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We propose a definition of purity for positive linear maps between Euclidean Jordan Algebras (EJA)
that generalizes the notion of purity for quantum systems. We show that this definition of purity is
closed under composition and taking adjoints and thus that the pure maps form a dagger category
(which sets it apart from other possible definitions.) In fact, from the results presented in this paper,
it follows that the category of EJAs with positive contractive linear maps is a †-effectus, a type of
structure originally defined to study von Neumann algebras in an abstract categorical setting. In
combination with previous work this characterizes EJAs as the most general systems allowed in a
generalized probabilistic theory that is simultaneously a †-effectus. Using the dagger structure we
get a notion of †-positive maps of the form f = g† ◦ g. We give a complete characterization of the
pure †-positive maps and show that these correspond precisely to the Jordan algebraic version of the
sequential product (a,b) 7→

√
ab
√

a. The notion of †-positivity therefore characterizes the sequential
product.

1 Introduction

A commonly used technique when studying the foundations of quantum theory, is to consider generalized
theories that only exhibit some part of the features of conventional quantum theory. In this way, it
becomes more clear what specific properties of quantum theory lead to certain structure. One of the first
generalized quantum theories to be studied were the Euclidean Jordan algebras (EJAs) [17]. Besides the
matrix algebras of complex self-adjoint matrices of conventional quantum theory, other examples of EJAs
are the set of real symmetric matrices of real-valued quantum theory, or the set of self-adjoint matrices
over the quaternions. Quite soon after the introduction of EJAs, a full characterization of EJAs was
given [18] that showed that these examples almost completely exhaust the possibilities. The Koecher–
Vinberg theorem [21] is a major result stating that any ordered vector space with a homogeneous self-
dual positive cone is a Euclidean Jordan algebra. It is this theorem that explains the ubiquity of EJAs in
reconstructions of quantum theory [3, 30, 22, 33, 23, 31]. Understanding the differences and similarities
between regular quantum theory as described by complex matrix algebras, and the more general EJAs is
an active topic of research. In this paper we will study the notion of pure maps in EJAs and show that
they have many of the same properties as those found in quantum theory.

The concept of purity has proven very useful in the field of quantum information. In the context of
states, it can be considered a resource in various protocols and computations [13, 5] and the possibility of
purification of states is considered to be one of the characteristic features differentiating quantum theory
from its classical counterpart [6, 7]. While there is a generally accepted definition of purity for states,
when it comes to quantum channels there are several proposed definitions of purity in play, each of which
has its drawbacks. There is for instance the definition of atomicity used in reconstructions of quantum
theory [7]. This definition is very general in that it can be defined for any generalized probabilistic
theory [4], but it has the drawback that even a canonical map like the identity will not always be pure.
Purity can also be defined in terms of leaks [23], or using orthogonal factorization [12]. These definitions
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work well when considering finite dimensional spaces with a well-behaved sequential product, but when
considering more general quantum systems like von Neumann algebras, they fail to reproduce many de-
sirable properties. More fundamentally, both definitions require a notion of tensor product, the existence
of which for EJAs is an open question [2]. Instead we will use a definition originally introduced for
studying pure maps between von Neumann algebras [27, 26, 25], and that also defines the main concept
of purity in effectus theory [8, 28]. While the other definitions of purity are related to the existence of
purifications of states, this definition is related to the existence of Paschke dilations [26]. Following this
definition, a map is pure when it is a composition of a filter and a corner. Filters represent a certain
restricted class of measurements (named after polarization filters). Corners correspond to the act of re-
stricting a system to a subsystem. Filters and corners are defined by universal properties, and thus this
definition of purity makes sense even in the very general setting of effectus theory. In effectus theory,
filters and corners are known as quotients and comprehensions respectively, since they correspond to
those logical operations (with the reversed direction of maps). Quotients and comprehension appear in a
multitude of categories (outside effectus theory) as a chain of adjunctions [9].

In this paper we show that Euclidean Jordan algebras indeed have pure maps as described above, and
furthermore that the pure maps can be organised in a dagger category. This is noteworthy for several
reasons. First, the other definitions of purity on quantum systems are in general not closed under com-
position, or taking the adjoint. Hence this shows that this definition of purity seems to be the right one
for EJAs. Second, that the pure maps form a dagger category, which is the main result needed to show
that the category EJApsu of EJAs with positive subunital maps between them is a †-effectus [28]. The
notion of †-effectus was introduced to give an abstract categorical framework for studying von Neumann
algebras, and in fact the only known non-trivial example of a †-effectus was the category of von Neu-
mann algebras. This paper therefore establishes that EJApsu is indeed quite similar to the category of
von Neumann algebras. Finally, it was shown in previous work by the third author [30] that a generalised
probabilistic theory which is also a †-effectus, must be a subcategory of EJApsu. Hence, this paper proves
the converse result, establishing a novel characterization of the category of Euclidean Jordan algebras.

To prove that the composition of pure maps is pure, we have found a new generalization of the polar
decomposition theorem to EJAs, which might be of independent interest.

Motivated by effectus theory, we also undertake a study of the possibilistic structure of the maps be-
tween EJAs. This means that we do not look at the actual probabilities, but instead only consider whether
probabilities are nonzero. In this way we define a duality between maps that we call �-adjointness, that
generalises the regular adjoints present by the Hilbert space structure of EJAs. We can similarly also de-
fine �-self-adjointness and �-positivity. We completely characterize the pure �-positive maps and show
that they exactly correspond to a generalization of the sequential product maps b 7→

√
ab
√

a in von Neu-
mann algebras, (and we’ll deduce from this that pure �-positivity and †-positivity coincide.) This result
can be seen as a characterization of the sequential product like the ones given in [15, 32, 25].

The paper is structured as follows. In the next section we review some of the basic structure present
in Euclidean Jordan algebras. We also refer the reader to the appendix for a concise largely self-contained
introduction to EJAs. In section 3 we introduce the notion of filters and corners and study our proposed
notion of purity. Finally in section 4 we use the possibilistic � structure to characterize the sequential
product maps as the unique pure �-positive maps.
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2 Preliminaries

We begin by giving a definition of Euclidean Jordan algebras and some motivating examples. Afterwards
we will review some of the basic theory necessary to develop our results.

Definition 1. A Jordan algebra (E,∗,1) is a real unital commutative (possibly non-associative) algebra
satisfying the Jordan identity: (a ∗ b) ∗ (a ∗ a) = a ∗ (b ∗ (a ∗ a)). We call a Jordan Algebra E with an
inner product 〈 · , · 〉 a Euclidean Jordan algebra (EJA) when the inner product turns E into a real Hilbert
space with 〈a∗b,c〉= 〈b,a∗ c〉 for all a,b,c ∈ E.

Note 2. In the original (and frequently used) definition, one additionally requires a Euclidean Jordan
algebra to be finite dimensional. The possibly infinite-dimensional version we use is also called a JH-
algebra [11], although we additionally require unitality.

Example 3. Let F be the field of real numbers, the field of complex numbers, or the division algebra of
the quaternions. Let A∈Mn(F) be an n×n matrix over F . We call A self-adjoint when Ai j = A ji where λ

denotes the standard involution on F . We let the set of self-adjoint matrices be denoted by Mn(F)sa. This
set is an Euclidean Jordan Algebra with the Jordan product A∗B := 1

2(AB+BA), inner product 〈A,B〉 :=
tr(AB) and identity matrix as unit.

If n = 3 and F is the algebra of octonions, then the algebra M3(F)sa is also a Euclidean Jordan
algebra, which is called exceptional.

Example 4. For any real Hilbert space H (possibly infinite-dimensional), the set E := H⊕R is a Eu-
clidean Jordan Algebra with (a, t) ∗ (b,s) := (sa+ tb,〈a,b〉+ ts) and 〈(a, t),(b,s)〉 = 〈a,b〉+ ts. Such
EJAs are called spin-factors.

The Jordan–von Neumann–Wigner classification theorem [18] asserts that any finite-dimensional
EJA is the direct sum of the finite-dimensional examples given above. This statement is still true for
our possibly infinite-dimensional class of EJAs, but then the spin-factors must also be allowed to be
infinite-dimensional (a proof of this fact can be found in the appendix as corollary 54).

Definition 5. Let E be an EJA. We call a ∈ E positive (and write a ≥ 0) when there exists a b ∈ E
such that a = b ∗ b. We write a ≥ c when a− c ≥ 0. We call a linear map between EJAs f : E → F
positive when f (a) ≥ 0 for all a ≥ 0. A map f is called unital whenever 1F = f (1E) and subunital
provided f (1E) ≤ 1F . We let EJApsu denote the category of Euclidean Jordan algebras with positive
linear subunital maps between them.

For the matrix algebras the definition of positivity coincides with the regular definition of a positive
matrix. For a spin factor H⊕R we have (a, t)≥ 0 iff t ≥ ‖a‖2, so that the set of positive elements forms
the positive light-cone in a Lorentzian space-time.

Definition 6. A positive unital linear map ω : E → R is called a state on E. An effect is a positive
subunital linear map a : R→ E and corresponds to an a ∈ E with 0 ≤ a ≤ 1. We will also call such an
element 0≤ a≤ 1, an effect.

Because E is a Hilbert space, any map f : E → R is of the form f (a) = 〈a,b〉 for some specific b.
As we will see that the inner product of positive elements is positive (proposition 47), any state on an
EJA will be given by a positive a ∈ E with 〈a,1〉= 1. For an effect a we write a⊥ := 1−a to denote its
complement.

We wish to define a notion of purity for the category EJApsu. The canonical example of a pure map
in a quantum system is the Lüders map B 7→ ABA for some fixed matrix A, and hence we would desire
the generalization of these maps to EJAs to also be pure. It also seems reasonable that any isomorphism
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should be pure. As we are working on a Hilbert space, every map has an adjoint, and it makes sense
to let the adjoint of a pure map be pure again. Finally, as we want our pure maps to be closed under
composition, any composition of the examples here above should also be pure. We will see how to make
these ideas exact, and in particular how to generalize the idea of a Lüders map to arbitrary EJAs. But
first we need to know more about the structure of EJAs.

Theorem 7. Let (E,∗,1) be an EJA. Sums of positive elements are again positive, so that the set of
positive elements forms a cone. Furthermore:

1. The unit 1 is a strong Archimedean unit: for all a ∈ E there exists n ∈ N such that −n1≤ a≤ n1,
and if a≤ 1

n 1 for all n ∈ N,n 6= 0 then a≤ 0.

2. As a consequence the algebra is an order unit space so that ‖a‖ := inf{r ∈ R ; − r1≤ a≤ r1} is
a norm, called the order unit norm, for which a≤ ‖a‖1.

3. The order unit norm defined above, and the norm induced by the inner product are equivalent so
that the topologies they induce are the same. The space is therefore also complete in the order unit
norm topology.

4. The space is self-dual: a≥ 0 if and only if 〈a,b〉 ≥ 0 for all b≥ 0.

5. The algebra E is bounded directed complete and every state is normal so that E is in fact a JBW-
algebra [16].

Proof. Since to our knowledge there isn’t a textbook solely dedicated to infinite-dimensional EJAs we
supply a relatively self-contained proof of these claims in the appendix.

Definition 8. For each a∈E let La : E→E be the left-multiplication operator of a, that is: L(a)b := a∗b.
The seemingly oddly named but important quadratic representation of the Jordan algebra is a linear
map Qa : E→ E for each a ∈ E, defined by Qa := 2L(a)2−L(a2).

The definition of the quadratic representation Qa might look arbitrary, but in the case of a matrix
algebra with the standard Jordan multiplication they are exactly the Lüders maps QAB = ABA. The
quadratic representation maps will therefore act as the Jordan equivalent of these maps in quantum theory.
The following proposition establishes a few basic properties of the maps Qa, that can be easily checked
to hold for a matrix algebra.

Proposition 9. For any EJA E and a,b,c ∈ E, the following hold.

1. Q1 = id.

2. Qa1 = a2.

3. 〈Qab,c〉= 〈b,Qac〉.
4. Qab = 0 ⇐⇒ Qba = 0 ⇐⇒ a∗b = 0.

5. QQab = QaQbQa (this is known in the literature as the fundamental equality).

6. Qa is invertible if and only a is invertible. In that case, we have Q−1
a = Qa−1 .

7. Qa is a positive operator(even when a is not positive). If it is invertible, it is an order automor-
phism.

Proof. Points 1,2 and 3 are trivial. Point 4 can be found in [1, Lemma 1.26]. Point 5 is usually proven
using MacDonalds theorem (see [16, Theorem 2.4.13]), but see also [29]. Point 6 is proven in [1, Lemma
1.23] and finally 7 is given by [1, Theorem 1.25].
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Note that while the Jordan multiplication maps La are not positive, and therefore are not maps in
the category EJApsu, the quadratic representation maps Qa are positive and when ‖a‖ ≤ 1 the maps are
subunital so that they do happen to lie in EJApsu.

As the fundamental equality QQab = QaQbQa will be important in the proofs below, let’s unfold it
for matrix algebras. The expression QQABC is equal to (ABA)C(ABA), while the right-hand side of the
equation QAQBQAC is equal to A(B(ACA)B)A. Thus the equality follows (in this special case) from
associativity of matrix multiplication.

Definition 10. We call an element p of an EJA an idempotent iff p2 := p ∗ p = p. An idempotent is
automatically positive and below the identity. We call an idempotent atomic if there is no non-zero
idempotent strictly smaller than it. Two idempotents p and q are orthogonal when p ∗ q = 0 or equiva-
lently 〈p,q〉= 0.

In a matrix algebra the idempotents are precisely the projections. The quadratic representation
map Qp is then the projection map Qp(a) = pap. The following proposition again contains claims
that are easily verified to hold true in any matrix algebra, but which for general EJAs must be proven
with a bit of care.

Proposition 11. Let p be an idempotent. Then Qp is idempotent, and furthermore for 0≤ a≤ 1 we have

Qpa = 0 ⇐⇒ 〈a, p〉 = 0 and Qpa = a ⇐⇒ a ≤ p ⇐⇒ p∗a = a.

Proof. The fundamental equality (number 5 of the previous proposition) implies that when p is an idem-
potent: QQp1 = Qp2 = Qp = QpQ1Qp = QpQp, so that Qp is a positive idempotent operator, symmetric
with respect to the inner product. When Qpa = 0 we have 0 = 〈Qpa,1〉= 〈a,Qp1〉= 〈a, p〉. Conversely,
if 〈a, p〉= 0, then 〈Qpa,1〉= 0. As Qpa is positive, we must have c2 = Qpa for some c and so 0 = 〈c,c〉,
hence c = 0 and Qpa = 0. Now suppose Qpa = a, then because we have a ≤ 1 we also have by posi-
tivity of Qp, a = Qpa ≤ Qp1 = p. When a ≤ p then by definition there is a r ≥ 0 such that a+ r = p.
Now 0 = 〈0,1〉= 〈p∗ p⊥,1〉= 〈p, p⊥〉= 〈a+ r, p⊥〉= 〈a, p⊥〉+ 〈r, p⊥〉. By self-duality (see theorem 7)
each of these terms is positive so that we must have 0= 〈a, p⊥〉= 〈a,Qp⊥1〉= 〈Qp⊥a,1〉. Since Qp⊥a≥ 0
this can only be the case when Qp⊥a = 0 so that p⊥ ∗a = 0 from which we get p∗a = a. To complete the
proof, assume p∗a = a. We will show Qpa = a. This follow readily from the definition and assumption:
Qpa = 2p∗ (p∗a)− (p∗ p)∗a = 2a−a = a.

Like in quantum theory, we have a spectral theorem for elements of a Euclidean Jordan algebra.

Proposition 12. Let a be an element of an EJA. Then there exists a number n, real numbers λ1, . . . ,λn

and orthogonal atomic idempotents p1, . . . , pn such that a = ∑
n
i=1 λi pi.

Proof. Proven in the appendix under Corollary 46.

Again like in quantum theory, we can for each element consider its ‘range’ where it acts non-trivially.
We will denote this by a ‘ceiling’: dae. The ceiling will play an important role later when we want to
restrict an EJA to certain subspaces.

Proposition 13. For an effect a ∈ E of an EJA E (i.e. 0 ≤ a ≤ 1), we can find λi > 0 and orthogonal
atomic idempotents pi with a = ∑i λi pi. With such a decomposition, we define dae = ∑i pi. This is the
least idempotent above a (and thus independent of choice of decomposition). We denote the de Morgan
dual by bac= da⊥e⊥. This is the greatest idempotent below a.
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Proof. Simply leaving out those terms where λi = 0, we can find λi 6= 0 and orthogonal atomic idem-
potent pi with a = ∑i λi pi. As the inner product of positive elements is positive, we find 0 ≤ 〈a, pi〉 =
λi〈pi, pi〉. As 〈pi, pi〉> 0 we must have λi > 0, as promised.

Next, we prove that dae is the least idempotent above a. Let q be idempotent such that a≤ q. Then
also λi pi ≤ q. By proposition 11 we then have q∗ (λi pi) = λi pi so that also q∗ pi = pi. Hence q∗dae=
∑i q∗ pi = ∑i pi = dae. Again by proposition 11 we conclude that dae ≤ q. Thus dae is indeed the least
idempotent above a.

3 Filters and Corners

With the preliminaries out of the way we will start to look at additional structure that is present in the
category EJApsu. The proofs in this section are heavily inspired by [25, 27] where the existence of this
structure was shown for the category of von Neumann algebras. As stated in the introduction, our notion
of purity is based on filters and corners. In this section we will give their formal definition and establish
their existence.

Definition 14. Let q ∈ E be an effect. A corner for q is a positive subunital linear map π : E → {E|q}
such that π(1) = π(q) and which is initial with this property: if g : E → F is another positive subunital
linear map such that g(1) = g(q) then there must exist a unique g : {E|q}→ F such that g◦π = g. In the
form of a diagram:

{E|q} E

F

g

π

g

Note 15. The name of ‘corner’ is inspired by the appearance of these maps when considering matrix
algebras, in which case they can be arranged to project onto a corner of the matrix. When g(1) = g(q)
we of course have g(q⊥) = 0, and hence everything orthogonal to q is ‘thrown away’ by this map. Thus
these maps project onto a subspace where q holds. The universal property tells us that {E|q} is the largest
such subspace.

Definition 16. Let q∈E be an effect. A filter for q is a positive subunital linear map ξ : Eq→ E such that
ξ (1) ≤ q and that is final with this property: if f : F → E is another positive subunital linear map such
that f (1)≤ q then there must exist a unique f : F → Eq such that ξ ◦ f = f . In the form of a diagram:

Eq E

F

ξ

f f

Note 17. The name ‘filter’ comes from the function of these maps in quantum theory as describing the
act of updating the action of effects based on previous measurement outcomes, i.e. filtering them. The
universal property can be interpreted as stating that Eq is the smallest subsystem of E that can faithfully
represent all effects below q.
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Since both these types of maps satisfy a universal property, they are (for a given effect) unique up
to isomorphism. In particular, given a corner π : E → {E|q} and an isomorphism Θ : {E|q} → F the
map Θ ◦ π is again a corner (for q), and furthermore any corner for q is of this form. Similarly when
ξ : Eq→ E is a filter, and we have an isomorphism Θ : F → Eq, the map ξ ◦Θ is also a filter, and any
filter for q is of this form. The objects {E|q} and Eq are therefore also unique up to isomorphism. In this
section we will see that there is a canonical choice of corner and filter for every effect.

As promised, a pure map is defined to be a composition of a corner and a filter:

Definition 18. We call a positive subunital linear map between EJAs f : E → F pure when there exists
some corner π and some filter ξ (not necessarily for the same effect) such that f = ξ ◦π .

Note that at the moment it is not yet clear whether pure maps are closed under composition or
whether there are any pure maps at all. First, we will study corners a bit more, for which we need some
preparation.

Proposition 19. [1, Proposition 1.43] (Peirce-decomposition) Let E be an EJA with an idempotent p∈E.
Then E1(p) := Qp(E) := {Qp(a) ; a ∈ E} is a sub-EJA of E consisting precisely of those elements of E
for which Qp(a) = a.

Definition 20. Let E be an EJA with an effect q ∈ E. Then {E|q} := E1(bqc) = {E|bqc} and Eq :=
E1(bq⊥c⊥) = E1(dqe).

For an idempotent p, we have {E|p} = Ep. After a few brief lemmas, we will show that {E|q} and
Eq are (the objects for) a corner and a filter respectively.

Lemma 21. Let ω : E → R be any positive linear map such that ω(p) = ω(1) for some idempotent p.
Then ω(Qpa) = ω(a) for all a.

Proof. Given such a map ω we can define 〈a,b〉
ω

:= ω(a∗b) which is a bilinear positive semi-definite
form. It then satisfies the Cauchy–Schwarz inequality: |〈a,b〉

ω
|2 ≤ 〈a,a〉

ω
〈b,b〉

ω
. Since ω(p) = ω(1)

we also have ω(p⊥) = 0. But then |ω(p⊥ ∗a)|2 ≤ ω(p⊥ ∗ p⊥)ω(a∗a) = 0 so that ω(p⊥ ∗a) = 0. Then
obviously ω(p ∗ a) = ω(a) from which we also get ω(p ∗ (p ∗ a)) = ω(a). Unfolding the definition of
Qp we then get ω(Qpa) = ω(a).

Corollary 22. Let g : E →W be a positive linear map between EJAs such that g(p) = g(1) for some
idempotent p. Then g(Qpa) = g(a) for all a.

Proof. Follows by the previous lemma because the states separate the maps.

Lemma 23. Let g : E → F be any positive linear map between EJAs such that g(q) = g(1) for some
effect q. Then g(bqc) = g(1).

Proof. g(q) = g(1) means that g(q⊥) = 0. Write q⊥ = ∑i λi pi where λi > 0, then 0 = g(q⊥) =∑i λig(pi).
Since g is a positive map and λi > 0 and pi ≥ 0 this implies that g(pi) = 0. But since dq⊥e = ∑i pi by
proposition 13, we see g(dq⊥e) = 0, so that g(bqc) = g(dq⊥e⊥) = g(1).

Proposition 24. Let q be an effect of an EJA E. Define πq : E → {E|q} = E1(bqc) to be πq = r ◦Qbqc
where r : E → E1(bqc) is the orthogonal projection map with respect to the Hilbert space structure.
Then πq is a corner for q. We will refer to this map as the standard corner for q.



352 Pure Maps between Euclidean Jordan Algebras

Proof. First of all we have πq(1) = (r◦Qbqc)(1) = r(bqc) = r◦Qbqc(q) = πq(q). Now suppose g : E→ F
is a positive subunital linear map such that g(q) = g(1). We must show that there is a unique g : {E|q}→
F such that g◦πq = g.

By the previous lemma g(bqc) = g(1). Define g : E1(bqc)→ F as the restriction of g. To prove
that g ◦ πq = g, we need to show that g(a) = g(Qbqca) for all a. This follows from corollary 22. For
uniqueness suppose we have a h : E1(bqc)→ F such that h◦πq = g = g◦πq. Let a ∈ E1(bqc), then we
can see a as an element of E with πq(a) = a, so that h(a) = h(πq(a)) = g(πq(a)) = g(a), as desired.

For a positive q = ∑i λi pi we can define a positive square root
√

q := ∑i
√

λi pi. This is the unique
positive element such that

√
q∗√q = q.

Proposition 25. Let q be an effect of an EJA E. Define ξq : Eq→ E to be the map ξq := Q√q ◦ ι where ι

is the inclusion ι : Eq = E1(dqe)→ E, then ξq is a filter for q. We will refer to this map as the standard
filter for q.

Proof. Clearly ξq(1) = q. We need to show that this map is final with respect to this property. To this
end, assume f : F→ E is any positive subunital linear map with f (1)≤ q. We have to show that there is
a unique f : F → Eq such that ξq ◦ f = f .

Clearly f (1) ≤ q ≤ dqe. Thus for all 0 ≤ p ≤ 1 we have f (p) ≤ dqe so that f (p) ∈ E1(dqe) which
means that we can restrict the codomain of f to E1(dqe) = Eq. Writing q as q = ∑i λi pi for some
λi > 0 and orthogonal atomic projections pi, we see it has a pseudo-inverse q−1 := ∑i λ

−1
i pi such that

Q√
q−1q = q∗q−1 = dqe. In particular Q√

q−1 f (p)≤Q√
q−1q = dqe. It follows that the map f : W → Eq

given by f (a) = Q√
q−1 f (a) is subunital and obviously (ξq ◦ f )(a) = Q√qQ√

q−1 f (a) = Qdqe f (a) = f (a)
by proposition 11.

Now for uniqueness, suppose that we have a g : F → Eq such that ξq ◦ g = f . Then Qdqe ◦ ι ◦ g =
Q√

q−1 ◦Q√q ◦ ι ◦ g = Q√
q−1 ◦ f . As Qdqe acts as the identity on all elements coming from E1(dqe) it

can be removed from the expression. By taking the corestriction of both sides to E1(dqe) we see that
g = Q√

q−1 ◦ f = f , as desired.

Let q be an effect in some EJA E. Note that the EJA associated to the standard filter of q is
Eq = E1(dqe) while the EJA of the standard corner is {E|q} = E1(bqc). Therefore, when q is not an
idempotent, we have Eq 6= {E|q}and hence we cannot compose the standard filter and corner of q. How-
ever, if one takes the the standard corner of dqe instead of q, then Eq = {E|dqe} and the filter and corner
can indeed be composed. It is easy to see that this composition ξq ◦πdqe equals Q√q. This shows that
the Qa maps are indeed pure (for positive a). Also note that the standard filter and the standard corner
for the unit 1 ∈ E are simply the identity and since a filter composed with an isomorphism is still a
filter we see that indeed all isomorphisms are pure. Next we will show that pure maps are closed under
composition.

3.1 The polar decomposition theorem

The composition of two filters is again a filter, which can be shown in the general setting of an effec-
tus [28, 197IX]. In our setting, it is easy to see that the composition of two corners is again a corner.
Suppose we know that a composition of a filter with a corner ‘in the wrong order’ can be written ‘in the
correct order’, i.e. that we can always write π ◦ξ as ξ ′ ◦π ′ for some different filter ξ ′ and corner π ′. Then
when we have pure maps f = ξ1 ◦π1 and g = ξ2 ◦π2 their composition is f ◦g = ξ1 ◦π1 ◦ξ2 ◦π2 and we
can interchange π1 and ξ2 to get a composition of two corners with two filters, which is indeed pure. So
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what we need to show to establish that our definition of purity is closed under composition is that filters
and corners can be interchanged as assumed before. It is sufficient to prove this for the standard corner
and filter. To summarize, we must show that for a given effect q and idempotent p there exist effects a
and b such that πp ◦ξq = ξa ◦Φ◦πb where Φ is some isomorphism.

The same problem of establishing that pure maps are closed under composition in von Neumann
algebras is related to the existence of polar decompositions of elements. By applying the polar decom-
position to

√
p
√

q for positive p and q we have a partial isometry u such that
√

pq
√

p = u(
√

qp
√

q)u∗.
The isomorphism Φ above is then the conjugation map a 7→ uau∗ restricted to the appropriate domains.
Partial isometries can also be defined for EJAs, and an analogous polar decomposition theorem can be
stated:

Definition 26. Let Φ : E → E be a positive linear map on an EJA E. We denote its adjoint with respect
to the inner product by Φ∗, that is the unique linear map with 〈Φ∗(a),b〉= 〈a,Φ(b)〉. We call Φ a partial
isometry when ΦΦ∗ and Φ∗Φ are projections.

Theorem 27. Polar Decomposition: Let p and q be positive elements of a Euclidean Jordan algebra E.
There exists a partial isometry Φ : E→ E such that QqQp = ΦQ√Qpq2 , Φ(1) = dQq pe, Φ∗(1) = dQpqe,
Φ∗Φ = QdQpqe and ΦΦ∗ = QdQq pe.

To see how this is related to polar decomposition note that if we plug in the unit in QqQp that we
will get Qq p2 = QqQp1 = ΦQ√Qpq21 = Φ(Qpq2). This polar decomposition theorem should not be
confused with the already established notion of polar decomposition in Jordan algebras (see for instance
[14, Ch. VI]) that asserts the existence of a Jordan isomorphism between any two maximal collections
of orthogonal atomic idempotents in a simple EJA. In the theory of generalized probabilistic theory, this
property is also known as strong symmetry [3].

The rest of this section is dedicated to proving theorem 27 and showing how it proves that pure maps
are closed under composition.

First need a new notion:

Definition 28. Let f : E→ F be a positive linear map between EJAs. The image of f (if it exists) is the
smallest effect q such that f (q) = f (1). We will denote the image of f by im f .

Proposition 29. Any positive linear map f : E → F between Euclidean Jordan algebras has an image.
This image is always an idempotent.

Proof. Because of lemma 23 a positive linear map f satisfies f (q) = f (1) if and only if f (bqc) = f (1)
so we can restrict to effects which satisfy q = bqc; viz. the idempotents.

By theorem 7 EJAs are JBW-algebras (see [1]) so that the idempotents form a complete lattice.
Furthermore, all states are normal, meaning they preserve infima. Because the states separate the maps,
all maps are also normal. We conclude that im f = inf{p ; p2 = p, f (p) = f (1)} exists and that f (im f ) =
f (inf{p ; f (p) = f (1)}) = infp f (p) = f (1).

Proof of Theorem 27. Let Φ = QqQpQ(Qpq2)−1/2 so that Φ∗ = Q(Qpq2)−1/2QpQqbecause Q∗a = Qa for all
a. Then Q(Qpq2)1/2Φ∗ = QdQpq2eQpQq = QpQq. By taking adjoints we then get QqQp = ΦQ√Qpq2 as
desired. Note that

Φ
∗
Φ = Q(Qpq2)−1/2QpQqQqQpQ(Qpq2)−1/2 = Q(Qpq2)−1/2QQpq2Q(Qpq2)−1/2 = QdQpq2e

by application of the fundamental equality. Since dQpq2e = dQpdq2ee = dQpdqee = dQpqe this can be
simplified to Φ∗Φ = QdQpqe. Because Φ∗Φ is a projection we can use [20, Proposition 6.1.1] to conclude
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that ΦΦ∗ must be projection as well. By a simple calculation Φ∗(1) = dQpqe so that it remains to
show that Φ(1) = dQq pe and that ΦΦ∗(1) = dQq pe since this latter condition (in combination with the
knowledge that ΦΦ∗ is a projection) is sufficient to conclude that ΦΦ∗ = QdQq pe.

Suppose Φ∗(s) = 0 then 〈1,Φ∗(s)〉 = 0 = 〈QpQqs,(Qpq2)−1/2〉. Since d(Qpq2)−1/2e = dQpq2e this
gives 0 = 〈QpQqs,Qpq2〉 = 〈s,QqQp2Qq1〉 = 〈s,QQq p21〉 = 〈s,Qq p2〉. We conclude that Φ∗(s) = 0 if
and only if s ⊥ dQq pe so that imΦ∗ = dQq pe. We of course also have 0 = 〈1,Φ∗(s)〉 = 〈Φ(1),s〉 so
that dΦ(1)e = imΦ∗ = dQq pe. Because 〈1,(Φ(1))2〉 = 〈Φ(1),Φ(1)〉 = 〈Φ∗Φ(1),1〉 = 〈dQpqe,1〉 =
〈Φ∗(1),1〉= 〈1,Φ(1)〉 we conclude that Φ(1) = (Φ(1))2 so that Φ(1) = dΦ(1)e= dQq pe.

By a similar argument as above we can show that imΦΦ∗ = d(ΦΦ∗)(1)e which gives (ΦΦ∗)(1) ≤
imΦΦ∗ ≤ imΦ∗ = dQq pe. For the other direction we recall that we had QqQp = ΦQ√Qpq2 so that

QQq p2 = QqQpQpQq = ΦQ√Qpq2Q√Qpq2Φ∗ = ΦQQpq2Φ∗ ≤ ‖QQpq2‖ΦΦ∗. By inserting the unit into the

expression and taking the ceiling we are left with dQq pe= dQQq p21e ≤ d(ΦΦ∗)(1)e.

Proposition 30. Let ξq : E1(dqe)→ E, ξq = Q√q : ι be the standard filter of an effect q and πp : E →
E1(p), πp = r ◦Qp be the standard corner of an idempotent effect p. Then πp ◦ξq = ξa ◦Φ◦πb where a
and b are some effects and Φ is an isomorphism. In other words: πp ◦ξq is pure.

Proof. Define the shorthand q&p := Q√q(p). Let f = πp ◦ξq : Edqe→ Ep. Because f (1) = πp(ξq(1)) =
πp(q) = p&q we see that there must exist f : Edqe → Edp&qe such that ξp&q ◦ f = f where ξp&q :
Edp&qe → Ep by the universal property of the filter. This f is given by f = Q(p&q)−1/2 ◦ f so that
f (1) = Q(p&q)−1/2(p&q) = dp&qe = 1 since the codomain is Edp&qe. We will ignore the restriction
and inclusion maps present in the filter and corner so that we can write f = QpQ√q and similarly
f = Q(p&q)−1/2QpQ√q.

Similar to the argument used in the proof of theorem 27 we can show that im f = dq&pe. Then we
can use the universal property of the corner to find a map Φ : Edq&pe→ Edp&qe such that Θ◦πdq&pe = f .
Because f and πdq&pe are unital, Φ has to be unital as well. Note that Φ is just a restriction of f to the
appropriate domain and that f = Q(p&q)−1/2QpQ√q is exactly the same as Φ∗ in the proof of theorem
27. We can conclude as a consequence that ΦΦ∗ = Qdp&qe while Φ∗Φ = Qdq&pe. These are of course
the identity maps on Edp&qe respectively Edq&pe so that Φ∗ = Φ−1. We conclude that f = ξp&q ◦ f =
ξp&q ◦Φ◦πdq&pe where Φ is an isomorphism.

Corollary 31. The composition of pure maps is pure.

Proof. Let f1 and f2 be pure, then fi = ξi ◦Θi ◦ πi, so that f1 ◦ f2 = ξ1 ◦Θ1 ◦ π1 ◦ ξ2 ◦Θ2 ◦ π2 = ξ ′1 ◦
ξ ′ ◦Θ′ ◦ π ′ ◦ π ′2 by the previous proposition and writing ξ1 ◦Θ1 = ξ ′1 and Θ2 ◦ π2 = π ′2 where ξ ′1 and
π ′2 are again a filter respectively a corner. But now since a composition of filters is again a filter and a
composition of corners is again a corner we see that f1 ◦ f2 is indeed pure.

4 Diamond adjointness and positivity

Since Euclidean Jordan algebras are also Hilbert spaces, we can find for any positive map an adjoint
with respect to the inner product. This means that the category of all EJAs with positive (not necessarily
subunital) maps is a dagger category. The adjoint of a subunital map is not necessarily subunital again
however, so that EJApsu is not a dagger category. However, the set of pure maps is closed under taking
adjoints (which can be shown by a simple case analysis), so that this restricted category is a dagger
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category. This is not an accident: a consequence of the results in this section will be that EJApsu is a
†-effectus, a type of structure already introduced as an abstract version of the category of von Neumann
algebras where the pure maps also form a dagger category. For more information regarding †-effectuses
we refer to [28].

An important notion in an effectus is that of �-adjointness. This is a possibilistic alternative to
adjointness that can be defined even when there is no obvious choice of dagger. In this section we
will study �-adjointness in EJApsu and show that it behaves similarly to �-adjointness in von Neumann
algebras. In particular we will give a characterization of pure �-self-adjoint maps and show that a pure
�-positive map f : E → E is completely determined by its image at the unit: f = Q√ f (1) and thus that
the only pure �-positive maps are the quadratic representation maps Qa for some positive a. As these
quadratic representation maps are the Jordan equivalent of the sequential product map b 7→ aba [32], this
can be seen as a new characterization of the sequential product.

Definition 32. Let f : E → F be a positive subunital map and write Idem(E) for the set of idempotents
of E. Define the maps f � : Idem(F)→ Idem(E) and f� : Idem(E)→ Idem(F) by

f �(p) = dp◦ f e and f�(q) = im(Qq ◦ f ).

We say that f : E → F is �-adjoint to g : F → E when f � = g� or equivalently f� = g� [28]. We call
f : E→ E �-self-adjoint when f is �-adjoint to itself, and we call f �-positive when there exists a �-self-
adjoint g such that f = g◦g.

It can be shown that f �(p) ≤ q⊥ iff f�(q) ≤ p⊥ so that the diamond defines a Galois connection
between the orthomodular lattices of idempotents. As a result we get a functor � : EJApsu→OMLatGal
[28]. Note that �-self-adjointness is weaker than regular self-adjointness:

Proposition 33. Any self-adjoint operator f : E → E on an EJA E is �-self-adjoint. In particular Qa is
�-self-adjoint for any a ∈ E. Consequently, Qa is �-positive for positive a.

Proof. Let f be any self-adjoint operator. It suffices to show f �(s) ≤ t⊥ ⇐⇒ f �(t) ≤ s⊥ for all idem-
potents s, t ∈ E (see [28, §207III]). This is equivalent to

〈 f �(s), t〉 = 0 ⇐⇒ 〈s, f �(t)〉 = 0 (s, t ∈ E idempotents). (1)

By the spectral theorem 〈dqe,s〉 = 0 ⇐⇒ 〈q,s〉 = 0 for any positive q and idempotent s, so (1) is
equivalent to 〈 f (s), t〉= 0 ⇐⇒ 〈s, f (t)〉= 0, which clearly holds as f is self-adjoint.

Pick any positive a ∈ E. By the fundamental identity, we have Qa = Q√a2 = Q2√
a, so Qa is the square

of a �-self-adjoint map, hence �-positive.

The rest of this section contains the necessary work to prove the following theorem characterizing
the pure �-positive maps:

Theorem 34. Let g : E→ E be a pure �-positive map and write p := g(1), then g = Q√p.

First, we will need a well-known fact about Jordan algebras for which we need a short lemma.

Lemma 35. An effect p is called order-sharp when q = 0 whenever both q≤ p and q≤ p⊥. An effect p
is order-sharp if and only if it is an idempotent.

Proof. Let a be an order-sharp effect and write a = ∑i λi pi. Let ri = min{λi,1−λi}, then ri pi ≤ a and
ri pi ≤ a⊥ = 1− a which implies that r = 0, so either λi = 1 or λi = 0 for all i. But then as a is a sum
of orthogonal idempotents it is also an idempotent. For the other direction suppose a is idempotent. Let
q≤ a and q≤ a⊥. By q≤ a we know that Qaq = q, but we also have Qaq≤Qaa⊥ = 0 so that q = 0.
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Proposition 36. A unital order isomorphism between EJAs is a Jordan isomorphism: that is, it preserves
the Jordan multiplication.

Proof. Let Θ : E → F be any unital order-isomorphism between EJAs. As 2(a∗b) = (a+b)2−a2−b2

it suffices to show Θ(a)2 = Θ(a2) for any a ∈ E. Write ∑i λi pi = a for the spectral decomposition of a.
As idempotents are exactly the order-sharp elements by the previous lemma and idempotents p,q are
orthogonal iff p ≤ 1− q, we see that Θ(pi) are also pairwise orthogonal idempotents. Thus Θ(a)2 =
(∑i λiΘ(pi))

2 = Θ(∑i λ 2
i pi) = Θ(a2), as desired.

Corollary 37. Let Θ : E → F be any unital order-isomorphism between Euclidean Jordan Algebras.
Then, for any a,b ∈ E, we have Θ(Qab) = QΘ(a)Θ(b). That is: Θ ◦Qa = QΘ(a) ◦Θ. Equivalently:
Qa ◦Θ = Θ◦QΘ−1(a).

The next few results involve the notion of faithfulness. A map f : E → F is called faithful when for
any positive a the equation f (a) = 0 implies a = 0. A map f is faithful if and only if im f = 1.

Lemma 38. Let f : E→ E be a faithful pure �-self-adjoint map between EJAs. Then f = Q√ f (1) ◦Θ for

some unital Jordan isomorphism Θ with Θ(
√

f (1)) =
√

f (1) and Θ = Θ−1.

Proof. First, we collect some basic facts. As f is pure, we have f = ξ ◦π for some filter ξ and corner π .
Note that im f = imπ as ξ is faithful and f (1) = ξ (1) as π is unital. Hence, by �-self-adjointness of f ,
we have dξ (1)e = d f (1)e = f �(1) = f�(1) = im f = imπ . Next, by the universal properties of filters
and corners, there exist order isomorphisms Θ1,Θ2 such that ξ = ξξ (1) ◦Θ1 and π = Θ2 ◦πimπ , so that
f = ξξ (1) ◦Θ1 ◦Θ2 ◦πimπ = ξ f (1) ◦Θ◦πim f defining Θ := Θ1 ◦Θ2.

We assumed f is faithful, i.e. im f = 1. So πim f = π1 = id. For brevity, write q :=
√

f (1). As dqe=
d f (1)e= dξ (1)e= imπ = 1, we have ξq = Qq and so f = Qq ◦Θ.

As seen in the proof of proposition 33 if f is �-self-adjoint we have 〈 f (a),b〉= 0 ⇐⇒ 〈a, f (b)〉= 0.
In this case this translates to 0 = 〈QqΘ(a),b〉= 0 ⇐⇒ 0 = 〈a,QqΘ(b)〉= 〈Qqa,Θ(b)〉= 〈Θ−1Qqa,b〉.
This implies that dQqΘ(a)e = dΘ−1Qqae = Θ−1(dQqae) for all a. Write q = ∑i λiqi where the qi

are atomic. Then we have Qqqi = λ 2
i qi. Filling in a = qi we then get dQqΘ(qi)e = Θ−1(dQqqie) =

Θ−1(dλ 2
i qie) = Θ−1(qi). The right-hand side is atomic as Jordan isomorphisms preserve atomicity, so

the left-hand side must also be atomic. Since dbe is atomic if and only if b is proportional to an atomic
predicate we then get QqΘ(qi) = µiΘ

−1(qi) for some 0 < µi < 1. By composing with Θ this becomes
(ΘQqΘ)(qi) = µiqi. Now we note that:

∑
i

λ
2
i Θ(qi) = Θ(q2) = ΘQqΘ(1) = ∑

i
ΘQqΘ(qi) = ∑

i
µiqi

Now let p j = ∑i,λi=λ j qi and r j = ∑i,µi=µ j q j. Then we can write ∑i λ 2
i Θ(qi) = ∑ j λ 2

j Θ(p j) and ∑i µiqi =

∑ j µ jr j where in the sums on the right-hand side each of the λ j and each of the µ j is distinct. Since Θ

preserves orthogonality this means we get two orthogonal decompositions that are equal: ∑ j λ 2
j Θ(p j) =

∑ j µ jr j. By uniqueness of such decompositions we then have λ 2
j = µ j and Θ(p j) = r j (where we assume

for now that we have ordered the eigenvalues from high to low). But of course since the λ 2
j and µ j

agree, the p j and the r j will also agree by their definition, so that Θ(p j) = p j. Finally, we get Θ(q) =
∑ j λ jΘ(p j) = ∑ j λ j p j = q.

Now ΘQq =QΘ(q)Θ=QqΘ so the Θ commutes with Qq. Note that since dqe= 1, q will be invertible.
Let g = Qq. Then g�Θ� = (Θg)� = (gΘ)� = f � = f� = (gΘ)� = g�Θ� = g�(Θ−1)�. Now g−1 is not a
subunital map, but it can be scaled downwards until it is, in which case gg−1 = λ id for some λ > 0, in
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which case g�(g−1)� = id. Since g� has an inverse, we see that g�Θ� = g�(Θ−1)� can only hold when
Θ� = (Θ−1)�. From this and Θ(dae) = dΘ(a)e it follows that Θ = Θ−1.

Proposition 39. Let g : E→ E be a faithful pure �-positive map and let p := g(1), then g = Q√p.

Proof. Since g is �-positive there must exist some pure �-self-adjoint f : E→E such that g= f f . Since g
is faithful, the f must be faithful as well since 1 = img = im f f ≤ im f . By the previous lemma f = QqΘ

for some q and Θ(q) = q and Θ=Θ−1. But then g= f f =QqΘQqΘ=QqQΘ(q)ΘΘ=QqQqΘ−1Θ=Qq2 .
Now g(1) = Qq21 = q4, so that g = Q√p where p = q4.

Proof of theorem 34. Let f be �-self-adjoint so that in particular im f = d f (1)e. We can then corestrict f
to E→ E1(im f ). Using corollary 22 we also get f = f Qim f so that we can factor f as f = ξim f ◦ f ◦πim f
where f : E1(im f )→ E1(im f ). Note that ξim f is nothing but the inclusion map into E. It is also easy to
see that f = πim f ◦ f ◦ξim f . Then f (1) = πim f ( f (im f )) = f (im f ) = f (1). Because f is pure, f is also
pure as it is a composition of pure maps. When f is �-self-adjoint we have f � = (πim f ◦ f ◦ ξim f )

� =
ξ �im f ◦ f � ◦π�im f = (πim f )� ◦ f� ◦ (ξim f )� = f �. Here we have used that ξ �s (t) = dξs(t)e = dte = t since
t ∈ E1(s) and (πs)�(t) = imπt ◦πs = imπt = t which also follows because t ≤ s, so that ξ �s = (πs)�.

When f is �-self-adjoint we get im f 2 = f �( f�(1)) = f �(im f ) = f �(1) = f�(1) = im f . For a �-
self-adjoint f we then get f 2

= πim f ◦ f ◦ ξim f ◦πim f ◦ f ◦ ξim f = πim f ◦ f 2 ◦ ξim f = f 2. We conclude
that when g = f ◦ f is �-positive, g = f 2 = f 2 is also �-positive. Since g is faithful we have already
established that g = Q√p where p = g(1) = g(1) and img = dg(1)e = dpe. Now g = ξimgQ√pπimg =
Q√pQdpe = Q√p.

We’re now ready to conclude that EJAop
psu is a †-effectus. The details of †-effectuses are beyond the

scope we chose for this paper; for those we refer the reader to [28, §173–215].

Theorem 40. EJAop
psu is a †-effectus (as defined in [28, §215]).

Proof. It is straightforward to show that EJAop
psu is an effectus, see eg. [28, §191]. The existence of cor-

ners (prop. 24), filters (prop. 25), images (prop. 29) and the fact that the complement of an idempotent is
again idempotent, shows that EJAop

psu is a �-effectus. [28, §206] This, combined with the characterization
of �-positive maps (thm. 34) and the fact that pure maps are closed under composition (cor. 31), gives us
that EJAop

psu is a &-effectus. [28, §211] To see, finally, that we have a †-effectus at hand, it is sufficient to
show the three conditions from [28, §215III].

1. Every predicate 0 ≤ p ≤ 1 must have a unique square root: there must exist a unique 0 ≤ q ≤ 1
such that q&q = p. This is true by the spectral theorem (corollary 46).

2. We must have Q(
√

Q√pq)2 = Q√pQ(
√

q)2Q√p. Rewritten to Q(Q√pq) = Q√pQqQ√p, this be-
comes the familiar fundamental equality for the quadratic representation.

3. The filter of an idempotent must map idempotents to idempotents. This is clearly true for the
standard filter of an idempotent (being an inclusion) and hence for any as isomorphisms preserve
idempotents as well.

5 Conclusion

We have shown that the definition of purity for von Neumann algebras [27, 26, 25] and effectus the-
ory [8, 9] also works well in the category of positive contractive linear maps between Euclidean Jordan
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algebras. In particular, this definition of purity is closed under composition and the dagger, and includes
the equivalents of the Lüders maps for Jordan algebras. We have also shown that the possibilistic notion
of �-adjointness from effectus theory translates to these algebras, and we have used it to give a new
characterization of the ‘sequential product’ maps b 7→ Qab for positive a.

With the results in this paper we know that the filter-corner definition of purity works well in von Neu-
mann algebras and in Euclidean Jordan algebras. This begs the question whether our results concerning
pure maps generalize to the class of JBW-algebras [16], which include all von Neumann algebras and
EJAs. We consider this to be a challenging topic for future research.

The precise relationship between the different notions of purity found in the literature and the one
studied in this paper is yet to be determined. When restricted to complex matrix algebras all the defini-
tions coincide, but when direct sums of simple algebras are considered the definitions sometimes diverge.
For example, the identity map on a direct sum is not atomic and therefore not pure in the sense of [7].
Also, the adjoint of a pure map in the sense of [12, 23] on a direct sum need not be pure.

Then finally there is the matter of the different notions of positivity for maps between Euclidean Jor-
dan algebras: they can be superoperator positive (mapping positive elements to positive elements), oper-
ator positive as linear maps between Hilbert spaces, and, of course, �-positive. Any relation? While pre-
liminary investigations reveal none between superoperator positivity and operator positivity, �-positivity
does seem to be connected with operator positivity.
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A Basic structure of EJAs

EJAs are commonly defined to be finite-dimensional. The infinite-dimensional algebras we study are also
known as JH-algebras [11, 10] (where we additionally require the existence of a unit). In this appendix
we will give a relatively self-contained proof that the EJAs we use are JBW-algebras and that every
element has a finite spectral decomposition.

Proposition 41. For every EJA E there is a constant r > 0 such that, for all a,b ∈ E,

‖a∗b‖2 ≤ r‖a‖2 ‖b‖2, (2)

where ‖c‖2 ≡
√
〈c,c〉 denotes the Hilbert norm. In particular, ∗ is uniformly continuous with respect to

the Hilbert norm.

Proof. The trick is to apply the uniform boundedness principle (see e.g. [24]) twice, which states that any
collection T of bounded operators from a Banach space X to a normed vector space Y that is bounded
pointwise, i.e. supT∈T ‖T x‖< ∞ for all x ∈ X , is uniformly bounded in the sense that supT∈T ‖T‖< ∞.

For the moment fix a∈E. Our first step is to show that the operator a∗( ·) : E→E is bounded. To this
end consider the collection of linear functionals 〈b,a∗ ( ·)〉 : E→ R, where b ∈ E with ‖b‖2 ≤ 1. These
are bounded operators, since 〈b,a∗ ( ·)〉 = 〈a∗b,( ·)〉, and as a collection they are bounded pointwise,
since |〈b,a∗ c〉| ≤ ‖b‖2 ‖a∗ c‖2 ≤ ‖a∗ c‖2 < ∞. Hence

ra := sup
‖b‖2≤1

‖〈a∗b,( ·)〉‖ < ∞

by the uniform boundedness principle. Since in particular (‖a ∗ b‖2)
2 = 〈a∗b,a∗b〉 ≤ rb‖a ∗ b‖2 for

all b ∈ E with ‖b‖2 ≤ 1, we get ‖a∗b‖2 ≤ ra for all b ∈ E with ‖b‖2 ≤ 1, and thus ‖a∗b‖2 ≤ ra‖b‖2 for
any b ∈ E. In other words, the linear operator a∗ ( ·) : E→ E is bounded.

Now, to prove equation (2) it suffices to show that sup‖a‖2≤1 ‖a ∗ ( ·)‖ is finite. For this, in turn,
it suffices, by the uniform boundedness principle, to show given b ∈ E that sup‖a‖2≤1 ‖a ∗ b‖2 < ∞.
Since ‖a∗b‖2 = ‖b∗a‖2 ≤ ‖b∗ ( ·)‖‖a‖2 ≤ ‖b∗ ( ·)‖< ∞ for all a ∈ E with ‖a‖2 ≤ 1, this is indeed the
case.

To proceed we need some basic algebraic properties of Jordan algebras, which are most conveniently
expressed with some additional notation.

Notation 42. Let E be a Jordan algebra.

1. We write a0 := 1, a1 := a, a2 := a∗a, a3 := a∗a2, a4 := a∗a3, . . . . Note that since ∗ is not
associative it’s not a priori clear whether equations like a4 = a2 ∗a2 hold.

2. Given a ∈ E we denote the linear operator E→ E : b 7→ a∗b by La.
Given two linear operators S,T : E→ E we write [S,T ] := ST −T S for the commutator of S and T .
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Proposition 43. Given a Jordan algebra E, and a,b,c ∈ E, we have

1. [La,La2 ] = 0; [Lb,La2 ] = 2[La∗b,La]; and [La,Lb∗c]+ [Lb,Lc∗a]+ [Lc,La∗b] = 0;

2. La∗(b∗c) = LaLb∗c +LbLc∗a +LcLa∗b−LbLaLc−LcLaLb;

3. an ∗ (b∗am) = (an ∗b)∗am and an ∗am = an+m for all n,m ∈ N.

Proof. 1. The first equation, [La,La2 ] = 0, is just a reformulation of the Jordan identity:

LaLa2b ≡ a∗ (b∗a2) = (a∗b)∗a2 ≡ La2Lab.

Note that [La+b,L(a+b)2 ]− [La−b,L(a−b)2 ] = 4[La,La∗b]+ 2[Lb,La2 ]+ 2[Lb,Lb2 ]—just expand both sides.
Applying [Ld ,Ld2 ] = 0 with d = b, a+b, a−b, we get [Lb,La2 ] = −2[La,La∗b] = 2[La∗b,La]. Similarly,
one gets [La,Lb∗c]+ [Lb,Lc∗a]+ [Lc,La∗b] = 0 by expanding 2[L(a+c)∗b,La+c]− [Lb,L(a+c)2 ]≡ 0.

2. Since [La,Lb∗c]+ [Lb,Lc∗a]+ [Lc,La∗b] = 0, we have, for all d ∈ E,

(LaLb∗c +LbLc∗a +LcLa∗b)d = (b∗ c)∗ (a∗d) + (c∗a)∗ (b∗d) + (a∗b)∗ (c∗d).

Since the right-hand side of this equation is invariant under a switch of the roles of a and d, so must be
the left-hand side, which gives us the professed equality after some rewriting:

(LaLb∗c +LbLc∗a +LcLa∗b)d = (LdLb∗c +LbLc∗d +LcLd∗b)a a↔ d

≡ (La∗(b∗c) + LbLaLc + LcLaLb)d rewriting.

3. By repeatedly applying the equation for La∗(b∗c) from 2 it is clear that Lan and Lam may both be
written as polynomial expressions in La and La2 . Since La and La2 commute by the Jordan identity, so
will Lan and Lam commute. Whence an ∗ (b∗am) = (an ∗b)∗am.

Finally, seeing that an ∗am = an+m is only a matter of induction over m. Indeed, an ∗a0 = an ∗1 = an,
and if an ∗ am = an+m for all n for some fixed m, we get an ∗ am+1 = an ∗ (a ∗ am) = (an ∗ a) ∗ am =
an+1 ∗am = an+m+1.

Corollary 44. Let a ∈ E be an element of an EJA. Let C(a) denote the closure of the algebra generated
by a, then C(a) is a commutative associative algebra.

Proof. Point 3 of proposition 43 allows us to see that the smallest Jordan subalgebra of E that contains a
consists of all real polynomials ∑

N
n=0 λnan over a, and is therefore associative. Since the Jordan multipli-

cation is continuous (by proposition 2) the closure C(a) of this associative subalgebra will again be an
associative subalgebra.

Proposition 45. An associative EJA is isomorphic as an algebra to Rn with pointwise multiplication for
some n ∈ N.

Proof. Let E be an associative EJA and let La : E→E denote the Jordan multiplication operator of a∈E.
This gives rise to a map L : E→ B(E) that is linear (since La+b = La+Lb and Lλa = λLa), multiplicative
(by associativity La∗b = LaLb), unital (L1 = id), injective (since La1 = a) and positive (La is self-adjoint
and La2 = L2

a is therefore a positive operator). The map is also order-reflecting. To see this we first note
that the algebra C(La) generated by La in B(E) is equal to the set L(C(a)) := {Lb ; b ∈C(a)}. Now if
La ≥ 0 in B(E), then it has a square root which lies in C(La) = L(C(a)), so that we can find a b ∈C(a)
with Lb2 = L2

b =
√

La
2
= La so that a is indeed positive in E. We conclude that E is order-isomorphic to

some closed subspace of B(E) and thus that E is a complete Archimedean order unit space.
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The product of positive elements is positive, since indeed: a2∗b2 = (a∗a)∗(b∗b) = (a∗b)∗(a∗b) =
(a ∗ b)2. By Kadison’s representation theorem [19] any complete Archimedean order unit space with
unital multiplication that preserves positivity (like E), is isomorphic as an algebra to C(X), the real-
valued continuous functions on some compact Hausdorff space X .

Thus without loss of generality, we may assume E = C(X). It is sufficient to show X is discrete
(for then X must be finite by compactness). For x ∈ X , write δx : C(X)→ R for the bounded linear
map δx( f )= f (x). As E =C(X) is assumed to be a Hilbert space, there must be an x̂∈C(X) with δx( f )=
〈x̂, f 〉= f (x) for all f ∈C(X). As 〈x̂g, f 〉= 〈x̂,g f 〉= (g f )(x) = g(x) f (x) = 〈x̂,g〉〈x̂, f 〉= 〈〈x̂,g〉x̂, f 〉 for
all f ∈C(X), we must have x̂g= 〈x̂,g〉x̂. In particular x̂ŷ= 〈x̂, ŷ〉x̂ and with similar reasoning x̂ŷ= 〈x̂, ŷ〉ŷ.
Assume x 6= y. Then x̂ 6= ŷ, but by the previous 〈x̂, ŷ〉x̂ = 〈x̂, ŷ〉ŷ. So that necessarily 0 = 〈x̂, ŷ〉= x̂(y) for
all y 6= x. As x̂ 6= 0 and x̂ is continuous, we see {x} is open and so X is discrete.

Corollary 46. Let a be an element of an EJA. Then there exist real numbers λi and orthogonal idempo-
tents pi such that a = ∑

n
i=1 λi pi for some n.

Proof. Let C(a) denote the EJA generated by a. This is an associative algebra by corollary 44 so that by
proposition 45 we have C(a)∼=Rn for some n. Since Rn is obviously spanned by orthogonal idempotents
we see that indeed a = ∑

n
i=1 λi pi.

Proposition 47. An element a ∈ E is positive (i.e. a square) if and only if 〈a,b〉 ≥ 0 for all positive b.

Proof. If p is an idempotent then 〈p,a〉 ≥ 0 if a is positive [10, p. 107]. As a result if b = ∑i λi pi with
λi ≥ 0 and with the pi idempotents we have 〈a,b〉 ≥ 0. Now for the other direction suppose 〈a,b〉 ≥ 0 for
all positive b. Write a = ∑i λi pi with the λi not necessary positive, and where the pi are orthogonal. We
then have 〈pi, p j〉 = 〈1, pi ∗ p j〉 = 〈1,0〉 = 0 so that 0 ≤ 〈a, p j〉 = λ j〈p j, p j〉. Since p j 6= 0 this is only
possible when λ j ≥ 0. This holds for all j so that we conclude that a≥ 0.

Corollary 48. Let E be an EJA. The set of positive elements is closed under addition. More specifically
E is an Archimedean order unit space.

Proof. By the previous proposition a ≥ 0 if and only if 〈a,b〉 ≥ 0 for all b ≥ 0. But then if c ≥ 0 we
obviously have 〈a+ c,b〉 = 〈a,b〉+ 〈c,b〉 ≥ 0 for all positive b so that indeed a+ c ≥ 0. Suppose now
that a≤ 1

n 1 for all n ∈ N. By proposition 45 the associative algebra generated by a (which contains 1
n 1)

is isomorphic to Rn. Since this space is Archimedean we conclude that a≤ 0 in Rn so that also a≤ 0 in
E. In the same way we can find for any a ∈ E a number n ∈ N so that −n1≤ a≤ n1 so that E is indeed
an Archimedean order unit space.

Proposition 49. Let E be an EJA. The topologies induced by the Hilbert norm and by the order unit
norm are equivalent.

Proof. In order to show that the topologies are the same we need to show that the norms are equivalent.
Let ‖a‖ denote the order unit norm and ‖a‖2 the Hilbert norm. We need to find constants c,d ∈R>0 such
that c‖a‖2 ≤ ‖a‖ ≤ d‖a‖2 for all a ∈ E.

Note that ‖a‖2
2 = 〈a,a〉 ≤ ‖a‖

2〈1,1〉= ‖a‖2‖1‖2
2 by self-duality, so that we already have one side of

the inequality.
Any a ∈ E can be written as a = ∑i λi pi where the pi are nonzero by the previous corollary so

that ‖a‖= max{|λi|}. Now ‖a‖2
2 = 〈a,a〉= ∑i λ 2

i ‖pi‖2
2 ≥ ∑i λ 2

i inf{
∥∥p j
∥∥2

2} ≥max{|λ 2
i |} inf{

∥∥p j
∥∥2

2}=
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‖a‖2 inf{
∥∥p j
∥∥2

2} so if we can find some constant R > 0 such that ‖p‖2 ≥ R for all nonzero idempotents
p we are done.

Let R = infp6=0,p2=p ‖p‖2. If R 6= 0 we are done, so suppose R = 0. In this case there exists a sequence
of idempotents (pi) such that ‖pi‖2→ 0. We can then pick a subsequence such that ‖pk‖2 ≤ 2−k/k. Now
let qn = ∑

n
i=1 ipi. Let n ≥ m. We have ‖qn−qm‖2 = ‖∑n

k=m kpk‖2 ≤ ∑
n
k=m k‖pk‖2 ≤ ∑

n
k=m k2−k/k so

that the (qn) form a Cauchy sequence in the Hilbert norm. Since E is a Hilbert space it must converge
to some q ∈ E and since it is also an increasing sequence and the set of positive elements is closed in
the Hilbert norm by proposition 47 we must have q ≥ qn so that ‖q‖ ≥ ‖qn‖ ≥ n for all n which is a
contradiction.

Proposition 50. Let E be an EJA. Then E is a JB-algebra.

Proof. By corollary 48 E is an Archimedean order unit space. By definition E is complete in the Hilbert
norm topology and by the previous proposition this topology is equivalent to the order unit topology.
We conclude that E is a complete Archimedean order unit space. By [1, Theorem 1.11], E will then be
a JB-algebra when the implication −1 ≤ a ≤ 1 =⇒ 0 ≤ a2 ≤ 1 holds. So suppose −1 ≤ a ≤ 1. By
the spectral theorem a = ∑i λi pi and we must have −1 ≤ λi ≤ 1. But then a2 = ∑i λ 2

i pi so that indeed
0≤ a2 ≤ 1.

Proposition 51. Let E be an EJA. Then E is bounded directed complete and furthermore every state is
normal.

Proof. Let (ai)i∈I be a bounded upwards directed set. By translation we can take all ai to be positive.
Define for b ≥ 0 the state ω(b) := supi∈I〈ai,b〉. This supremum exists since the ai are bounded and
the inner product between positive elements is again positive. This map can obviously be extended by
linearity to the entirety of E. Since E is a Hilbert space we conclude that there must exist an a ∈ E such
that ω(b) = 〈a,b〉 for all b ∈ E. We claim that this a is the lowest upper bound. That it is an upper bound
follows by the self-duality of the order. Suppose ai ≤ c for some c. Then c−ai ≥ 0 so that 〈c−ai,b〉 ≥ 0
for all b≥ 0 so that 〈c,b〉 ≥ 〈ai,b〉. By taking the supremum over the ai’s we see then that 〈c,b〉 ≥ 〈a,b〉.
Again by self-duality we conclude that c≥ a.

For any state ω ′ : E→ R we can find a b ∈ E such that ω ′ = 〈·,b〉. As the previous argument shows,
suprema of elements are defined in terms of these states so that they must preserve those suprema.

Proposition 52. Let p be an idempotent of an EJA. Then there exist orthogonal atomic idempotents pi

such that p = ∑i pi.

Proof. If p is atomic we are done, so suppose it is not. Then by definition we can find 0 ≤ a ≤ p such
that a 6= λ p for some λ . Using corollary 46 write a = ∑i λiqi. If all the qi = p then a = λ p so there
must be a qi 6= p. Pick this one. We have λiqi ≤ p. By proposition 11 we then have Qp(λiqi) = λiqi.
This of course implies Qpqi = qi so that again by proposition 11 we have qi ≤ p. We can now repeat
this procedure with p replaced by qi and p− qi to get a family of orthogonal idempotents that sum up
to p. We claim that this process stops after a finite amount of iterations. By assumption the resulting
idempotents are then atomic.

Suppose the process does not halt after a finite amount of iterations. Then we are left with a countable
collection of orthogonal idempotents (qi)i. By equation (1) we have in any Jordan algebra for any a and
b: [La,Lb2 ] + 2[Lb,La∗b] = 0 Let a = qi and b = q j with i 6= j so that a ∗ b = 0, then we conclude that
[Lqi ,Lq j ] = 0 and thus that qi ∗ (a ∗ q j) = (qi ∗ a) ∗ q j. The algebra spanned by the (qi)i is therefore
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associative. As this algebra is necessarily infinite-dimensional this is in contradiction to proposition
45.

Proposition 53. Let E be an EJA. Then E is a type I JBW-algebra of finite rank.

Proof. By proposition 50 E is a JB-algebra. By definition, a JBW-algebra is a JB-algebra that is bounded
directed complete and that is separated by normal states. Proposition 51 therefore has established that E
is indeed a JBW-algebra. A JBW-algebra is of type I if below every idempotent we can find an atomic
idempotent. This is true by proposition 52. By this same proposition we can write the identity as a finite
sum of atomic idempotents, so that the space is indeed of finite rank.

Corollary 54. Let E be an EJA. Then there exists a finite-dimensional EJA Efin and an EJA Einf that is a
direct sum of infinite-dimensional spin-factors such that E is isomorphic as an EJA to Efin⊕Einf.

Proof. By the previous corollary E is a type I JBW-algebra of finite rank. It is therefore isomorphic to
a finite direct sum of type I JBW-factors of finite rank. These factors have been classified in [16]. They
are either finite-dimensional or they are infinite-dimensional spin-factors.
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