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Okay, Roberts, Bartlett and Raussendorf recently introduced a new cohomological approach to con-

textuality in measurement based quantum computing. We give an abstract description of their ob-

struction and the algebraic structure it exploits, using the sheaf theoretic framework of Abramsky

and Brandenburger. At this level of generality we contrast their approach to the Čech cohomology

obstruction of Abramsky, Mansfield and Barbosa and give a direct proof that Čech cohomology is at

least as powerful.

1 Introduction

Contextuality is a fundamental feature of quantum mechanics that has been shown to play a central role

in certain models of quantum computing [11, 16]. For instance, a result by Raussendorf shows that a

measurement based quantum computer with mod 2 linear side processing requires a strongly contextual

resource to perform universal computation [16].

The sheaf theoretic framework of Abramsky and Brandenburger describes contextuality using the

powerful language of sheaf theory [3]. One of the insights of this approach is that contextuality in a

range of examples is characterised by the non-vanishing of a cohomological obstruction that is derived

using Čech cohomology [4, 2, 7].

More recently Okay et al. described an obstruction for contextuality in measurement based quantum

computation (MBQC) that is based on group cohomology [15]. While the Čech cohomology obstruction

is well defined for any set of quantum measurements, their obstruction exploits the algebraic structure

of the Pauli measurements used in MBQC. We give a more abstract account of this approach using the

sheaf theoretic framework. We briefly state our results:

• Local (resp. global) value assignments in MBQC induce local (resp. global) trivialisations of a

sequence

Z2 X X/Z2

where X is a commutative partial monoid encoding the compositional structure of commuting

measurements.

• Mermin’s square and GHZ have natural interpretations in terms of this sequence.

• Okay et al.’s obstruction can be defined as an obstruction to a local trivialisation of a sequence of

this form to extend globally.

• We give a direct proof that the vanishing of the Čech cohomology obstruction implies the vanishing

of Okay et al.’s obstruction.
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This paper is organised as follows. In Section 2 we review the sheaf theoretic formulation of quan-

tum contextuality, the Čech cohomology obstruction, and the issue of completeness and generalised

all-versus-nothing arguments. In Section 3 we derive Okay et al.’s obstruction as a generalisation of the

cohomological characterisation of trivial group extensions. Finally, in section 4, we apply this obstruc-

tion to contextuality and compare it to the Čech cohomology obstruction.

2 Preliminaries

Sheaf theoretic formulation of contextuality. In the sheaf theoretic approach to contextuality the type

of an experiment is described by a measurement scenario (X ,M ,O), where

• The set of measurements X is a discrete topological space.

• The measurement cover M ⊂P(X) is a cover of X and furthermore an anti-chain (V ⊂C ∈M ⇒
V /∈ M ). A subset V ⊂ X is compatible if V ⊂C for some context C ∈ M .

• O is the set of outcomes.

The event sheaf E : Xop → Set :: V 7→ OV assigns to a set of measurements the set of joint outcomes, or

sections, and restricts a section s ∈ E (V ) to a section s|U ∈ E (U) for U ⊂V with function restriction.

The data describing a particular experiment of type (X ,M ,O) is specified by an empirical model.

Contextuality is often defined in terms of probabilities [5]. We will instead be concerned with the stronger

notion of possibilistic contextuality [12, 14]. A (possibilistic) empirical model S : (X ,M ,O) is a sub-

presheaf S ⊂ E : Xop → Set satisfying the conditions

1. S (C) 6= /0 for all C ∈ M .

2. S is flasque beneath the cover: U ⊂V ⊂C ∈ M =⇒ S (U ⊂V ) : S (V )→ S (U) is surjective.

3. Every compatible family induces a global section: A family {sC ∈ S (C)}C∈M
is compatible if

sC|C∩C′ = sC′ |C∩C′ for all C,C′ ∈ M . We require that every compatible family is the family of

restrictions of some global section.

We say that S : (X ,M ,O) is

• logically contextual at s ∈ S (C) if there is no g ∈ S (X) with g|C = s.

• non-contextual if S is not logically contextual at any s ∈ S (C).

• strongly contextual if S is logically contextual at every s ∈ S (C), equivalently S (X) = /0.

Quantum contextuality. If X is a set of Hermitian measurements then we define a measurement sce-

nario (X ,M ,O), where each context C ∈ M is a maximal subset of mutually commuting measurements

and O is the combined set of eigenvalues.

A value assignment s : V → O, for a compatible set V = {M1,M2, · · · ,Mn} ⊂ X , is consistent with

quantum mechanics if there exists a state |ψ〉 such that the joint outcome specified by s is consistent with

|ψ〉 according to the Born rule

‖P1P2 · · ·Pn|ψ〉‖2 6= 0

where we require that s(Mi) is an eigenvalue of Mi and Pi denotes the projector onto the corresponding

eigenspace.
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The state independent, and state dependent models SX ,SX ,ψ : (X ,M ,O) are defined at any V ⊂
C ∈ M below the cover as respectively

SX(V ) := {s : V → O | s is consistent with quantum mechanics}
and

SX ,ψ(V ) := {s : V → O | s is consistent with |ψ〉}
and above the cover by the condition that every compatible family induces a global section. It can be

shown that the requirement that SX ,ψ and SX are flasque beneath the cover is equivalent to the no-

signalling principle [3].

Definition 2.1. The Pauli n-group Pn is the matrix group of n-fold tensor products of the Pauli matrices

I :=

[

1 0

0 1

]

σx :=

[

0 1

1 0

]

σy :=

[

0 −i

i 0

]

σz :=

[

1 0

0 −1

]

along with multiplicative factors ±1,±i. The elements of Pn with multiplicative factor ±1 specify n-qubit

measurements with outcomes in {1,−1}. As is customary, we identify the groups {1,−1}∼=Z2 and write

σ i ∈ Pn, where σ ∈ {σx,σy,σy}, for the n-fold tensor product that is σ at qubit i and I everywhere else.

Lemma 2.1. Let X ⊂ Pn be a set of measurements, C ⊂ X a context and s : C → Z2 a value assignment

that is consistent with quantum mechanics.

a) s(M1M2) = s(M1)⊕ s(M2) for all M1,M2 ∈C such that M1M2 ∈ X.

b) If I ∈ X then I ∈C and s(I) = 0. Similarly if −I ∈ X then −I ∈C and s(−I) = 1.

Proof. b) is clear. For a) let M1,M2 ∈C and take any state |ψ〉 such that M|ψ〉= s(M)|ψ〉 for all M ∈C.

s(M1M2)|ψ〉= M1M2|ψ〉= M1(s(M2)|ψ〉) = s(M1)s(M2)|ψ〉
Hence s(M1M2) = s(M1)⊕ s(M2) with the identification {−1,1} ∼= Z2.

Example 2.1 (Mermin’s square). Let SX : (X ,M ,Z2) be the state independent model induced by the

set of measurements displayed in Mermin’s square

σ 1
x σ 2

x σ 1
x σ 2

x I

σ 2
z σ 1

z σ 1
z σ 2

z I

σ 1
x σ 2

z σ 1
z σ 2

x σ 1
y σ 2

y I

I I −I

Observe that the measurements displayed in any row or column M1,M2,M3,M4 defines a context and fur-

thermore satisfies M1M2M3 = M4, where M4 =±I. By Lemma 2.1 any local section s ∈ S (C) therefore

satisfies one of the following equations

σ 1
x ⊕σ 2

x ⊕σ 1
x σ 2

x = 0 (1)

σ 1
z ⊕σ 2

z ⊕σ 1
z σ 2

z = 0 (2)

σ 1
x ⊕σ 2

z ⊕σ 1
x σ 2

z = 0 (3)

σ 1
z ⊕σ 2

x ⊕σ 1
z σ 2

x = 0 (4)

σ 1
x σ 2

z ⊕σ 1
z σ 2

x ⊕σ 1
y σ 2

y = 0 (5)

σ 1
x σ 2

x ⊕σ 1
z σ 2

z ⊕σ 1
y σ 2

y = 1 (6)
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Any global section g ∈SX(C) therefore simultaneously satisfies all equations. However, these equations

are mutually inconsistent. Summing together all of the equations gives 0 = 1, because each measurement

appears in exactly two equations. SX is therefore strongly contextual.

Example 2.2 (GHZ). Let SX ,GHZ : (X ,M ,Z2) be the state dependent model induced by |GHZ〉 :=
(|000〉+ |111〉)/

√
2 and X :=

⊗3
i=1±{σx,σy, I}.

|GHZ〉 is a +1-eigenstate of σ 1
x σ 2

x σ 3
x while it is a −1-eigenstate of σ 1

x σ 2
y σ 3

y , σ 1
y σ 2

x σ 3
y , and σ 1

y σ 2
y σ 3

x .

With the identification {−1,1} ∼= Z2 this means that any global section g ∈ SX ,GHZ(X) satisfies the

following four equations.

σ 1
x σ 2

x σ 3
x = 0, σ 1

x σ 2
y σ 3

y = 1, σ 1
y σ 2

x σ 3
y = 1, σ 1

y σ 2
y σ 3

x = 1

By Lemma 2.1 a) g then also satisfies the equations

σ 1
x ⊕σ 2

x ⊕σ 3
x = 0 (7)

σ 1
x ⊕σ 2

y ⊕σ 3
y = 1 (8)

σ 1
y ⊕σ 2

x ⊕σ 3
y = 1 (9)

σ 1
y ⊕σ 2

y ⊕σ 3
x = 1 (10)

However, summing together equations (7)-(10) results in 0 = 1. SX ,GHZ is therefore strongly contextual.

Čech cohomology. Let U be an open cover of a topological space X and F : Xop → AbGrp a

presheaf of abelian groups. The q-simplices N q(U ) of the nerve of U is the set of all tuples σ =
(U0,U1, · · · ,Uq) ∈ U q+1 with non-trivial overlap |σ | :=

⋂q
i=0Ui 6= /0. The q-cochains Cq(U ,F ) :=

⊕

U∈N q(U )F (|U |) is the abelian group of all assignments ω of a coefficient ω(σ) ∈ F (|σ |) to each

simplex q ∈ N q(U ) such that ω(σ) 6= 0 for at most finitely many σ . Using the notation ∂iσ to de-

note the q simplex obtained from a q+1 simplex σ by omitting the i’th element we define for each q a

coboundary map dq : Cq(U ,F )→Cq+1(U ,F ) at each q-cochain ω and q+1-simplex σ as

dq(ω)(σ) :=
q

∑
i=0

(−1)i
res

|∂iσ |
|σ | (ω(∂iσ))

where resU
V := F (U ⊂V ) : F (V )→ F (U). It can be verified that dq+1 ◦dq = 0 and so

0 C0(U ,F ) C1(U ,F ) C2(U ,F ) · · ·d−1:=0 d0 d1 d2

is a cochain complex. The q’th Čech cohomology group Hq(U ,F ) is the quotient Zq(U ,F )/Bq(U ,F )
of the q-cocycles Zq(U ,F ) := ker dq over the q-coboundaries Bq(U ,F ) := imdq−1.

The cohomological obstruction. Suppose now that S : (X ,M ,O) is an empirical model and s0 ∈
S (C0) is a local section. The cohomological obstruction to s0 lifting to a global section is defined in

terms of the presheaf F := FZ ◦S : Xop → AbGrp of formal linear combinations of local sections, and

two auxiliary presheafs

FC̃0
:: U 7→ kerF (U ∩C0 ⊂U) F |C0

:: U 7→ F (C0 ∩U)

At any U ⊂ X these presheafs are related to F by a sequence
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0 FC̃0
(U) F (U) F |C0

(U) 0
resU

U∩C0

which in fact is exact, because F is flasque beneath the cover. When lifted to the level of cochain

complexes it therefore gives rise to a short exact sequence

0 C∗(M ,FC̃0
) C∗(M ,F ) C∗(M ,F |C0

) 0

Using standard techniques from homological algebra this short exact sequence of cochain complexes

induces a long exact sequence of cohomology groups

0 H0(M ,FC̃0
) H0(M ,F ) H0(M ,F |C0

)

H1(M ,FC̃0
) H1(M ,F ) H1(M ,S |C0

) · · ·
γ

where γ is the connecting homomorphism [21]. Using the identification F (C0) ∼= H0(M ,F |C0
) we

define the obstruction for s0 to extend to a global section to be γ(1 · s0) ∈ H1(M ,FC̃0
).

Lemma 2.2 ([4]). If the cover M is connected1 then γ(1 · s0) = 0 if and only if 1 · s0 extends to a

compatible family of FZS .

The obstruction is clearly sound. If g ∈ S (X) then 1 · g|C0
extends to the compatible family {1 ·

g|C}C∈M . However, in general it is not complete. If γ(1 · s) = 0, then 1 · s extends to a compatible family

of FZS , but this family might not correspond to any global section of S . Such a false positive occurs

for example in the case of Hardy’s paradox [2, 7, 8].

Generalised AvN models. Examples 2.1 and 2.2 illustrate a type of contextuality proof that Mermin

called ‘all versus nothing’ [13]. These proofs can be understood as exhibiting an inconsistent set of

equations over Z2 that is locally satisfied by the model. The Čech cohomology obstruction is complete for

the generalised AvN models, the class of models that locally satisfies a system of inconsistent equations

over any ring R [2]. Let R be a ring and suppose that S : (X ,M ,R) is an empirical model. An R-linear

equation φ at a context C ∈ M is a formal sum

∑
x∈C

r(x)x = a

where r : C → R and a ∈ R. A local section s : C → R satisfies φ , written s |= φ , if ∑x∈C r(x) · s(x) = a,

where · denotes multiplication in R. The R-linear theory of S is the set of all R-linear equations that are

consistent with S .

ThR(S ) :=
⋃

C∈M

{φ is an R-linear equation at C | s |= φ ,∀s ∈ S (C)}

Definition 2.2. S is AvNR if its R-linear theory is inconsistent. i.e. there is no s : X → R such that

s|C |= φ , for every context C ∈ M and formula φ ∈ ThR(S ) at C.

Theorem 2.1 ([2]). If S is AvNR then γ(1 · s) 6= 0 for all C ∈ M and s ∈ S (C).

1 i.e. All pairs C,C′ ∈M are connected by a sequence C0 =C,C1,C2, · · · ,Cn−1,Cn =C′ with Ci∩Ci+1 6= /0. This assumption

is harmless because non-connected components are completely independent in terms of contextuality. Incidentally all of the

scenarios we will consider are connected.
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3 The group cohomology obstruction

If G is a commutative group and H ≤ G is a subgroup then it is not always the case that G ∼= H ×G/H .

More generally, if H ≤ K ≤ G then a local trivialisation φ : K ∼= H×K/H might not arise as a restriction

of any global trivialisation φ ′ : G ∼= H ×G/H . In group cohomology the local trivialisations that can be

extended globally are characterised by a vanishing cohomological obstruction [6, 20]. The obstruction of

Okay et al. can be understood as a natural generalisation of this idea to the case where G is a commutative

partial monoid.

Definition 3.1. Let A be a commutative group, X a commutative partial monoid, and i : A → X an

injective homomorphism. Consider the sequence A
i−→ X

π−→ X/A, where π : X → X/A is the canonical

quotient of the group action lA : A×X → X :: (a,x) 7→ i(a)+ x. 2

• A left splitting is a homomorphism s : X → A such that s◦ i = idA.

• A right splitting is a homomorphism h : X/A → X such that π ◦h = idX/A.

• A trivialisation is a homomorphism

φ : X → A×X/A such that the following diagram commutes:

A X X/A

A×X/A

i

in1

π

φ
proj2

Where × denotes the cartesian product, and in1, proj2 refers to the associated inclusion and pro-

jection maps respectively.

In this section we will show that under the assumption that lA is free the group cohomology obstruc-

tion can be generalised to an obstruction for a local trivialisation φ : C → A×C/A, where i(A)⊂C ⊂ X

is a submonoid, to extend globally. We first translate the problem into one about right splittings.

The splitting lemma. It follows from a general fact about the cartesian product [1] that the maps

φ 7→ proj1 ◦φ , s 7→ 〈s,π〉

where 〈s,π〉 := x 7→ (s(x),π(x)), defines a bijective correspondence between left splittings and triviali-

sations. Because this correspondence is compatible with restrictions, the problem of extending a triviali-

sation is equivalent to the problem of extending a left splitting. When lA is free something similar is true

about right splittings.

Lemma 3.1. Any trivialisation φ is in fact an isomorphism

Proof. Write φ1 := proj1 ◦φ and define φ−1(a, [x]) := x+ i(a−φ1(x)). This is well defined independently

of the representative x because φ1 is a splitting. Using φ = 〈φ1,π〉 and the properties of left splittings it

is straightforward to verify that φ−1 is both a left and right inverse to φ .

Lemma 3.2 (Splitting lemma). Suppose that lA is free, i(A)⊂C ⊂ X is a submonoid, and that φ : C →
C×C/A is a trivialisation. The following conditions are then equivalent.

1. There exists a left splitting s : X → A such that s|C = proj1 ◦φ .

2. There exists a right splitting h : X/A → X such that h|C/A = φ−1 ◦ in2.

3. There exists a trivialisation φ ′ : X → A×X/A such that φ ′|C = φ .

2 Observe that i(a)+x is always defined, even when X is partial, because 0+x = i(−a)+(i(a)+x)
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Proof. 1. ⇔ 3. φ 7→ proj1 ◦ φ is a bijection between trivialisations and left splittings and furthermore

compatible with restrictions: s′|C = s ⇐⇒ φ ′|C = φ whenever φ 7→ s, and φ ′ 7→ s′.
2 ⇔ 3. We show that the map φ 7→ φ−1 ◦ in2 from trivialisations to right splittings, has a left inverse. For

any right splitting h : X/A → X let Φ(h) := 〈s,π〉 where s : X → A is defined by the equation

h(π(x)) = x− i(s(x))

which has a unique solution because lA is free. To see that s in fact is a splitting note first that h(π(x+
y)) = h(π(x))+h(π(y)) and hence

x+ y− i(s(x+ y)) = x− i(s(x))+ y− i(s(y))

because s is unique we therefore have s(x+y) = s(x)+s(y). For s◦i = idA we have h(π(i(a))) = h(π(0)),
therefore by uniqueness we have s(i(a)) = a. Finally,

(φ−1 ◦ in2)(π(x)) = φ−1(0,π(x))

= x+ i(0−φ1(x))

= x− i(φ1(x))

hence by uniqueness Φ(φ−1 ◦ in2) = φ , and so Φ is a left inverse of φ 7→ φ−1 ◦ in2. Because the map is

defined pointwise it is clear that it is compatible with restrictions.

An obstruction to global trivialisations.

Definition 3.2. We define the relative cohomology groups H∗(M,N;G) of commutative partial monoids

N ⊂ M with coefficients in an abelian group G. For each n ≥ 0 let Mn, and similarly Nn, be defined by

M0 = {()} and for n > 0

Mn := {(m1,m2, · · · ,mn) ∈ Mn | m1 +m2 + · · ·+mn is defined}

The relative n-cochains Cn(M,N;G) := { f : Mn → G | f |Nn
= 0} is the abelian group of functions from

Mn to G that vanish on Nn, and the coboundary maps

0 =C0(M,N;G) C1(M,N;G) C2(M,N;G) · · ·d0 d1 d2

are given by

dn( f )(m0,m1, · · · ,mn) := f (m1, · · · ,mn)

+
n

∑
i=1

(−1)i
f (m0, · · · ,mi−1,mi +mi+1,mi+2, · · · ,mn)

+(−1)n
f (m0, · · · ,mn−1)

Hn(M,N;G) := Zn(M,N;G)/Bn(M,N;G) is defined as the quotient of the relative n-cocycles Zn(M,N;G) :=
ker dn over the relative n-coboundaries Bn(M,N;G) := imdn−1. Note that f |Nn

= 0 =⇒ dn( f )|Nn+1
= 0.

It can also be shown that dn+1 ◦ dn = 0. However, for our purpose it is sufficient to check this for the

maps

d2( f )(m1,m2,m3) = f (m2,m3)− f (m1 +m2,m3)+ f (m1,m2 +m3)− f (m1,m2) (11)

d1( f )(m1,m2) = f (m2)− f (m1 +m2)+ f (m1) (12)

d0 = 0 (13)

which is easily done.
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Suppose now that lA is free and that φ : C → A×C/A is a trivialisation for some submonoid i(A)⊂
C ⊂ X . By the splitting lemma we can equivalently consider the splitting R(φ) := φ−1 ◦ in2 : C/A →C.

Definition 3.3. Let η : X/A → X be any choice of representatives that coincides with R(φ) on C/A.

The cohomological obstruction to φ is the cohomology class [β ] ∈ H2(X/A,C/A;A) of β , where β ∈
Z2(X/A,C/A;A) is uniquely defined by

η(q1 +q2) = η(q1)+η(q2)+ i(β (q1,q2)) (14)

for all q1,q2 ∈ X/A with q1 +q2 defined.

Lemma 3.3. The obstruction is well defined and independent of the choice of representatives.

Proof. First note that β is unique because lA is free, and a relative cochain because η |C/A = R(φ) is a

homomorphism. Next, to show that β is a cocycle we use (14) and associativity to expand η(q0+q1+q2)
as both

η(q1)+η(q2)+η(q3)+ i(β (q1,q2 +q3)+β (q2,q3))

and

η(q1)+η(q2)+η(q3)+ i(β (q1 +q2,q3)+β (q1,q2))

Because these terms are equal and lA is free

β (q1,q2 +q3)+β (q2,q3) = β (q1 +q2,q3)+β (q1,q2)

Comparing this to (11) gives d2(β ) = 0, as required. Finally, to see that [β ] is independent of the choice

of representatives suppose that we instead chose η ′ := η + i ◦ γ , for some γ ∈ C1(X/A,C/A;A), and

similarly defined β ′. Expanding (14) in the case of η ′ in terms of η and i◦ γ gives

η(q1 +q2) = η(q1)+η(q2)+ i(β ′(q1,q2)+ γ(q1)− γ(q1 +q2)+ γ(q2))

By uniqueness we therefore have β = β ′+d1(γ) and hence [β ] = [β ′].

Theorem 3.1. The following conditions are equivalent.

1. There exists a trivialisation φ ′ : X → A×X/A such that φ ′|C = φ .

2. [β ] = 0

Proof. 1. ⇐⇒ There exists a right splitting h : X/A → X such that h|C/A = R(φ).
⇐⇒ There exists γ ∈C1(X/A,C/A;A) such that η + i◦ γ is a homomorphism.

⇐⇒ There exists γ ∈C1(X/A,C/A;A) such that for all q1,q2 ∈ M/A with q1 +q2 defined

η(q1 +q2) = η(q1)+η(q2)+ i(γ(q1)− γ(q1 +q2)+ γ(q2))

⇐⇒ There exists γ ∈C1(X/A,C/A;A) such that β = d(γ)
⇐⇒ [β ] = 0 ∈ H2(X/A,C/A;A).
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4 The group cohomological approach to contextuality

Suppose that X ⊂⊗n
i=1±{σx,σy,σz, I} is a set of Pauli measurements satisfying the two conditions

1. {I,−I} ⊂ X .

2. M1,M2 ∈ X and M1M2 = M2M1 =⇒ M1M2 ∈ X .

In this case matrix multiplication gives each context C ∈ M the structure of a commutative monoid and

the embedding i : Z2 →C :: k 7→ (−1)k
I induces a sequence

Z2 C C/Z2
i π

By Lemma 2.1 every s : C → Z2 that is consistent with quantum mechanics is a left splitting. It follows

that both the state independent and state dependent models SX ,SX ,ψ : (X ,M ,Z2) are instances of the

following definition.

Definition 4.1. In this section we will assume that we are working with an empirical model S : (X ,M ,A)
with the additional structure:

1. The set of outcomes is a commutative group (A,+A,0A).

2. Each C ∈M is a commutative monoid (C,+C,0C) and the monoid structures on different contexts

are compatible. For all C,C′ ∈ M :

(a) 0C = 0C′ .

(b) x,y ∈C∩C′ =⇒ x+C y = x+C′ y.

3. We are given an embedding i : A → ⋂

C∈M C such that for each C ∈ M the action A×C → C ::

(a,x) 7→ i(a)+C x is free.

4. Every local section s ∈ S (C) is a left splitting of the sequence A C C/A
i π

.

Group cohomology The monoid structures on different contexts are compatible and therefore “glue

together” to define a commutative partial monoid (X ,+,0) whose maximal submonoids correspond to

the contexts. We consider the sequence

A X X/A
i π

(15)

induced by i : A → ⋂

C∈M C and note that the action lA : A×X → X :: (a,x) 7→ i(a)+ x is free. Suppose

now that C ∈ M is a particular context and s ∈ S (C) a local section. Because s is a splitting it induces

a local trivialisation

A C C/A

A×C/A

i

in1

π

〈s,π〉
proj2

of sequence (15).

Definition 4.2. [βs] ∈ H2(X/A,C/A;A) is the cohomological obstruction to the existence of a trivialisa-

tion of sequence (15) that extends 〈s,π〉 : C → A×C/A.

The obstruction is clearly sound. A global section g ∈ S (X) is a splitting because it’s restriction

to every context is a splitting. If furthermore g|C = s then 〈s,π〉 extends to 〈g,π〉 : X → A×X/A, by

Theorem 3.1 we therefore have [βs] = 0.
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Proofs of contextuality. Although the obstruction is sound, it is not in general complete. False pos-

itives can arise in the form of global extensions 〈g,π〉 of 〈s,π〉 that correspond to splittings g /∈ S (X)
that are not allowed by S . For this purpose Okay et al. introduced ‘topological’ versions of Mermin’s

square and GHZ. These proofs can be understood as showing that there are no false positives in the form

of right splittings. We note however, that the original proofs almost exactly spells out that there are no

false positives in the form of left splittings.

Example 4.1 (Mermin’s square). Let X ⊂ P2 be any set of Pauli measurements that is closed under

products of commuting measurements and contains the measurements displayed in Mermin’s square.

We consider the state independent model SX : (X ,M ,Z2) which in this case satisfies Definition 4.1.

Observe that equations (1)-(6) induced by Mermin’s square all can be rearranged to be on the form

M1 ⊕M2 = M1M2

for M1,M2 ∈ X with M1M2 = M2M1. That the equations are mutually inconsistent therefore literally says

that there is no global left splitting. We therefore have [βs] 6= 0 for every local section s of S .

Lemma 4.1. Suppose that X ⊂ Pn is a set of Pauli measurements that contains the identity and is closed

under commuting products. For any state |ψ〉 the set of measurements

Xψ := {M ∈ X | M|ψ〉=±|ψ〉}

whose outcome is uniquely determined by |ψ〉 is a submonoid of X.

Proof. Because the Pauli measurements σx,σy,σz pairwise anti-commute

σxσz =−σzσx, σxσy =−σyσx, σyσz =−σzσx

all M1,M2 ∈ X either commute, or anti-commute. The condition that M1,M2 ∈ Xψ forces the former.

Furthermore note that Xψ contains I and is closed under products.

Example 4.2 (GHZ). Let X :=
⊗3

i=1±{σx,σy,σz, I}. First note that the state dependent model SX ,GHZ :

(X ,M ,Z2) is an instance of Definition 4.1 because X is closed under commuting products and contains

±I. Next, consider the set XGHZ of measurements whose outcome is uniquely determined by |GHZ〉 and

observe that equations (7-10) in Example 2.2 are all of the form

M1 ⊕M2 ⊕M3 = sGHZ(M1M2M3)

where M1,M2,M3 ∈ X are compatible, M1M2M3 ∈ XGHZ, and sGHZ(M1M2M3) is the unique outcome that

is consistent with |GHZ〉. That the equations are mutually inconsistent therefore ensures that there is no

global splitting g : X → Z2 whose restriction to XGHZ is sGHZ. It follows that if C ∈ M is any context

that contains XGHZ then [βs] 6= 0 for every s ∈ SX ,GHZ(C). Note that such a context exists because the

maximal submonoids of X are the contexts and by Lemma 4.1 XGHZ is a monoid.

Comparison with Čech cohomology. The Čech cohomology obstruction is defined for all empirical

models, but this generality comes at a price. It is not a complete characterisation of contextuality. It is

therefore natural to ask if there are any examples of contextuality that is detected by group cohomology,

but not Čech cohomology. Because Mermin’s square and GHZ are examples of all versus nothing argu-

ments we know that Čech cohomology detects contextuality in both cases. We now show more generally

that if the group cohomology obstruction is non-trivial, then the Čech cohomology obstruction is also

non-trivial.
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Theorem 4.1. Let s0 ∈ S (C0) be any local section. Then

γ(1 · s0) = 0 =⇒ [βs0
] = 0

Proof. First note that it follows from i(A) ⊂ ⋂

C∈M C that the cover M is connected. Therefore, if

γ(1 · s0) = 0 then there is some compatible family {rC ∈ FZS (C)}C∈M such that rC0
= 1 · s0. Observe

now that any such family in fact is a compatible family of formal affine combinations: For any C ∈ M

∑
s∈S (C)

rC(s) · s|C∩C0
= rC|C∩C0

= rC0
|C∩C0

= 1 · s0|C∩C0

hence ∑s∈S (C) rC(s) = 1. We now use the unique module action3of Z on A to collapse this compatible

family to a function g : X → A.

g(x) := ∑
s∈S (C)

rC(s) · s(x), where C ∈ M is any context with x ∈C

Because the set of splittings is closed under affine combinations this function is in fact a splitting which

furthermore extends s0. We therefore have [βs0
] = 0.

5 Conclusion

We have considered two different applications of cohomological techniques to contextuality in MBQC.

While the Čech cohomology obstruction is defined for any set of quantum measurements, the group

cohomology obstruction relies on the specific algebraic structure of the Pauli measurements. We have

given an abstract account of this approach using the sheaf theoretic framework. At this level of generality

we observe that although both approaches rely on structural assumptions to be complete, there is a direct

way in which the Čech cohomology obstruction subsumes the group cohomology obstruction.

Our presentation of the group cohomology approach deviates from Okay et al.’s in that we have

defined a single obstruction that applies to both state independent and state dependent contextuality. We

have shown that this obstruction detects contextuality in the state independent case of Mermin’s square

and the state dependent case of GHZ.
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