of Lemma 3.1 [27] shows us that we can create the following state where p j and

ah are the primary and ancillary qubits connected to bk (i.e. g(h, j) = k), rb and db are strings described

later in Algorithm 1 and sb
k is the outcome of a measurement on qubit bk.

nb

∏
k=1

(
S
(−1)sb

k
+rb

k

p j ⊗S
(−1)sb

k
+rb

k

ah

)db
k (

Z
rb

k
p j ⊗Z

rb
k

a j

)1−db
k

EQ |φ〉 (3)

To achieve this we make measurements of the qubits corresponding to bridge and break vertices

(which we call bridge and break qubits and which are initialised as |bk〉 = Y rb
k

√
Y

db
k |0〉) in E

Q̃
|ψ〉 in

the Pauli Y basis. Using this method, we generate the state in Lemma 2.1 (i.e. EQ

⊗na+np

1 |+〉) up to S

corrections, which can be accounted for by correcting the primary and ancillary measurement bases.

3.2 Blindness

To address problem 3, we wish to construct the Ideal Resource of Figure 5 which takes as input from

the client an IQP computation (Q,θ), and in return gives a classical output x̃. If the Server is honest,

x̃ comes from the distribution corresponding to (Q,θ). If the Server is dishonest, they can input some

quantum operation E and some quantum state ρB and force the output to the client into the classical

state E (Q,θ ,ρB). We assume that the following are public knowledge: an extended IQP graph Q̃, the

distribution Q over the possible Qs from which Q̃ could be built, and θ . It is important to note that

neither Q, nor anything besides that which we have specified as public, is revealed to the Server.

Blindness is added to the work of Section 3.1 by performing random rotations when initialising the

primary and ancillary qubits. These are corrected by rotating the measurement bases of those qubits,

therefore ensuring the original IQP computation is performed. Intuitively, this randomness provides
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x̃ =

{
x if honest

E (Q,ρB,θ) if dishonest

S
Q

x̃

E

ρB

Q̃,Q,θ

Figure 5: The ideal blind delegated IQP computation resource.

πA
Q

x̃

ρ

sb

A,Π

sa,sp

πB

E

ρB

ρ ′
B

Q̃,Q,θ

R

Figure 6: The real communication protocol. πA is the set of operation performed by the client, πB are

those of the Server and R is the communication channel (quantum and classical) used by the client and

the Server in the protocol. Details of the communication protocol R can be seen in Algorithm 1.

blindness as it hides the previous corrections shown in equation (3), which would otherwise give away

if a bridge or break operation was applied to a neighbour. Our communication protocol can be seen in

Algorithm 1 and is summarised in Figure 6.

To prove composable security of the proposed protocol we drop the notion of a malicious Server for

that of a global distinguisher which has a view of all inputs and outputs of the relevant resources. To

be able to compare the ideal resource with the real communication protocol, we develop a simulator σ

interfacing between the ideal resource S of Figure 5 and the distinguisher such that the latter cannot

tell the difference between an interaction with the ideal resource and the real protocol. We employ the

Abstract Cryptography framework introduced in [26, 32] and teleportation techniques inspired by [13]

to prove security in the case of a malicious Server. If πA is protocol run by the Client and R is the

communication channel between them and the Server, then we can prove [27] that:

πAR ≡ S σ (10)

where equality here means the two protocols are indistinguishable.

Theorem 3.1. The communication protocol described by Algorithm 1 is information theoretically secure

against a dishonest Server.

We can now be sure that our communication protocol is indistinguishable from an ideal resource

which performs an IQP computation without communicating any information to the Server which is not

already public. This is proven in a composable framework [13, 32] and so can be used as part of future

protocols, as we will do in section 4.
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Algorithm 1 Blind distributed IQP computation

Public: Q̃,Q, θ

client input: Q

client output: x̃

Protocol:

1: The client randomly generates rp,dp ∈{0,1}np and ra,da ∈ {0,1}na where np and na are the numbers

of primary and ancillary qubits respectively.

2: The client generates the states
∣∣p j

〉
= Zr

p
j Sd

p
j |+〉 and |ah〉 = Zra

h Sda
h |+〉 for j ∈ {1, . . . ,np} and h ∈

{1, . . . ,na}.

3: The client creates db ∈ {0,1}nb in the following way: For h= 1, . . . ,na and j = 1, . . . ,np, if Q̃h j =−1

and Qh j = 0, then db
k = 0 else if Q̃h j =−1 and Qh j = 1 then db

k = 1. He keeps track of the relation

between k and (h, j) via the surjective function g : Zna×np
→ Znb

.

4: The client generates rb ∈ {0,1}nb at random and produces the states |bk〉 = Y rb
k

(√
Y
)db

k |0〉 for k ∈
{1, . . . ,nb}.

5: The state ρ , comprising of all of the client’s produced states, is sent to the Server.

6: The Server implements E
Q̃

.

7: The Server measures qubits b1, . . . ,bnb
in the Y -basis

{∣∣+Y
〉
,
∣∣−Y

〉}
and sends the outcome sb ∈

{0,1}nb to the client.

8: The client calculates Πz,Πs ∈ {0,1}np and Az,As ∈ {0,1}na using equations (4), (5), (6) and (7).

Πz
j = ∑

h,k:g(h, j)=k

rb
k

(
1−db

k

)
− r

p
j (4)

Πs
j = ∑

h,k:g(h, j)=k

(−1)sb
k+rb

k db
k −d

p
j (5)

Az
h = ∑

j,k:g(h, j)=k

rb
k

(
1−db

k

)
− ra

h (6)

As
h = ∑

j,k:g(h, j)=k

(−1)sb
k+rb

k db
k −da

h (7)

9: The client sends, to the serve, A ∈ {0,1,2,3}na and Π ∈ {0,1,2,3}np for the ancillary and primary

qubits respectively, where Ah = As
h +2Az

h (mod 4) and Π j = Πs
j +2Πz

j (mod 4).
10: The Server measures the respective qubits in the basis below for the ancillary and primary qubits

respectively.

S−Ah {|0θ 〉 , |1θ 〉} and S−Π j {|+〉 , |−〉} (8)

11: The measurement outcomes sp ∈ {0,1}np and sa ∈ {0,1}na are sent to the client.

12: The client generates and outputs x̃ ∈ {0,1}np as follows.

x̃ j = s
p
j + ∑

h:Qh j=1

sa
h (mod 2) (9)
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4 The Hypothesis Test

4.1 Previous work

The general idea of our Hypothesis Test, building on the work of [36], is that there is some hidden struc-

ture in the program elements, qh, of the X -program, which results in some structure in the distribution

of the outputs, known only to the client. The client can use this structure to check the Server’s reply.

A Server possessing an IQP machine can reproduce this structure by implementing the X -program. A

Server not in possession of an IQP machine, cannot generate outputs obeying the same rules. We sum-

marise this discussion by three conditions that a hypothesis test using this method must meet.

1.1 A client asks a Server to perform a hard-to-classically-simulate IQP computation.

1.2 The client can check the solution to this computation because they know some secret structure that

makes this checking process efficient.

1.3 The Server must be unable to uncover this structure in polynomial time.

The particular ‘known structure’ of the output used in [36] to satisfy 1.2 is its bias.

Definition 4.1. If X is a random variable taking values in {0,1}np and s∈ {0,1}np then the bias of X in the

direction s is P
(
X · sT = 0

)
where the product is performed modulo 2. Hence, the bias of a distribution

in the direction s is the probability of a sample from the distribution being orthogonal to s.

To calculate the bias of X in direction s ∈ {0,1}n
, we form the linear code Cs by selecting all rows,

qh, of the X -program, (Q,θ) ∈ {0,1}na×np × [0,2π], such that qh · sT = 1. We form, from them, the

matrix, Qs, which is set as the generator matrix of Cs. Defining ns as the number of rows of Qs and #c as

the hamming weight of c allows us to understand the following expression derived in [36].

P
(
X · sT = 0

)
= Ec∼Cs

[
cos2 (θ (ns −2 ·#c))

]
(11)

Hence, the bias of an X -program in the direction s depends only on θ and the linear code defined

by the generator matrix Qs. One can now imagine a hypothesis test derived from this. Although the X -

program to be implemented needs to be made public, the direction s which will be used for checking, will

be kept secret. This gives a client, with the computational power to calculate the quantity of expression

(11), the necessary information to compute the bias, but does not afford the Server the same privilege.

What we want to show is that the only way for the Server to produce an output with the correct bias

is to use an IQP machine. If the Server could uncover s then they could calculate the value of expression

(11) and return vectors to the client which are orthogonal to s with the correct probability. We specialise

the conditions mentioned at the beginning of this section to this particular method.

2.1 The X -Program sent to a Server represents an IQP computation that is hard to classically simulate.

2.2 It must be possible for a client, having knowledge of a secret s and the X -program, to calculate the

quantity of expression (11).

2.3 The knowledge of the Server must be insufficient to learn the value of s.

In [36] the authors develop a protocol for building an X -program and a vector s performing this

type of hypothesis test. The code Cs used is a quadratic residue code with θ = π
8

and condition 2.1

is conjectured to be satisfied by X -program matrices generating this code space. This conjecture is

supported by giving a classical simulation that is believed to be optimal and achieves maximum bias
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value 0.75, lower than that expected from an IQP machine. Condition 2.2 is satisfied in [36], by explicitly

calculating the bias value to be cos2
(

π
8

)
for their choice of X -program and s.

The way in which condition 2.3 is addressed in [36] relies on the fact that the right-hand side of

equation (11) is equal for all generator matrices in a matroid [31].

Definition 4.2. A h-point binary matroid is an equivalence class of matrices with h rows, defined over

F2. Two matrices, M1 and M2, are said to be equivalent if, for some permutation matrix R, the column

echelon reduced form of M1 is the same as the column echelon reduced form of R ·M2 (In the case where

the column dimensions do not match, we define equivalence by deleting columns containing only 0s after

column echelon reduction).

Consider right-multiplying the matrix A on Q where A is chosen so that QA belongs to the same

matroid as Q. Notice that qhs′T = (qhA)
(

A−1s′T
)

and so rows originally non-orthogonal to s′T are now

non-orthogonal to A−1s′T . Hence, we can locate the matroid Qs′ in the matrix QA by using A−1s′T . We

now understand what to do to the Q describing the X -program we are considering, so that we remain in

the same matroid, and hence prevent the bias from changing, if we perform operations on s′.
To hide the full description of Q, use instead Q′, built by adding additional random rows orthogonal

to s′, which do not affect the value of the bias. The combination of matrix randomisation, and the the fact

that they do not know Q′, makes it hard, as conjectured in [36], up to some computational complexity

assumptions, for the Server to recover A−1s′T if they are given Q′A, even when they know s′ and Q. It is

now a matter for the Server to implement the X -program Q′A and for the client to check the bias of the

output in the hidden direction sT = A−1s′T . This is the idea behind the approach used by [36] to address

condition 2.3.

4.2 Our Protocol

The main contribution of this work is to revisit condition 2.3.

Theorem 4.1. Algorithm 2 presents an information-theoretically secure solution to condition 2.3.

In Algorithm 2 we provide a hypothesis test that uses Algorithm 1 to verify quantum superiority. By

using the blind IQP computation resource of Section 3.2 we have solved condition 2.3 but do so now

with information theoretic security as opposed to the reliance on computational complexity assumptions

used by [36]. This is true because the Server learns only the distribution Q over the possible set of

graphs Q. By setting Q = QsA, Algorithm 2 develops a bijection mapping ŝ ∈ {0,1}np−1 to a unique

matrix Q ∈ {0,1}na×np . So Q is equivalent to the distribution from which ŝ is drawn. In this case it is

the uniform distribution over a set of size 2np−1. In particular the server does not learn s as is required by

condition 2.3. Notice that Algorithm 2 should be repeated to accurately check the bias is cos2
(

π
8

)
as we

would expect from the quantum case.

5 Discussion, Conclusion and Future Work

We have presented a new certification technique for IQP machines which can be run by a client able to

prepare single-qubit Pauli eigenstates. By giving the client minimal quantum abilities we can remove

computational restrictions placed on the Server in previous work [36] and, instead, prove information-

theoretical security against an untrusted Server.

There are several advantages of using this tailored verification protocol for IQP computations, rather

than a straightforward verification in a universal quantum computing model [16, 24]. The latter requires
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Algorithm 2 Our hypothesis test protocol

Input: na prime such that na +1 is a multiple of 8.

client output: o ∈ {0,1}
Protocol:

1: Set np =
na+1

2

2: Take the quadratic residue code generator matrix Qr ∈ {0,1}na×(np−1)

3: Let Qs ∈ {0,1}na×np be Qr with a column of ones appended to the last column.

4: Pick ŝ ∈ {0,1}np−1
chosen uniformly at random.

5: Define the matrix A ∈ {0,1}np×np according to equation (12).

Ah, j =





1 if h = j

0 if h 6= j and j < np

ŝh if j = np and h < np

(12)

6: Set Q = QsA and θ = π
8

.

7: Set Q̃ to be the matrix Qr with a column of −1 appended.

8: Set Q to be the uniform distribution over all possible Q for different ŝ.

9: Perform IQP computation Q using Algorithm 1 with inputs Q, Q̃, Q and θ and outputs x̃ and ρ ′
B.

10: Let s′ ∈ {0,1}np be the vector with entries all equal to zero with the exception of the last which is set

to one.

11: Test the orthogonality of the output x̃ against sT = A−1s′T setting o = 0 if it is not orthogonal and

o = 1 if it is orthogonal.

higher precision in the manipulation of single qubits from the client (use of states other than single-qubit

Pauli eigenstates) and significantly more quantum communication and processing for the verification

technique. Although the qubit consumption is still, as in this work, linear in the size of the computation,

in early machines the constant factor will likely be important. Further, asking a Server to perform an IQP

computation using a model that is universal for quantum computation would require the Server to create

large cluster states and perform measurement that might lie far beyond its IQP capabilities.

IQP circuits are important as they may prove easier to implement experimentally compared to uni-

versal quantum computers. Due to the commutativity of the gates it is theoretically possible to perform

an IQP computation in one round of measurements. Our protocol requires a two-round MBQC computa-

tion which we believe is not a significant additional requirement, given the implementation requirements

of universal quantum computation. We therefore believe that our scheme will be implementable in the

near future, for a small number of qubits, and so a future avenue of research would be to study this

hypothesis test protocol under realistic experimental errors, following similar examples of work in this

direction [9, 23].

The demand for the Server to have memory to support a two-round MBQC computation means ma-

chines capable of passing the original test of [36] might not be able to pass that of this work. These studies

do not restrict the architectures that the Server can use, which comes at the high cost of placing compu-

tational restrictions on the Server [36]. Our requirement that the Server can perform two-round MBQC

allows us to achieve information-theoretical security. Finally, given that Gaussian quantum subtheory

can be seen as a continuous variable analogue of the stabiliser formalism [3, 4, 38], a natural extension

would be a continuous variable analogue of our protocol where the client prepares only Gaussian states.
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