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Quantum self-testing addresses the following question: is it possible to verify the existence of a

multipartite state even when one’s measurement devices are completely untrusted? This problem has

seen abundant activity in the last few years, particularly with the advent of parallel self-testing (i.e.,

testing several copies of a state at once), which has applications not only to quantum cryptography

but also quantum computing. In this work we give the first error-tolerant parallel self-test in a three-

party (rather than two-party) scenario, by showing that an arbitrary number of copies of the GHZ

state can be self-tested. In order to handle the additional complexity of a three-party setting, we use

a diagrammatic proof based on categorical quantum mechanics, rather than a typical symbolic proof.

The diagrammatic approach allows for manipulations of the complicated tensor networks that arise in

the proof, and gives a demonstration of the importance of picture-languages in quantum information.

1 Introduction

Quantum rigidity has its origins in quantum key distribution, which is one of the original problems in

quantum cryptography. In the 1980s Bennett and Brassard proposed a protocol for secret key distribution

across an untrusted public quantum channel [3]. A version of the Bennett-Brassard protocol can be

expressed as follows: Alice prepares N EPR pairs, and shares the second half of these pairs with Bob

through the untrusted public channel. Alice and Bob then perform random measurements on the resulting

state, and check the results to verify that indeed their shared state approximates N EPR pairs. If these

tests succeed, Alice and Bob then use other coordinated measurement results as the basis for their shared

key. Underlying the proof of security for the Bennett-Brassard protocol is the idea that if a shared 2-

qubit state approximates the behavior of a Bell state under certain measurements, then the state itself

must approximate a Bell state.

If we wish to deepen the security, we can ask: what if Alice’s and Bob’s measurement devices are

also not trusted? Can we prove security at a level that guards against possible exploitation of defects in

their measurement devices? This leads to the question of quantum rigidity: is it possible to completely

verify the behavior of n untrusted quantum measurement devices, based only on statistical observation

of their measurement outputs, and without any prior knowledge of the state they contain?

We say that an n-player cooperative game is rigid if an optimal score at that game guarantees that the

players must have used a particular state and particular measurements. We say that a state is self-testing

if its existence can be guaranteed by such a game. Early results on this topic focused on self-testing

the 2-qubit Bell state [31, 19, 24]. Since then a plethora of results on other games and other states have

appeared. The majority of works have focused on the bipartite case, and there are a smaller number of

works that address n-partite states for n ≥ 3 [25, 21, 38, 37, 29, 14].

http://dx.doi.org/10.4204/EPTCS.287.3


44 Parallel Self-Testing of the GHZ State with a Proof by Diagrams

More recently, it has been observed that rigid games exist that self-test not only one copy of a bipar-

tite state, but several copies at once. Such games are a resource not only for cryptography, but also for

quantum computation: these games can be manipulated to force untrusted devices to perform measure-

ments on copies of the Bell state which carry out complex circuits. This idea originated in [32] and has

seen variants and improvements since then [21, 26, 11]. For such applications, it is important that the

result include an error term which is (at most) bounded by some polynomial function of the number of

copies of the state.1

It is noteworthy that all results proved so far for error-tolerant self-testing of several copies of a state at

once (that is, parallel self-testing) apply to bipartite states only [22, 23, 13, 26, 27, 28, 5, 32, 12, 8, 10, 9].

There is a general multipartite self-testing result in [36] which can be applied to the parallel case, but

it is not error-tolerant and no explicit game is given. Complexity of proofs is a factor in establishing

new results in this direction: while it would be natural to extrapolate existing parallelization techniques

to prove self-tests for n-partite states, the proofs for the bipartite case are already difficult, and we can

expect that the same proofs for n ≥ 3 are more so. Yet, if this is an obstacle it is one worth overcoming,

since multi-partite states are an important resource in cryptography. For example, a much-cited paper

in 1999 [15] proved that secret sharing is possible using several copies of the GHZ state |GHZ〉 =
1√
2
(|000〉+ |111〉), in analogy to the use of Bell states in the original QKD protocol [3].

In this work, we give the first proof of an error-tolerant parallel tripartite self-test. Specifically, we

prove that a certain class of 3-player games self-tests N copies of the GHZ state, for any N ≥ 1, with

an error term that grows polynomially with N. To accomplish this we introduce, for the first time, the

graphical language of categorical quantum mechanics into the topic of rigidity. As we will discuss be-

low, the use of graphical languages is a critical feature of the proof — games involving more than 2

players involve complicated tensor networks, which are not easily expressed symbolically. Our result

thus demonstrates the power and importance of visual formal reasoning in quantum information process-

ing.

1.1 Categorical quantum mechanics

Category theory is a branch of abstract mathematics which studies systems of interacting processes. In

Categorical Quantum Mechanics (CQM), categories (specifically symmetric monoidal categories) are

used to represent and analyze the interaction of quantum states and processes.

Inspired by methods from computer science, CQM introduces an explicit distinction between tra-

ditional quantum semantics in Hilbert spaces and the syntax of quantum protocols and algorithms. In

particular, symmetric monoidal categories support a diagrammatic formal syntax called string diagrams,

which provide an intuitive yet rigorous means for defining and analyzing quantum processes, in place

of the more traditional bra-ket notation. This expressive notation helps to clarify definitions and proofs,

making them easier to read and understand, and encourages the use of equational (rather than calcula-

tional) reasoning.

The origins of CQM’s graphical methods can be found in Penrose’s tensor diagrams [30], although

earlier graphical languages from physics (Feynman diagrams) and computer science (process charts)

can be interpreted in these terms. Later, Joyal and Street [16] used category theory and topology to

formalize these intuitive structures. More recently, the works of Selinger [33, 34] and Coecke, et al.

[1, 7] have substantially tightened the connection between categorical methods and quantum information,

1This condition allows the computations to be performed in polynomial time. The works [26, 11] go further, and prove an

error term that is independent of the number of copies of the state.
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in particular developing diagrammatic approaches to positive maps and quantum-classical interaction,

respectively. A thorough and self-contained introduction to this line of research can be found in the

recent textbook [6].

For a brief review of categorical quantum mechanics and the syntax of string diagrams used in our

proofs, see Appendix A.

1.2 Statement of main result

In the three-player GHZ game, a referee chooses a random bit string xyz ∈ {0,1}3 such that x⊕ y⊕ z=0,

and distributes x,y,z to the three players (Alice, Bob, Charlie) respectively, who return numbers a,b,c ∈
{−1,1} respectively. The game is won if

abc = (−1)¬(x∨y∨z). (1)

(In other words, the game is won if the parity of the outputs is even and xyz 6= 000, or the parity of the

outputs is odd and xyz = 000.) It is easy to prove that this game has no classical winning strategy. On

the other hand, if Alice, Bob, and Charlie share the 3-qubit state

|G〉 =
1

2
√

2

(

∑
r+s+t≤1

|rst〉− ∑
r+s+t≥2

|rst〉
)

, (2)

and obtain their outputs by either performing an X -measurement {|+〉〈+| , |−〉〈−|} on input 0 or the

Z-measurement {|0〉 〈0| , |1〉〈1|} on input 1, they win perfectly. This is known to be the only optimal

strategy (up to local changes of basis) and therefore the GHZ game is rigid [20]. (An equivalent strategy,

which is more conventional, is to use the state |GHZ〉= 1√
2
(|000〉+ |111〉) and X - and Y -measurements

to win the GHZ game. We will use the state |G〉 instead for compatibility with previous work on rigidity.

Note that |G〉 is equivalent under local unitary transformations to |GHZ〉.)
To extend this game to a self-test for the |G〉⊗N

state, we use a game modeled after [5]. The game

requires the players to simulate playing the GHZ game N times. We give input to the rth player in the

form of a pair (Ur, fr) where {1,2, . . . ,N} ⊇ Ur
fr−→ {0,1} is a partial function assigning an “input”

value for some subset of the game’s “rounds” 1, . . . ,N. The output given by such a player is a function

gr : Ur → {0,1} assigning a bit-valued “output” to each round. The game is won if the GHZ condition

(1) is satisfied on all the rounds in U1 ∩U2 ∩U3 for which the input string was even-parity.

Fortunately, it is not necessary to query the players on all possible subsets Ur ⊆ {0,1, . . . ,N} (which

would involve an exponential number of inputs) — it is only necessary to query them on one- and two-

element subsets. This yields the game GHZN , which is formally defined in Figure 1 below. Our main

result is the following. (See Proposition 10 below for a formal statement.)

Theorem 1. The game GHZN is a self-test for the state |G〉⊗N
, with error term O(N4

√
ε).

In other words, if three devices succeed at the game GHZN with probability 1− ε , then the devices

must contain a state that approximates the state |G〉⊗N
up to an error term of O(N4

√
ε). The proof

proceeds by assuming that the players have such a high-performing strategy, and then using the mea-

surements from that strategy to map their state isometrically to a state that is approximately of the form

|G〉⊗L′, where L′ is some arbitrary tripartite “junk” state. This approach is a graphical translation of the

method of many previous works on rigidity (in particular, [21] and our previous paper [17]).
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1.3 Related works and further directions

In previous works on quantum rigidity, pictures are often used as an aid to a proof, but not as a proof

itself. The only other rigidity paper that we know of which used rigorous graphical methods is the recent

paper [12] which successfully used the concept of a group picture to prove rigidity for a new class of

2-player games. Group pictures are visual proofs of equations between elements of a finitely presented

group. In the context of rigidity, group pictures construct approximate relations between products of

sequences of operators, and as such they are a useful general tool for proving rigidity of 2-player games.

An interesting further direction is to try to merge the formalism of [12] with the one given here in order

to address general n-player games.

A natural next step is to explore cryptographic applications. Since GHZ states form the basis for the

secret-sharing scheme of [15], it may be useful to see if the game GHZN can be used to create a new

protocol for 3-party secret sharing using untrusted quantum devices.

2 Preliminaries

2.1 The augmented GHZ game

The game GHZN that we will use to self-test the state |G〉⊗N
from equation (2) is given in Figure 1. In

this game, each player is requested to give outputs for either one or two round numbers (chosen from

the set {1,2, . . . ,N}) given inputs for each round number. Both the inputs and the players’ outputs are

expressed as partial functions on the set {1,2, . . . ,N}. This game is modeled after [5].

The variable r determines the type of input given to each player. Note that in the case r = 0, there

are 4N possible input combinations that the referee could give to the players (since there are N possible

values for i, and 4 possible values for ( f1(i), f2(i), f3(i))) and for each of the values, r = 1,2,3, there are

8N(N−1) possible input combinations. Each valid input combination occurs with probability Ω(1/N2).
We wish to describe the set of all possible quantum behaviors by the players Alice, Bob, and Charlie

in GHZN . In the definition that follows, we use the term reflection to mean an observable with values in

{±1} (in other words, a Hermitian operator whose square is the identity). A quantum strategy for the

game GHZN game consists of the following data.

1. A unit vector L ∈ A⊗B⊗C, where A,B,C are finite-dimensional Hilbert spaces.

2. For each i ∈ {1,2, . . . ,N}, b ∈ {0,1}, and W ∈ {A,B,C}, a reflection

RW
i→b (4)

on W .

3. For each i, j ∈ {1,2, . . . ,N}, b,c ∈ {0,1}, and W ∈ {A,B,C}, two commuting reflections

RW
i→b| j→c and RW

j→c|i→b (5)

on W .

The spaces A,B,C denote the registers possessed by Alice, Bob, and Charlie, respectively. The vector

L denotes the initial state that they share before the game begins. The reflections RW
i→b describe their

behavior on singleton rounds (specifically, on a singleton round the player measures his or her register W

along the eigenspaces of RW
i→b, and reports either +1 or −1 for round i, appropriately). The reflections

RW
i→b| j→c

,RW
j→c|i→b

describe their behavior on non-singleton rounds (specifically, if the input to a player
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Participants: Player 1 (Alice), Player 2 (Bob), Player 3 (Charlie), and a Referee

Parameter: N ≥ 1 (the number of rounds)

1. The referee chooses a number r ∈ {0,1,2,3} and two distinct elements i, j ∈
{1,2, . . . ,N} uniformly at random.

2. If r = 0, then the referee sets U1 =U2 =U3 = {i}. Otherwise, he sets Ur = {i, j} and

sets each the other variables Uk (for k 6= r) to be equal to {i}.

3. The referee chooses values for f1(i), f2(i), f3(i) ∈ {0,1} uniformly at random subject

to the constraint that f1(i)⊕ f2(i)⊕ f3(i) = 0. Also, if r > 0, the referee chooses

fr( j) ∈ {0,1} uniformly at random.

4. The referee sends each pair (Ui, fi) to the ith player, respectively, who returns a func-

tion gi : Ui → {−1,1}.

5. The game is won if

g1(i)g2(i)g3(i) = (−1)¬( f1(i)∨ f2(i)∨ f3(i)). (3)

Figure 1: The augmented GHZ game (GHZN).

is the function [i → b, j → c], then they measure along the eigenspaces of RW
i→b| j→c

to obtain their output

for round i and measure along the eigenspaces of RW
j→c|i→b

to determine their output for round j). Note

that since the reflections in (5) represent measurements that are carried out simultaneously by one of the

players, we assume that these two reflections commute. (This assumption will be critical in our proof).

For any reflection Z and unit vector ψ on a finite-dimensional Hilbert space Q, if we measure ψ with

Z then the probability of obtaining an output of −1 is precisely

[1−Tr(Zψψ∗)]/2 = ‖Zψ −ψ‖2 /4 (6)

We can use this fact to express the losing probabilities achieved by the players in terms of their strategy.

If r = 0 and the players are queried for round i with inputs x,y,z, then their losing probability is precisely

∥

∥RA
i→xRB

i→yRC
i→zL+(−1)x∨y∨zL

∥

∥

2
/4. (7)

If Alice is queried for round i with input x and round j with input x′, and Bob and Charlie are queried for

round i with inputs y,z respectively, then the losing probability is

∥

∥

∥
RA

i→x| j→x′R
B
i→yRC

i→zL+(−1)x∨y∨zL

∥

∥

∥

2

/4. (8)

Similar expressions hold for the case where Bob or Charlie is the party that receives two queries.

Note that the game GHZN is entirely symmetric between the three players Alice, Bob and Charlie.

This means that, given any strategy
(

L,
{

RW
i→b

}

,
{

RW
i→b| j→c

})

for GHZN , we can produce five additional

strategies by choosing a nontrivial permutation σ : {1,2,3} → {1,2,3} and giving the pth players’ sub-

system and measurement strategy to the σ(p)th player, for each p ∈ {1,2,3}. We will make use of this

symmetry in the proof that follows.
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2.2 Approximation chains

We make the following definition (see similar notation in [18, 4]). If F,G : A → B are linear maps, then

F =
δ

G (9)

denotes the inequality ‖F −G‖2 ≤O(δ ), where ‖·‖2 denotes the Frobenius norm and O denotes asymp-

totic big-O notation. (If F and G are vectors, then ‖F −G‖2 is simply the Euclidean distance ‖F −G‖.)

We will use this notation especially in the case where F and G are processes represented by diagrams.

Note that this relation is transitive: if F =
δ

G and G =
δ

H , then F =
δ

H . Note also that if J : B → C is a

linear map whose operator norm satisfies ‖J‖∞ ≤ α , then F =
δ

G =⇒ J ◦F =
δα

J ◦G.

3 Rigidity of the augmented GHZ game

Throughout this section, suppose that

(

L,
{

RA
i→a

}

,
{

RB
i→b

}

,
{

RC
i→c

}

,
{

RA
i→a| j→a′

}

,
{

RB
i→b| j→b′

}

,
{

RC
i→c| j→c′

})

(10)

is a quantum strategy for the GHZN game which wins with probability 1− ε . It is helpful to introduce

some redundant notation for this strategy: for any W ∈ {A,B,C} and i ∈ {1,2, . . . ,N} let

X ′
W,i = RW

i7→0, (11)

Z′
W,i = RW

i7→1, (12)

The reason for this notation is that we intend to show that the operators RW
i7→1,R

W
i7→1 approximate the

behavior of the X and Z measurements in the optimal GHZ strategy (see the beginning of subsection 1.2).

Similarly, let X ′
W,i| j→1

= RW
i→0| j→1

and Z′
W, j|i→0

= RW
j→1|i→0

.

We will drop the subscript W from this notation when it is clear from the context.

3.1 Initial steps

Our first goal is to prove approximate commutativity and anticommutativity relations for the operators

X ′
W,i,Z

′
W,i.

Since the losing probability for our chosen strategy is ε , and each input string occurs with probability

Ω(N2), we can conclude that the probability of losing on any particular input combination is O(N2ε). By

the discussion of expressions (7) and (8) above, we therefore have the following for any i ∈ {1,2, . . . ,N}:

∥

∥

∥
(I +X ′

A,iX
′
B,iX

′
C,i)|L〉

∥

∥

∥

2

≤ O(N2ε),
∥

∥

∥
(I −Z′

A,iZ
′
B,iX

′
C,i)|L〉

∥

∥

∥

2

≤ O(N2ε),
∥

∥

∥
(I −X ′

A,iZ
′
B,iZ

′
C,i)|L〉

∥

∥

∥

2

≤ O(N2ε),
∥

∥

∥
(I −Z′

A,iX
′
B,iZ

′
C,i)|L〉

∥

∥

∥

2

≤ O(N2ε), (13)
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Additionally, if we take any of the four inequalities above, and replace any one of the operators X ′
W,i with

X ′
W,i| j→t

, where j 6= i and t ∈ {0,1}, the inequality remains true, and likewise if we replace any Z′
W,i with

Z′
W,i| j→t

, the inequality remains true.

We can translate the inequalities above into graphical form.

Proposition 2. The following inequalities hold.

A B C

X ′
i X ′

i X ′
i

L

==
N
√

ε

A B C

−L

(14)

A B C

X ′
i Z′

i Z′
i

L

==
N
√

ε

A B C

L

(15)

And, inequality (15) also holds for any permutation of the letters A,B,C.

We will use Proposition 2 to prove the following assertion.

Proposition 3 (Approximate anti-commutativity). For any i, the following inequality holds:

A B C

X ′
i

Z′
i

L

==
N
√

ε

A B C

X ′
i

Z′
i

−L

(16)
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Proof. Repeatedly applying Proposition 2,

A B C

Z′
i

X ′
i

L

==
N
√

ε

A B C

Z′
i X ′

i X ′
i

−L

==
N
√

ε

A B C

X ′
i X ′

i

X ′
i Z′

i

−L

==
N
√

ε

A B C

X ′
i

Z′
i

−L

(17)

(Here we have used the fact that all of the unitary maps in these diagrams are self-inverse.) Applying the

same steps symmetrically across the wires A,B,C,

A B C

X ′
i

Z′
i

−L

==
N
√

ε

A B C

Z′
i

X ′
i

L

==
N
√

ε

A B C

X ′
j

Z′
i

−L

(18)

as desired.

Proposition 4 (Approximate commutativity). The following equation holds for any distinct indices

i, j ∈ {1,2, . . . ,N} and any bits b,c ∈ {0,1}:

A B C

R j→c

Ri→b

L

==
N
√

ε

A B C

R j→c

Ri→b

L

The proof of Proposition 4 is given in appendix C, and is based on the fact that the related reflections

Ri→b| j→c and R j→c|i→b commute.
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3.2 Isometries

Next we define the local isometries which will relate the state L to the ideal state |GHZ〉⊗N
. Roughly

speaking, for each k ∈ {1,2, . . . ,N} and W ∈ {A,B,C}, we will construct an isometry ΨW,k which ap-

proximately “locates” a qubit with the ith players’ system, and swaps it out onto a qubit register Q ∼=C
2.

We then apply these isometries in order, for 1,2, . . . ,N, the system W . We will use approximate commu-

tativity to show that the different isometries ΨW,k do not interfere much with one another when applied

in sequence. Our approach borrows from previous works on rigidity, and uses similar notation to that of

the non-graphical rigidity proof in our previous paper [17].

In the following, we use controlled unitary gates, C(U), which are defined and discussed in Appendix

B. Let H : C2 → C
2 denote the Hadamard gate [|0〉 7→ |+〉 , |1〉 7→ |−〉]. We define isometries ΨA,k on

the system A which involve preparing a Bell state (denoted by a gray node) and then performing an

approximate “swap” procedure between one half of the Bell state and A. (This is based on [21].) Then

we define an isometry ΘA,k on A which chains together the swapping maps ΨA,1, . . . ,ΨA,k.

Definition 5 (Swapping maps). For each k ∈ {1,2, . . . ,N}, let Qk and Qk denote qubit registers, and

define an isometry ΨA,k as follows (suppressing the label A when it is not necessary):

A

Qk Qk A

Ψk :=

A

Qk A

C(Z′
k)

H

C(X ′
k)

H

C(X ′
k)

Qk

(19)

Let Qk = Qk ⊗Qk and Q1...k = Q1 ⊗·· ·⊗Qk. Define an isometry Θk,A by

Q1...k A

Θk

A

:=

A

Ψ1

Ψ2

Ψk

Q1 Q2 Qk A· · ·

...
(20)



52 Parallel Self-Testing of the GHZ State with a Proof by Diagrams

Let QN+1, . . . ,Q3N ,QN+1, . . . ,Q3N be qubit registers, and define ΨB,k analogously as an isometry from

B to B⊗QN+k ⊗QN+k. Define ΨC,k analogously as an isometry from C to C⊗Q2N+k ⊗Q2N+k. Define

composite maps ΘB,k and ΘC,k similarly in terms of ΨB,k and ΨC,k.

3.3 Commutativity properties

We now investigate some approximate (anti-)commutativity relationships between the Pauli operators on

Q, the reflection strategies for A, B and C, and the isometries defined in the last section.

We begin with the following definition and lemma, which are crucial.

Definition 6. Let R,S be registers and let Z ∈ R⊗S be a unit vector. If a unitary map U : R → R is such

that there exists another unitary map V : S → S satisfying

Z

U

R S

==
δ

Z

V

R S

(21)

the we say that U can be pushed through Z with error term δ .

Lemma 7 (Push Lemma). Suppose that R,S are registers, Z ∈R⊗S is a unit vector, and V,W,U1,U2, . . . ,Uk

are unitary operators on R such that

1. Each map Ui can be pushed through Z with error term ε , and

2. The approximate equality (V ⊗ IS)L =
δ
(W ⊗ IS)L holds.

Then,

Z

Uk

U1

...

V

R S

==
kε+δ

Z

Uk

U1

...

W

R S

(22)

The Push Lemma follows from an easy inductive argument, and is given in the appendix. Note that

by Proposition 2, for any k we have

X ′
A,kL ==

N
√

ε
(−X ′

B,k ⊗X ′
C,k)L (23)

Z′
A,kL ==

N
√

ε
(Z′

B,k ⊗X ′
C,k)L, (24)

and so all of the maps X ′
·,k and Z′

·k can be pushed through L with error term N
√

ε . This fact underlies the

proofs of the next two results, which are proved in the appendix using a combination of the Push Lemma,

and the approximate commutativity and anti-commutativity properties of maps X ′
·k and Z′

·k.
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Proposition 8. For k ∈ {1,2, . . . ,N}, let XA,k and ZA,k denote the Pauli operators on Qk. Then,

Qk A B C

Xk

Ψk

L

==
N
√

ε

Qk A B C

Ψk

X ′
k

L

(25)

and similarly for Z′
k. Likewise, define {XB,k,ZB,k} to be the Pauli operators on QN+k and define {XC,k,ZC,k}

to be the Pauli operators on Q2N+k. Analogous statements hold for ΨB,k and ΨC,k.

Proposition 9. For any k ∈ {1,2, . . . ,N},

Q1...N A B C

Xk

ΘN

L

==
N3

√
ε

Q1...N A B C

ΘN

X ′
k

L

(26)

and similarly for Z′
k. Analogous statements hold for ΘB,k and ΘC,k.

3.4 Rigidity

We are now ready to state and prove our main result.

Proposition 10 (Rigidity). Let ΘA,N ,ΘB,N ,ΘC,N be the isometries from Definition 5. Then, there is some

state L′ on A⊗B⊗C⊗Q1...3N such that

Q1...N QN+1...2N Q2N+1...3N

A B C

ΘN ΘN ΘN

L

==
N4

√
ε

Q1...N

QN+1...2N

Q2N+1...3N

A B C Q1...3N

G⊗N L′

(27)

Proof. In the following, we write Q1 := Q1...N , Q2 := Q(N+1)...2N and Q3 := Q(2N+1)...3N in order to

conserve space. By application of Props. 2 and 9 we have,
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Q1 Q2 Q3 A B C

Xi Xi Xi

ΘN ΘN ΘN

L

==
N3

√
ε

Q1 Q2 Q3 A B C

ΘN ΘN ΘN

X ′
i X ′

i X ′
i

L

==
N
√

ε

Q1 Q2 Q3 A B C

ΘN ΘN ΘN

−L

(28)

(Here, Xi is used to denote the X -Pauli operator on either Qi, QN+i, or Q2N+i depending on which

wire it is applied to.) Similarly we obtain that

Q1 Q2 Q3 A B C

Xi Zi Zi

ΘN ΘN ΘN

L

==
N3

√
ε

Q1 Q2 Q3 A B C

ΘN ΘN ΘN

L

(29)

where the last relation also holds for any permutation of the labels (Xi,Zi,Zi) on the left side of the

equation.

The commuting reflection operators X ⊗ Z ⊗ Z, Z ⊗X ⊗ Z, and Z ⊗ Z ⊗X on C
2 ⊗C

2 ⊗C
2 have

a common orthonormal eigenbasis G = G0,G1, . . . ,G7, in which G0 is the only eigenvector that has

eigenvalue (+1) for all three operators. We can express ΘN
A ⊗ΘN

B ⊗ΘN
c |L〉 using this basis as

ΘN
A ⊗ΘN

B ⊗ΘN
c |L〉= ∑

v1,··· ,vN∈{G0,...,G7}
|v1〉⊗ · · ·⊗ |vN〉⊗ |L′

v〉. (30)

where L′
v ∈ A⊗B⊗C⊗Q1...3N . For every term in the sum on the right except the one indexed by G⊗N

0 ,

there is an operator of the form XA,i ⊗ZB,i ⊗ ZC,i, ZA,i ⊗XB,i ⊗ ZC,i, or ZA,i ⊗ ZB,i ⊗XC,i which negates

it. By equation (29) above, the total length of all the terms negated by any one particular gate of this

form is O(N3
√

ε), and so the total length of all terms in (30) other than the G⊗N
0 term is O(N4

√
ε), as

desired.

We note that our proofs generalize in a straightforward manner to a proof of self-testing for an

arbitrary number of copies of a k-GHZ state, for any integer k > 3. The graphical method seems generally
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well-suited to proving parallel self-testing for stabilizer states, including graph states [21]. We leave

possible generalizations to future work.
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Appendix A Categorical Quantum Mechanics

In this appendix we will briefly review some of the standard machinery of categorical quantum mechan-

ics. For a thorough introduction to the topic, see [6].

A.1 Symmetric Monoidal Categories

The formal context for categorical quantum mechanics is that of symmetric monoidal categories. We

develop the terminology in stages.

A category is a mathematical structure representing a universe of (possible) processes F,G,H, . . .;
each process has a typed input and output, often indicated by writing F : A → B. The fundamental

structure in a category is serial composition; whenever the output type of F : A → B matches the input

type of G : B →C, we may form a composite process G◦F : A →C.

A monoidal category generalizes the structure of an ordinary category to allow for multi-partite

processes; here the fundamental object of study is a process F : A1 ⊗ . . .⊗Am → B1 ⊗ . . .⊗Bn, which is

represented as a black box with m labeled inputs and n labeled outputs. (Either of the numbers m,n may

be zero.) Diagrammatically, we represent these classes as follows:

F

A1 A2
. . . Am

B1 B2
. . . Bn

S

A1 A2
. . . Am

M

B1 B2
. . . Bn

K (31)

The categorical structure of serial composition is represented diagrammatically by matching the out-

put wires of one process to the inputs of another, so long as the types match up. So, above, F can be

pre-composed with S and post-composed with M to yield a scalar M◦F ◦S or, in Dirac notation, 〈M|F|S〉.
Along with multi-partite states and processes, monoidal structure also introduces an operation of

parallel composition on processes: given F : A → B and G : A′ → B′, we can produce a parallel pro-

cess F ⊗G : A⊗A′ → B⊗B′, depicted graphically by side-by-side juxtaposition. More generally, using

parallel composition with identity processes (represented by bare wires), we can compose processes in

which only some inputs and outputs match. Note that we will often suppress wire labels in complicated

diagrams, as the labels are implicitly determined by the boxes they feed.

Finally, a symmetric structure on a monoidal category allow for additional flexibility in how wires

can be manipulated. A symmetry allows us to permute the ordering of strings, and is represented dia-

grammatically by crossing wires (called a twist). Formally, the twist is axiomatized terms of intuitive

diagrammatic equations:

A B

A B

=

A B

A B

A B

A′ B′

F G

=

A B

A′ B′

G F

(32)
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A.2 Quantum states and processes

To apply the above approach to quantum mechanics, we work within the category of finite-dimensional

Hilbert spaces over C. In this category, which we denote by Hilb, the types are finite-dimensional

Hilbert spaces (i.e., vector spaces over C with semi-linear inner product) each equipped with a fixed

orthonormal basis, and the processes are C-linear maps between such vector spaces. For example, if

A1, . . . ,Am,B1, . . . ,Bn are finite-dimensional Hilbert spaces, then the diagrams in display box (31) above

represent, respectively, a linear map F : A1 ⊗ . . .⊗Am → B1 ⊗ . . .⊗Bn, a vector S ∈ A1 ⊗ . . .⊗Am, a

linear map M : B1⊗ . . .⊗Bn →C, and a scalar K ∈C. Serial composition of diagrams simply represents

composition of functions — for example, the composition of S,F and M is simply the scalar M(F(S)) ∈
C. It is elementary to show this category is a symmetric monoidal category (with the tensor product as

its monoidal operation).

For our purposes, a state is a vector in a Hilbert space (i.e., a process with no inputs) whose norm is

equal to one. A unitary process F : A → B is a linear map that satisfies FF∗ = IB and F∗F = IA. (Also,

a linear map G : A → B that satisfies the single condition G∗G = IA is called an isometry.) With these

definitions, we will be able to express quantum states and processes as diagrams like the ones in (31) and

(32) above.

We note that while symmetric monoidal categories are sufficient to handle the book-keeping needed

in our proofs, it is only a fragment of the full CQM theory. Further development introduces compact

closed structures (trace, transpose, state-process duality), dagger structures (adjoint, conjugate), Frobe-

nius structures (orthonormal basis, classical-quantum interaction) and Hopf structures (complementary

bases, ZX-calculus). For our purposes, we need only one additional visual definition, which is the Bell

state. In this paper we use a gray node with two wires of the same type R,

R R

(33)

to denote the unit vector

(

1√
dim R

)

∑
e

e⊗ e ∈ R⊗R, (34)

where the sum is taken over the standard basis of R. If R ∼=C
2, we denote this state symbolically by Φ+.

Appendix B Controlled Unitaries

Our proof makes substantial uses of controlled unitary operations. This appendix collects key facts about

controlled operations which will simplify our main proof.

Definition 11 (Controlled Unitary). Let Q ∼=C
2 denote a qubit register with a fixed computational basis

{|0〉, |1〉}, and suppose U : H → H is a unitary operation. The associated controlled unitary C(U) :

Q⊗H → Q⊗H is defined by

C(U) = |0〉 〈0|⊗ IH + |1〉 〈1|⊗U. (35)

The next lemma describes some (anti-)commutativity properties between controlled unitaries and

Pauli operators X and Z. The proofs follow directly from the definition.
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Lemma 12. For any reflection R : H → H we have the following equations

Q H

Q H

Z

C(R)
=

Q H

Q H

Z

C(R)

=

Q H

Q H

C(−R) (36)

Q H

Q H

X

X

C(R) =

Q H

Q H

R

C(R)
=

Q H

Q H

R

C(R)
(37)

Appendix C Supporting Proofs

In this appendix we provide the proofs for propositions from the main text.

C.1 Proof of Proposition 4

We give the proof for b = 0,c = 1; the other cases are analogous. Using inequalities (13) and their

variants, we have

A B C

Z′
j

X ′
i

L

==
N
√

ε

A B C

Z′
j X ′

i X ′
i

−L

==
N
√

ε

A B C

X ′
i X ′

i

X ′
j Z′

j

−L

(38)

==
N
√

ε

A B C

Z′
j|i→0 X ′

i X ′
i

−L

==
N
√

ε

A B C

Z′
j|i→0

X ′
i| j→1

L
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A similar sequence shows that

A B C

X ′
i

Z′
j

L

==
N
√

ε

A B C

X ′
i| j→1

Z′
j|i→0

L

(39)

Since X ′
A,i| j→1

= RA
i→0| j→1

and Z′
A, j|i→0

:= RA
j→1|i→0

are assumed to commute, the result follows.

C.2 Proof of Lemma 7

Applying the push condition inductively, we have the following for some unitary operators V1, . . . ,Vk:

Z

Uk

U1

...

V

R S

==
kε

Z

Vk

V1

...V

R S

==
δ

Z

Vk

V1

...W

R S

==
kε

Z

Uk

U1

...

W

R S

(40)

C.3 Proof of Proposition 8

We begin with two observations. First, the approximate anti-commutativity in Proposition 3 implies the

following approximate anti-commutativity property for the controlled-X ′
k gate (by superposition):

L

C(X ′
k)

A

Qk

Z′
k

==
N
√

ε

L

Z′
k

C(−X ′
k)

A

Qk (41)
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Secondly, the controlled operator C(X ′
A,k) on Qk ⊗A can be approximately pushed through the state

Φ+⊗L like so:

L

C(X ′
k)

QkA Qk B C

==
N
√

ε

L

C(Z′
B,k ⊗Z′

C,k)

Qk QkA B C

(42)

And similarly for Z′
A,k. The Hadamard operator [H⊗ IA] on Qk⊗A can be exactly pushed through Φ+⊗L

(by merely applying H to Qk). This fact allows free application of the Push Lemma (Lemma 7). We have

the following, in which we exploit approximate anti-commutativity, the Lemma 7, and the rules for

controlled unitaries from Appendix B.

L

Qk Qk A

X

Ψk B C
==

L

Qk AQk

X

C(Z′
k)

H

C(X ′
k)

H

C(X ′
k)

B C

(43)
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==

L

Qk AQk

X

C(Z′
k)

H

C(X ′
k)

H

C(X ′
k)

X ′
k

B C

==
N
√

ε

L

Qk AQk

Z

C(−Z′
k)

H

C(X ′
k)

H

C(X ′
k)

X ′
k

B C

(44)

==

L

Qk AQk

C(Z′
k)

H

C(X ′
k)

H

C(X ′
k)

X ′
k

B C

==

L

Qk Qk A

B CX ′
k

Ψk

(45)
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Similarly,

L

Qk Qk A

Z

Ψk B C
==

L

Qk AQk

Z

C(Z′
k)

H

C(X ′
k)

H

C(X ′
k)

B C

(46)

==

L

Qk AQk

Z

C(Z′
k)

H

C(X ′
k)

H

C(X ′
k)

B C

==

L

Qk AQk

X

C(Z′
k)

H

C(X ′
k)

H

C(X ′
k)

B C

(47)
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==

L

Qk AQk

X

C(Z′
k)

H

C(X ′
k)

H

C(X ′
k)

Z′
k

B C

==

L

Qk AQk

Z

C(Z′
k)

H

C(X ′
k)

H

C(X ′
k)

Z′
k

B C

(48)

==

L

Qk AQk

C(Z′
k)

H

C(X ′
k)

H

C(−X ′
k)

Z′
k

B C

==
N
√

ε

L

Qk AQk

C(Z′
k)

H

C(X ′
k)

H

C(X ′
k)

Z′
k

B C

(49)

==

L

Qk Qk A

B CZ′
k

Ψk

(50)
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as desired. This completes the proof.

C.4 Proof of Proposition 9

We begin with the following lemma. It is similar to the Push Lemma (Lemma 7) but it specifically

addresses commutativity.

Lemma 13. Suppose that R,S are registers, Z ∈ R⊗S is a unit vector, and V,U1,U2, . . . ,Uk are unitary

operators on R such that

1. Each map Ui can be pushed through Z with error term ε , and

2. The approximate equality (VUi ⊗ IS)L =
ε
(UiV ⊗ IS)L holds for all i.

Then,

Z

Uk

U1

...

V

R S

==
k2ε

Z

Uk

U1

...

V

R S

(51)

Proof. This follows easily by k applications of Lemma 7.

By Proposition 4, for any j 6= k, we have

L

C(X ′
k)

A

Qk

X ′
ℓ

==
N
√

ε

L

X ′
ℓ

C(X ′
k)

A

Qk (52)

and the same holds with (X ′
ℓ,X

′
k) replaced by (X ′

ℓ,Z
′
k), (Z

′
ℓ,X

′
k), or (Z′

ℓ,Z
′
k). Also, as noted at the beginning

of section C.3, the gates that define ΨA,k (see diagram (19) can each be pushed through L with error term
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N
√

ε . Therefore by Lemma 13,

L

Ψk

A

Qk

X ′
ℓ

==
N
√

ε

L

X ′
ℓ

Ψk

A

Qk (53)

We therefore have the following, in which we first apply Proposition 8 with Lemma 7, and then apply

Lemma 13.

Q1...k A B C

Xk

Θk

L

==

QkQ1...k−1 A B C

Xk

Ψk

Θk−1

L

(54)

==
N2

√
ε

QkQ1...k−1 A B C

X ′
k

Ψk

Θk−1

L

==
N3

√
ε

QkQ1...k−1 A B C

X ′
k

Ψk

Θk−1

L

(55)

An analogous statement holds with X replaced by Z. Applying the isometries Ψk+1, . . . ,ΨN in order now

completes the proof.
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