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The ZX, ZW and ZH calculi are all graphical calculi for reasoning about pure state qubit quantum
mechanics. All of these languages use certain diagrammatic decorations, called !-boxes and phase
variables, to indicate not just one diagram but an infinite family of diagrams. These decorations
are powerful enough to allow complete rulesets for these calculi to be expressed in around fifteen
rules. Historically rules involving !-boxes have not been verifiable by computer. We present the first
algorithm for reducing infinite families of equations involving !-boxes into finite verifying subsets.
The only requirement for this method is a mild property on the connectivity of the !-boxes. Previ-
ous results had focussed on finite case analysis of phase variables in ZX, a result we also extend for
ZW and ZH, as well as providing a general framework for further languages. The results presented
here allow proof assistants to reduce infinite families of problems (involving combinations of phase
variables and !-boxes) down to undecorated, case-by-case verification, in a way not previously pos-
sible. In particular we note the removal of the need to reason directly with !-boxes in verification
tasks as something entirely new. This forms part of larger work in automated verification of quantum
circuitry, conjecture synthesis, and diagrammatic languages in general. The methods described here
extend to any diagrammatic languages that meet certain simple conditions.

1 Introduction

The investigation of qubit graphical calculi began with Coeke and Duncan in [4], where they created the
ZX calculus: A sound, universal calculus that was shown to be complete in [13]. Since then ZX has
been used for such things as reasoning about quantum error correction via lattice surgery ([2] and [5],)
through to being the basis for taught courses in quantum computing [3]. The ZWC calculus, invented
by Hadzihasanovic [6], presents a different point of view; rather than focus on the Z and X rotations
of the Bloch sphere as ZX does, it focusses on the GHZ and W entanglement states. The ZH calculus
(Kissinger and Backens, [1]) has another viewpoint again; that of extending the notion of Hadamard and
CCZ gates.

Each of these calculi has strength in different areas, and all of them are complete and universal for
pure state qubit quantum mechanics. Our interest is that, with one exception, the rules of these calculi
are expressed in a finite manner; that is to say a finite collection of parameterised families of equations.
This parameterisation is an expression of two types of regular structure:

• Phase variables: e.g. “This X can be any complex number”

• !-boxes: e.g. “This part of the diagram can be repeated 0 or more times”

The one exception to this being the (EU) rule of the ZX calculus (see [14]) which use what we call side
conditions, a case we shall not be considering in this paper.

The aim of this paper is to show when these parameterisations admit themselves to finite verification:
A process by which a computer can verify an entire infinite family by checking a finite number of cases.
For phase variables we exploit the properties of the polynomial functions they represent (theorem 18),
and for !-boxes we exploit the finite dimensionality of the space in which their repeated structure resides
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(theorem 30). We show how these two types of parameterisation interact in theorem 32 before finally
giving a constructive method for finding a verifying subset in theorem 33.

In essence finite verification allows us to start with an infinite family of equations (indicated by a pair
of diagrams decorated with phase variables and !-boxes,) and show that this entire family of equations
are sound by only checking a finite number of individual equations, none of which are decorated.

2 Parameterised families of diagrams

In this chapter we define the language with which we discuss decorations, infinite families and so on.
We then give a few examples of the way we use this language.

Definition 1. A diagram is a morphism in a PROP (see e.g. [10, p 97]); it has n ∈ N inputs (at the top)
and m ∈ N outputs (at the bottom.) Morphisms in the PROP are constructed from a set of generators
using horizontal composition (given the symbol ⊗) and vertical composition (given the symbol ◦.)
Definition 2. A complex matrix interpretation for a PROP of diagrams L, written J · K, is a monoidal
functor from L to MatC. I.e. a functor that preserves the ⊗ and ◦ products of diagrams:

J · K : L→MatC (1)

J D1⊗D2 K = J D1 K⊗ J D2 K (2)

J D1 ◦D2 K = J D1 K◦ J D2 K (3)

(We are using ⊗ to represent the Kronecker product of matrices, and ◦ to represent standard matrix
multiplication.)

We include a list of the generators of ZX, ZH, and ZWC, as well as their interpretations into MatC,
in appendix B.1.

Definition 3. An equation of diagrams D1 = D2 is sound if J D1 K = J D2 K
Definition 4. A phase algebra describes additional structure used in presenting infinite families of rules.
Diagram generators are decorated with terms from the phase algebra. Elements of this algebra are called
phases (introduced in [4]), and a phase variable is a formal variable adjoined to the phase algebra. For
universal ZX the phase group is ([0,2π),+2π), and for ZH and ZWC the phase ring is the complex
numbers.

Example 5. A ZH diagram that has no phase variables has every phase an element of C. A ZH diagram
that has a single phase variable α has every phase an element of C[α]. Unused phase variables (and
later, unused !-boxes) are ignored.

Definition 6. A !-box (introduced in [8], discussed in more detail in [12]) is a special vertex δ added
to the diagram. A vertex v is described as “in” a particular !-box if there is a directed edge from δ to v.
Instantiating the !-box δ with n copies is performed by:

• Making n copies of every vertex in δ , maintaining any connections to other vertices.

• Deleting the vertex δ

Definition 7. A diagram that does not contain any phase variables or !-boxes is called simple, or other-
wise called decorated.

Definition 8. We will use the term instantiation to refer to both the evaluation of a phase variable and
the copying procedure of !-boxes. We use the notation α|α = a to indicate that α has been instantiated
at the value a.
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An explicit instantiation is given in Example 11.

Definition 9. We write

{ D1 = D2 }
α1,...,αn,δ1,...,δm

(4)

for the family of simple equations between diagrams parameterised by the α j and δk.

Definition 10. The parameterised equation E (between diagrams D1 and D2) is sound if for any choice
of parameter values the resulting equation between simple diagrams is sound. (See Definition 3)

We show restrictions of the parameter values by expressing the instantiated value as belonging to
some subset. For example if the family E is sound for α2 = a2 whenever a2 ∈ A2 we will just write:

{ E }
α1,...,αn,δ1,...,δm|α2∈A2

is sound (5)

Example 11. The (slightly simplified) spider law in universal ZX is parameterised over

• δ1 ∈ N inputs and δ2 ∈ N outputs

• α1,α2 ∈ [0,2π)

And so we write the parameterised family of equations as:

 α1

α2

δ1

δ2

= α1 +α2

δ1

δ2


α1,α2,δ1,δ2

(6)

We now instantiate some of the parameters of the spider law, resulting in what is still an infinite,
parameterised family:

 α1

α2

δ1

δ2

= α1 +α2

δ1

δ2


α1,α2,δ1,δ2|α1=π,δ1=2

=

 π

α2

δ1

δ2

= π +α2

δ1

δ2


α2,δ1,δ2|δ1=2

(7)

=

 π

α2

δ2

= π +α2

δ2


α2,δ2

(8)

3 Verifying phase parameters

Our first result will concern diagrams that contain a finite number of phase variables and no !-boxes.
It relies on a certain property of polynomials: That if you know the value of the polynomial P(Y ) for
sufficiently many values of Y then you can determine all the coefficients of P. For example the polyno-
mial P(Y1,Y2) = a+bY1 + cY2 +dY1Y2 can have all of its coefficients determined by knowing the values
P(0,0), P(0,1), P(1,0), and P(1,1). We use this fact by extending the matrix interpretation of simple
diagrams to one for decorated diagrams.
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3.1 Matrix interpretations

All of the graphical languages considered in this paper come equiped with a complex matrix interpre-
tation, see Definition 2. Moreover for each of these languages a diagram with n inputs and m outputs
will be mapped to a matrix with dimH⊗n columns and dimH⊗m rows, where H represents C2. It is this
interpretation that allows us to use these languages to represent transformations in quantum computing.
Appendix B contains matrix interpretations for the ZX, ZH and ZW calculi, or see [1] and [6] for the ZH
and ZW interpretations, and either [4] or [14] for the ZX interpretation.

A set of diagrams parameterised over α is a set of simple diagrams, and we could extend our in-
terpretation so that a set of simple diagrams is sent to a set of matrices. This would, however, lose any
structure from the phase algebra. Instead we try to find a polynomial matrix interpretation; for example
one that sends a family of ZH equations {E}α to a matrix in MatC[α].

While this works well for ZH and ZWC , there is a complication with ZX: A phase variable α in a
ZX diagram corresponds to an eiα in the matrix interpretation. We can try performing the substitution
Y := eiα , but run into trouble if there is a node containing, for example, −α (and accordingly Y−1 in
the matrix,) since polynomials do not normally allow negative powers. Rather than stick with standard
polynomials we instead move to Laurent polynomials; polynomials that do allow positive and negative
powers, and define all the properties we will need of them below.

ZX also introduces one more sublety: There is an extra relation from the phase group (2π = 0) that
we should take care to reflect in our matrix interpretation. This does not impact universal ZX, but does
affect the fragments of ZX with a finite phase group (Example 23 demonstrates this for the Clifford+T
fragment.)
Definition 12. A complex Laurent polynomial interpretation is a matrix interpretation:

J · K : L[α1, . . . ,αn]→MatC[Y1,Y−1
1 ,...,Yn,Y−1

n ] (9)

The source category here is the PROP of diagrams where generators are now taken not from the
phase algebra of L but from this phase algebra adjoin the phase variables α1 . . .αn.

See appendix B for explicit interpretations of the ZX, ZW and ZH generators into MatC[Y1,Y−1
1 ,...,Yn,Y−1

n ].
Example 13. The Z spider from universal ZX is parameterised by an α ∈ [0,2π), and the (simple) matrix
interpretation of some Z spider (with α instantiated at a) is:

s{
α

. . .

. . .

}∣∣∣
α=a

{
=


1 0 . . . 0

0 0
...

...
. . .

0 0
0 . . . 0 eia

 ∈MatC (10)

Rather than instantiate the value of α before we apply the map, we instead make the substitution
Y = eiα to find a Laurent polynomial matrix interpretation:

s
α

. . .

. . .

{
=


1 0 . . . 0

0 0
...

...
. . .

0 0
0 . . . 0 Y

 ∈MatC[Y,Y−1] (11)
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3.2 Degree of a matrix

Definition 14. Laurent polynomial degrees (defined in the same manner as e.g. [15]:)
• The 0 polynomial has degree −∞ by convention

• the non-zero Laurent polynomial anY n+an−1Y n−1+ · · ·+a0+a−1Y−1+ · · ·+a−mY−m with an 6= 0
and a−m 6= 0 has positive degree n≥ 0 and negative degree m≥ 0.

Note that we can factorise this Laurent polynomial as Y−m multiplied by a (non-Laurent) polynomial.
Definition 15. We define here a notion of matrix and diagram degree:
• The Y+

j -degree of a matrix in MatC[Y1,Y−1
1 ,...,Yn,Y−1

n ] is the maximum of the positive Yj-degrees of the
entries in that matrix

• The Y−j -degree is the maximum of the negative Yj-degrees of the entries in that matrix

• The positive degree of a diagram is the positive degree of the matrix interpretation of that diagram
(likewise for negative degrees.) When clear from context we will refer to the degree of a phase
variable α j in the diagram, meaning the degree of Yj in the interpretation.

Example 16. Here are example positive and negative degrees for first a polynomial, and then a 2× 2
matrix of polynomials.

deg+Y (Y 8 +1+Y−2) = 8 deg−Y (Y 8 +1+Y−2) = 2 (12)

deg+Y

(
2 Y−3

Y Y 2−2

)
= max{0,0,1,2}= 2 deg−Y

(
2 Y−3

Y Y 2−2

)
= max{0,3,0,0}= 3 (13)

Proposition 17. For two diagrams D and D′ we can find an upper bound for the degrees of the horizontal
or vertical compositions of D and D′, i.e.:

deg+ (D◦D′)≤ deg+Y D+deg+Y D′ deg+ (D⊗D′)≤ deg+Y D+deg+Y D′ (14)

deg− (D◦D′)≤ deg−Y D+deg−Y D′ deg− (D⊗D′)≤ deg−Y D+deg−Y D′ (15)

Proof. We first note that for Laurent polynomials P and P′ in C[Y,Y−1], and for λ ∈ C:

deg+Y (λP)≤ deg+Y P deg−Y (λP)≤ deg−Y P (16)

deg+Y (P×P′)≤ deg+Y P+deg+Y P′ deg−Y (P×P′)≤ deg−Y P+deg−Y P′ (17)

deg+Y (∑
j

Pj)≤max
j

deg+Y Pj deg−Y (∑
j

Pj)≤max
j

deg−Y Pj (18)

The composition A ◦B or tensor product A⊗B of matrices produces a new matrix with entries that
are linear combinations of products of the entries of A and B. Therefore:

deg+Y (M ◦M′)≤ deg+Y M+deg+Y M′ deg+Y (M⊗M′)≤ deg+Y M+deg+Y M′ (19)

deg−Y (M ◦M′)≤ deg−Y M+deg−Y M′ deg−Y (M⊗M′)≤ deg−Y M+deg−Y M′ (20)

Recalling that the degree of a diagram is the degree of its polynomial matrix interpretation this gives
us the result for D and D′.
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3.3 Finite verification

Theorem 18. For a diagrammatic equation with phase variables

{ D1 = D2 }
α1,...,αn

that has a Laurent polynomial matrix interpretation, and the equation is sound at all values of
(α1, . . . ,αn) = (a1, . . . ,an) ∈ A1× ·· · ×An, where each |A j| is sufficiently large, then the equation is
sound for all values of (α1, . . . ,αn). That is:

r
{ D1 }

α1,...,αn|α1=a1,...,αn=an

z
=

r
{ D2 }

α1,...,αn|α1=a1,...,αn=an

z

∀a1 ∈ A1, . . . ,an ∈ An (21)

=⇒
r
{ D1 }

α1,...,αn|α1=a1,...,αn=an

z
=

r
{ D2 }

α1,...,αn|α1=a1,...,αn=an

z

∀a1, . . . ,an

The necessary size of |A j| is given by:

|A j|=max(deg+Yj
D1,deg+Yj

D2)+max(deg−Y j
D1,deg−Y j

D2)+1 (22)

“The maximum of the positive degrees, plus the maximum of the negative degress, plus one.”
The proof can be found in appendix A.1. A sketch of it is as follows:
• Manipulate the equation J D K = J D′ K into an equation of the form M = 0, where M is a matrix of

(non-Laurent) polynomials.

• Perform multivariate polynomial interpolation element-wise on M.

• In doing this interpolation we need to know the degrees of the polynomials in M, which we calcu-
late using Proposition 17

Example 19. Finding the sizes of the A j: The following (universal) ZX diagram contains no !-boxes and
two phase variables.

α1

α2
α1 +α2=

deg+α1
D1 = 1 deg+α2

D1 = 1
deg−α1

D1 = 0 deg−α2
D1 = 0

deg+α1
D2 = 1 deg+α2

D2 = 1
deg−α1

D2 = 0 deg−α2
D2 = 0

(23)

We should therefore construct A1 and A2 such that |A1| = max{1,1}+max{0,0}+ 1 and |A2| =
max{1,1}+max{0,0}+ 1. By picking A1 = A2 = {0,π} we therefore know that we can verify this
parameterised family of diagram equations for all values of α1 and α2 by verifying this equation on the
following grid of values:

α1 = 0 α1 = π

α2 = 0 (0,0) (0,π)
α2 = π (π,0) (π,π)

(24)

i.e. by verifying the four equations:

{ 0
0

0+0= , 0
π

0+π= ,
π

0
π +0= ,

π

π
π +π= } (25)

we can assert that the diagram equation in (23) is sound for all values of α1 and α2 in [0,2π).
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Corollary 20. In the universal ZX calculus it suffices to check (α1, . . . ,αn) ∈ A1×·· ·×An to prove an
equation parameterised by α j, where the A j are sets of distinct angles with

|A j|=max{deg+α j
D1,deg+α j

D2}+max{deg−α j
D1,deg−α j

D2}+1 (26)

Remark 21. Corollary 20 was first proved in [7, Theorem 3]. The authors use the symbol µ to count
appearances of α j (with coefficient,) and Tj to denote a large enough set of values. Their method does not
use Laurent polynomials, instead examining ranks of certain matrices, but this also means their method
does not extend to ZH and ZW.

The result of [7] is in fact stronger than that of Theorem 18; as they show that under the conditions
given here there is a universal proof of the parameterised equation, something that the method given in
Theorem 18 does not show. For the purposes of verification, however, it is not important how an equation
is derivable, but only whether the equation is sound.
Example 22. Note that the ZX result required the variables to be linear, but for ZH and ZW this result
applies to diagrams whose phases are polynomial (or even Laurent polynomial) in the α j. For example
we can verify the following ZH equation by checking 3 distinct values of α:

α

α α2

2= (27)

Example 23. Consider a Clifford+T ZX diagram that contains at least 8 nodes labeled by a positive α .
Our theorem says that for any equation containing this diagram it suffices to try at least 9 distinct values
of α , but this is impossible since there are only 8 distinct values of α available in Clifford+T.

This is because our Laurent polynomial matrix interpretation needs to be viewed not in C[Y,Y−1] but
in C[Y ]/(Y 8−1), reflecting the property 8×α = 0 in our phase group. All polynomials in C[Y ]/(Y 8−1)
have degree at most 7, and so it is never necessary to check more than 8 points.

4 Verifying !-boxes

We now turn our attention to !-boxes. The aim of this section is to show that if an equation holds for
0, . . . ,N !-box instances, then it continues to hold for any number of instances. It then follows that one
only needs to check the first 0, . . . ,N instances in order to verify the entire family. The method relies on
the finite dimensionality of what we call the join between the inside and outside of a !-box. Sometimes
this join is not finite dimensional, and so we examine a property called separated which captures when
the method will work. Before we can get to that we first make clear how the nesting of !-boxes and phase
variables can work.

4.1 Children, copies, and the nesting order

We begin with some definitions for describing the effect of nesting !-boxes inside a parameterised family
of equations. There is a choice to be made when nesting parameters:
Definition 24. When a !-box creates new instances of a nested parameter we copy that variable name, so
that all instances are linked by the same name (the approach taken in [12, §4.4.2],) we could alternatively
create new names, each of which is referred to as a child of the original parameter name (an approach
requested by at least one user of Quantomatic.) When we create child parameters we record the name of
its parent, so we can always tell the original ancestor of a parameter.
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Rather than pick one option over the other we will demonstrate our results for both choices. In order
to talk about nesting formally we introduce the following definition:

Definition 25. We define a partial order (which we call the nesting order) on !-boxes in a diagram:

δ1 < δ2 if δ1 is inside δ2

And use this partial order to draw a nesting diagram. For example this (universal) ZX diagram:

β

α2αδ1 δ2

δ3
has nesting diagram

δ1

δ3

δ2

Definition 26. We say an equation is well nested if the nesting diagrams corresponding to the left and
right hand sides of the equation are identical.

Definition 27. The join of a !-box is the collection of wires that leave that !-box, i.e. the edges linking a
vertex inside δ to one outside δ . The size of a join is the number of wires, and the dimension of a join is
the dimension of the diagram formed by just the wires of that join, i.e. dimJ ⊗n K where n is the size of
the join. This is equivalently (dimJ K)n.

Definition 28. We describe a pair of !-boxes as separated if either:

• They are nested, or

• There is no edge joining a vertex in one to a vertex in the other

Note that in many of the languages considered there are elementary operations one can do that will
change a diagram that is not separated into one that is. See Section C for more details.

4.2 Verification

Definition 29. Given a parameterised equation E we say that {E1, . . . ,En} verifies E if:

∀ j (E j is sound) =⇒ E is sound

Theorem 30. Given a family E = { D1 = D2 }
α1,...,αn,δ1,...,δm

of diagrammatic equations, parame-
terised by a !-box δ1 where δ1 is separated from all other !-boxes and is nested in no other !-box; then E
is verified by the finite family {E|δ1=0, . . . ,E|δ1=N} where N is the dimension of the join of δ1 in D1 plus
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the dimension of the join of δ1 in D2. That is:

n1 := join of δ1 in D1

n2 := join of δ1 in D2

N :=dim
(
H⊗n1⊕H⊗n2

)
r
{ D1 }

α1,...,αn,δ1,...,δm|α1=a1,...,δ1=d1,...δm=dm

z

=
r
{ D2 }

α1,...,αn,δ1,...,δm|α1=a1,...,δ1=d1,...δm=dm

z
∀d1 ≤ N (28)

=⇒
r
{ D1 }

α1,...,αn,δ1,...,δm|α1=a1,...,δ1=d1,...δm=dm

z

=
r
{ D2 }

α1,...,αn,δ1,...,δm|α1=a1,...,δ1=d1,...δm=dm

z
∀d1 (29)

The proof is presented in appendix A.2. The essence of the proof is to change the presentation of the
!-box instances into one that looks like the vertical composition of repeated elements. From there some
elementary (albeit fiddly) properties of finite dimensional vector spaces are applied to achieve the result.
Note that the the resulting finite family of equations need not be simple, and that if δ1 were not separated
from the other !-boxes then we could not put a bound on N.

Example 31. Consider the following (universal) ZX family of equations, parameterised by a single !-box:

E :=

{
=

π −π δ δ

}
δ

(30)

The join between the !-box and the rest of the diagram on the left is two wires (dimension 22), and on the
right is one wire (dimension 21.) These sum to have dimension 6, and we therefore need only to check
the !-box instances (0, . . . ,6) to be sure that the equation E is sound.

5 Interacting Parameters

Theorem 18 and theorem 30 deal with equations containing multiple phase variables and nested !-boxes
respectively. This section will put together the necessary results such that we can combine these ap-
proaches to deal with equations containing multiple !-boxes and phase variables, any of which could
potentially be nested inside other !-boxes.

Theorem 32. Given an equation E and ways of finding

• finite verifying sets A j for the α j (Theorem 18)

• finite verifying sets Dk for the δk (Theorem 30)

then we may verify the entire family E by checking the (finite) set given by the cartesian product of all
the A j and Dk.
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Proof. We define:

D̄ := D1×D2×·· ·×Dm (31)

δ̄ := (δ1, . . . ,δm) (32)

A j(δ̄ ) := The verifying set for α j once E has had !-boxes instantiated at δ̄ (33)

Construct A j by choosing as many points as there are in max
δ̄
{|A j(δ̄ )|}. This is finite because the Di

and the A j(δ̄ ) are finite. A j therefore contains enough points to be a verifying set for A j(δ̄ ) ∀δ̄ ∈ D̄.
We now show that A1×·· ·×An×D1×·· ·×Dm describes a verifying set for the parameterised equation
E:

Eα1,...,αn,δ1,...,δm|∀i, j α j∈A j,δk∈Dk is sound (34)

= E
α1,...,αn,δ1,...,δm|∀i α j∈A j, δ̄∈D̄ is sound (rewrite using δ̄ notation) (35)

=⇒ E
α1,...,αn,δ1,...,δm|∀i α j∈A j(δ̄ ), δ̄∈D̄ is sound (construction of A j) (36)

=⇒ E
α1,...,αn,δ1,...,δm|δ̄∈D̄ is sound (theorem 18) (37)

=⇒ Eα1,...,αn,δ1,...,δm is sound (theorem 30) (38)

Theorem 33. Given a parameterised family of equations E, where the !-boxes are separated and well
nested, we can construct a finite set of simple equations {Eκ}κ∈K , such that:

{Eκ}κ∈K is sound =⇒ E is sound (39)

The proof can be found in appendix A.3. The idea of the proof is to iteratively remove dependencies
on !-boxes via theorem 30, each time generating a larger set of verifying equations. Once we have
removed all !-box dependence we then use theorem 32 to remove phase variable dependence; using the
“largest” equation in {Eκ} to determine the sizes of the A j. We argue by the finite nature of all the parts
involved that this process terminates.

We did not specify in the statement of our theorem which method of !-box expansion we were
following (see Definition 24) and indeed both methods work and are covered in the proof.

6 Conclusions

We have shown how to construct finite sets of equations that verify certain classes of infinite families of
equations. To our knowledge this is the first algorithm that can verify equations containing !-boxes, and
the first analysis of such algorithms for ZW and ZH. This paves the way for proof assistants to verify
parameterised theorems. Further work would include combining this work with conjecture synthesis, so
that a computer could generate and verify parameterised hypotheses. One could also implement such
methods into proof assistants, such as Quantomatic [9], so that the verifying set could be generated (and
ideally checked) automatically.

One final avenue is to develop methods to deal with the side conditions of the (EU) rule of the ZX
calculus ([14],) either by extending these results or finding a presentation of the ZX calculus that does
not require side conditions. It should be noted that [7] gives some evidence that such a presentation may
not exist.
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A Proofs

We show here any proofs that were not included in the main text.

A.1 Proof of theorem 18

Theorem 18. For a diagrammatic equation with phase variables

{ D1 = D2 }
α1,...,αn

that has a Laurent polynomial matrix interpretation, and the equation is sound at all values of
(α1, . . . ,αn) = (a1, . . . ,an) ∈ A1× ·· · ×An, where each |A j| is sufficiently large, then the equation is
sound for all values of (α1, . . . ,αn). That is:

r
{ D1 }

α1,...,αn|α1=a1,...,αn=an

z
=

r
{ D2 }

α1,...,αn|α1=a1,...,αn=an

z

∀a1 ∈ A1, . . . ,an ∈ An (21)

=⇒
r
{ D1 }

α1,...,αn|α1=a1,...,αn=an

z
=

r
{ D2 }

α1,...,αn|α1=a1,...,αn=an

z

∀a1, . . . ,an

The necessary size of |A j| is given by:

|A j|=max(deg+Yj
D1,deg+Yj

D2)+max(deg−Y j
D1,deg−Y j

D2)+1 (22)

“The maximum of the positive degrees, plus the maximum of the negative degress, plus one.”

Proof. We are seeking the multivariate complex polynomials that populate the matrices J D1 K and J D2 K.
We begin by combining the two matrices of Laurent polynomials into one matrix of (not-Laurent) poly-
nomials and a scale factor of the form Y m1

1 . . .Y mn
n .

• We define:

M1 := J D1 K M2 := J D2 K (40)

and wish to show M1 = M2.

• First we pull enough copies of Y−1
1 , . . . ,Y−1

n out of each side so that we have an equation of the
form:

M′1 ∏
j
(Y−1

j )
deg−Yj

M1 = M′2 ∏
j
(Y−1

j )
deg−Yj

M2 (41)

Where M′1 and M′2 are matrices of (not-Laurent) polynomials.

• Let m j :=max(deg−Yj
M1,deg−Y j

M2) and multiply both sides by ∏ j Y
m j
j to clear any negative powers

of Yj.

M′1 ∏
j

Y
m j−deg−Yj

M1 = M′2 ∏
j

Y
m j−deg−Yj

M2 (42)
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• Then subtract the right hand side from the left:

M′1 ∏
j

Y
m j−deg−Yj

M1

j −M′2 ∏
j

Y
m j−deg−Yj

M2 = 0 (43)

M :=M′1 ∏
j

Y
m j−deg−Yj

M1−M′2 ∏
j

Y
m j−deg−Yj

M2 (44)

Note that M is a matrix of (not-Laurent) polynomials. The statement M = 0 can be viewed as a
stating that each entry of M is equal to the 0 polynomial.

• We will use the notation degYj
· for the degree of a (not-Laurent) polynomial, or matrix of poly-

nomials. We could continue to use the term positive degree, the definitions coincide, but want to
make it clear that we are no longer in a Laurent polynomial setting.

• We wish to find a bound for the maximum degree of any polynomial in M:

degYj
M=degYj

M′1 ∏
j

Y
m j−deg−Yj

M1−M′2 ∏
j

Y
m j−deg−Yj

M2 (45)

≤max(degYj
M′1 +m j−deg−Yj

M1,degY j
M′2 +m j−deg−Y j

M2) (46)

=max(deg+Yj
M1 +deg−Yj

M1 +m j−deg−Yj
M1,

deg+Yj
M2 +deg−Yj

M2 +m j−deg−Yj
M2) (47)

=max(deg+Yj
M1 +m j,deg+Y j

M2 +m j) (48)

=max(deg+Yj
M1,deg+Yj

M2)+m j (49)

=max(deg+Yj
M1,deg+Yj

M2)+max(deg−Y j
M1,deg−Y j

M2) (50)

• Suppose we know that our diagram equation is sound for parameter choices in a large enough
regular grid of values. (A technique that appears to date to before the 20th century, according to
[11].)

r
{ D1 }

α1,...,αn|α1=a1,...,αn=an

z
=

r
{ D2 }

α1,...,αn|α1=a1,...,αn=an

z
(51)

for (a1, . . . ,an) ∈ A1×·· ·×An

where |A j|= degY j
(M)+1

A j := {a j,0 , . . . , a j,degYj}

By picking a polynomial entry P of M, expressing P using the multi-index β as P = ∑β cβY β

j , and
then evaluating P at every point in A1×·· ·×An we construct the system of equations:

c0,...,0a0,...,0
0,...,0 c1,...,0a1,...,0

0,...,0 . . . cdegY1,...,degYnadegY1,...,degYn
0,...,0

...
...

. . .
...

c0,...,0a0,...,0
|A1|,...,|An| c1,...,0a1,...,0

|A1|,...,|An| . . . cdegY1,...,degYnadegY1,...,degYn
|A1|,...,|An|

=

0
...
0

 (52)

Which we view as:

[
V
] c0,...,0

...
cdegY1,...,degYn

=

0
...
0

 (53)
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Where V contains all the products aβ1
1 ×·· ·×aβn

n , β ranging from (0, . . . ,0) to (degY1, . . . ,degYn).
Thankfully V decomposes as:

V =V1⊗ . . .⊗Vn (54)

Vj =


a0

j,0 a1
j,0 . . . adegYj

j,0

a0
j,1 a1

j,1 . . . adegYj
j,1

...
...

...
a0

j,degYj
a1

j,degY j
. . . adegYj

j,degYj

 (55)

• Since det(A⊗B) 6= 0 if and only if det(A) 6= 0 and det(B) 6= 0, and since det(Vj) 6= 0 because each
Vj is a Vandermonde matrix, we know that det(V ) 6= 0. Since V is therefore invertible we know
that all the coefficiencts cβ must be 0, and therefore P is the 0 polynomial.

• In the presence of a regular grid on which D1 and D2 agree we know:

r
{ D1 }

α1,...,αn|α1∈A1,...,αn∈An

z
=

r
{ D2 }

α1,...,αn|α1∈A1,...,αn∈An

z
(56)

=⇒ P = 0 for any entry P of M (57)

=⇒ M= 0 (58)

=⇒ M′1 ∏
j

Y
m j−deg−Yj

M1−M′2 ∏
j

Y
m j−deg−Yj

M2 = 0 (59)

=⇒ M′1 ∏
j

Y
m j−deg−Yj

M1 = M′2 ∏
j

Y
m j−deg−Yj

M2 (60)

=⇒ M1 = M2 (61)

=⇒
r
{ D1 }

α1,...,αn

z
=

r
{ D2 }

α1,...,αn

z
(62)

• By setting d j to degYj
M+1 (which we can calculate using equation (50)), and |A j|= d j we attain

our result; that if we know that the interpretations of the families of diagrams agree on the regular
grid described by the sizes d j then the interpretations agree on all points in the phase group.

A.2 Proof of theorem 30

Theorem 30. Given a family E = { D1 = D2 }
α1,...,αn,δ1,...,δm

of diagrammatic equations, parame-
terised by a !-box δ1 where δ1 is separated from all other !-boxes and is nested in no other !-box; then E
is verified by the finite family {E|δ1=0, . . . ,E|δ1=N} where N is the dimension of the join of δ1 in D1 plus
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the dimension of the join of δ1 in D2. That is:

n1 := join of δ1 in D1

n2 := join of δ1 in D2

N :=dim
(
H⊗n1⊕H⊗n2

)
r
{ D1 }

α1,...,αn,δ1,...,δm|α1=a1,...,δ1=d1,...δm=dm

z

=
r
{ D2 }

α1,...,αn,δ1,...,δm|α1=a1,...,δ1=d1,...δm=dm

z
∀d1 ≤ N (28)

=⇒
r
{ D1 }

α1,...,αn,δ1,...,δm|α1=a1,...,δ1=d1,...δm=dm

z

=
r
{ D2 }

α1,...,αn,δ1,...,δm|α1=a1,...,δ1=d1,...δm=dm

z
∀d1 (29)

The idea of the proof is:

1. Manipulate the diagrams into what we call series !-box form

2. Move to the matrix interpretation

3. Manipulate the equation between two matrices into an expression on a single vector space of
dimension N

4. Demonstrate the required property as a condition on subspaces

We will require the “only topology matters” meta-rule for our diagrams, suitable spider laws, a matrix
interpretation, and finite dimensionality of H.

Proof. We begin by showing series !-box form on a diagram containing a single !-box:

{ D }
δ

(63)

First we will manipulate the diagram (via “only topology matters”) until it is in the following form:

D =
G

B

. . .

. . .

!-box δ around subdiagram B

remaining diagram G

m inputs for G

n connecting wires from B to G

δ

(64)

We note that the nodes inside G that join with B must be spiders; since there can be arbitrary many
instances of B the connecting node in G must be able to have arbitrary arity. There may also be p
boundaries that are internal to B (and therefore δ ,) which we will deal with momentarily. We will now
rely on the existence of a spider law such that we may do the following:

. . .

= . . . (65)
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Which is the ability to “spread” a spider with n outputs into n repeated copies of a spider with 1
output, with suitable initial, terminal, and joining subdiagrams. We do this so that each instance of the
!-box is connected to its own copy of the spider, and these copies are joined in sequence.

This is possible in ZX, ZH and ZW. To give a ZX example (where the spider law is simple:)


δ

G

B

. . .


δ |δ=d

=

GBBB

. . .

initial node inside Gd instances of Bend node

. . .

(66)

Note that although we have only used one example node and joining wire we can perform this action
on all nodes and joining wires. Where two wires travel from the !-box to the same spider inside G we
first spread out that spider so each wire from the !-box connects to a different spider in G. Here is an
example for n wires between B and G, and p boundaries inside δ (which we stretch down to be below
each copy of B in this representation, just for visibility.)

GB

. . .

n nodes inside Gd instances of Bn end nodes

...
. . .

...
...

. . .. . .

B

. . .

p p m

(67)

From here it is easy to see that we have the diagram G : m→ n, beside d copies of a diagram we call
B : p+n→ n (containing the p boundary nodes and the new connecting spiders), and finally an ending
diagram C : n→ 0. We call this the series !-box form.

Definition 34. Series !-box form for a given (non-nested, separated) !-box δ1 = d in a diagram is a
presentation (as in equation 67) of each the δ1-instantiated diagrams as

C := the end cap of spiders

B := repeated element, which may contain α1, . . . ,αn,δ2, . . . ,δm, and some boundary nodes

G := the rest of the diagram outsie of B, which may contain α1, . . . ,αn,δ2, . . . ,δm,

and some boundary nodes

Such that the d instances of δ1 are spread out as d instances of B. In the case where you consider a
!-box to create child instances of parameters then B will contain children of the α j and δk>1, rather than
copies.

Claim: In the languages ZX, ZW and ZH, for any diagram D and any value of d we can put
D
∣∣∣
α1,...,αn,δ1,...,δm|δ1=d

into series !-box form as in the example above.
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Proof of claim: Inspection of the spider rules in each language.

We will just use the variable names α1, . . . ,αn,δ1, . . . ,δm here and assume we are copying parameters,
but the technique is identical for when one is creating child parameters and we will point out the different
intricacies along the way. We aim to show

r
{ D1 }

α1,...,αn,δ1,...,δm|α1=a1,...,δ1=d1,...δm=dm

z

=
r
{ D2 }

α1,...,αn,δ1,...,δm|α1=a1,...,δ1=d1,...δm=dm

z
∀d1 ≤ N

=⇒
r
{ D1 }

α1,...,αn,δ1,...,δm|α1=a1,...,δ1=d1,...δm=dm

z
(68)

=
r
{ D2 }

α1,...,αn,δ1,...,δm|α1=a1,...,δ1=d1,...δm=dm

z
∀d1

N := dim
(
H⊗n1⊕H⊗n2

)
n1 := join of δ1 in D1

n2 := join of δ1 in D2

We would like to move directly to the matrix interpretation of diagram (67), but we have the following
problems:

• the p dangling wires from every copy of B

• the parameters inside every copy of B (either linked copies or discrete children)

We solve these problems (and justify these solutions below) by considering B as parameterised by:

• Instances of α j ∀ j

• Instances of δk ∀k > 1

• Input vectors v ∈H⊗p that “plug” the inputs inside B.

Since we can show equivalence of complex matrices by showing that they perform the same operation
on any input, we need to show that for any choice of α j, δk>1 and for any input that equation (68) holds.
(And that if we are creating child instances of parameters then these equations hold for any choice of each
of those independently.) Once we have specified values of α j, δk>1 we may use our matrix interpretation
to get a complex matrix, but we need to do this for every possible choice of α j, δk>1.

Assuming we have made choices for the α j and δk>1, we wish to justify that we can choose the input
vector for the p inputs of B independently. To do this we note that we can determine equality of complex
matrices by showing they perform the same operation on all basis elements.

Claim: The set of all vectors of the form {vd⊗ . . .⊗v1⊗x} where v j ∈H⊗p and x ∈H⊗m contains
a basis for H⊗(m+d p) .

Proof of claim: Note that we may form a basis for V⊗V ′ by taking the tensor products of the bases of
V and V ′, and therefore the above set contains all the basis elements of H⊗p⊗ . . .H⊗p⊗H⊗m∼=H⊗(m+d p).
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Given a choice of values for the α j, δk>1 and v we denote this choice by q and use Bq to mean “the
sub-diagram B from the series !-box form with this choice of variables”. If one is copying variable names
then these values must be the same in each copy of Bq, but we will show the more general case of when
you cannot assume that each instance of Bq contains the same choices of values for variables. (Even
when creating children of the α j and δk>1 these children are contained entirely inside each instance of B
so specifying a choice for q for each B determines all the values for parameters inside B.)

The last thing to define here is Gq. Gq is the subdiagram G instantiated with the values described by
q, same as for Bq. Once we have chosen values for q we may consider the matrix interpretation of the
diagram:

J C KJ Bqd K . . .J Bq1 KJ Gqo K (69)

Gq : H⊗m→H⊗n (70)

Bq : H⊗n→H⊗n (71)

C : H⊗n→ C (72)

Given an equation D1 = D2 of two families of diagrams, both parameterised by a (non-nested, sepa-
rated) !-box δ1 (among other parameters) we wish to remove our dependence on δ1 by instead verifying
a finite set of equations, each of which has a different value for δ1. Note that for this to be the case we
require the number of inputs to be equal; i.e. m1 = m2 = m and p1 = p2 = p, but we do not require
n1 = n2 in equation 67. With the aim of reducing notational clutter we instantiate δ1 = d and express D1
and D2 in series !-box form, with matrix interpretations:

J C1 KJ B1,qd K . . .J B1,q1 KJ G1,q0 K (73)

J C2 KJ B2,qd K . . .J B2,q1 KJ G2,q0 K (74)

And we wish to know when these two interpretations are equal. Rather than consider the matrices
acting on two independent spaces we view them as acting on the direct sum of those two spaces and
represent these maps as block matrices. (We drop the J · K notation when it would appear inside a matrix.)

J C1 KJ B1,qd K . . .J B1,q1 KJ G1,q0 K
=J C2 KJ B2,qd K . . .J B2,q1 KJ G2,q0 K ∀d,q (75)

⇐⇒
[
1 −1

][C1 0
0 C2

][
B1,qd 0

0 B2,qd

]
. . .

[
B1,q1 0

0 B2,q1

][
G1,q0 0

0 G2,q0

][
idm

idm

]
= 0 ∀d,q (76)

Think of this as copying an input vector x ∈Hm as x :: x in Hm⊕Hm, then applying

J C1 KJ B1,qd K . . .J B1,q1 KJ G1,q0 K
and

J C2 KJ B2,qd K . . .J B2,q1 KJ G2,q0 K

to the left and right copies respectively. After that we apply a minus sign to the right hand result and add
that to the left hand result, effectively comparing them and demanding the difference to be 0. We seek to
prove:
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[
1 −1

][C1 0
0 C2

][
B1,qd 0

0 B2,qd

]
. . .

[
B1,q1 0

0 B2,q1

][
G1,q0 0

0 G2,q0

][
idm

idm

]
= 0 ∀d ≤ N,q

=⇒
[
1 −1

][C1 0
0 C2

][
B1,qd 0

0 B2,qd

]
. . .

[
B1,q1 0

0 B2,q1

][
G1,q0 0

0 G2,q0

][
idm

idm

]
= 0 ∀d,q

(77)

Recalling that q is the choice of values for α j, δk>1 and v ∈ H⊗p, we use Q to denote the set of all
possible choices. We use B′q for the matrix that acts as the direct sum of B1,q and B2,q:

B′q :=
[

B1,q 0
0 B2,q

]
(78)

and inductively define the spaces:

V0 := span{
⋃

q∈Q

Im(

[
G1,q 0

0 G2,q

][
idm

idm

]
)} (79)

Vj := span{Vj−1∪
⋃

q∈Q

B′qVj−1} (80)

The Vj form an ascending sequence of subspaces, each containing the potential images of up to j
applications of B′q:

Vj ≥ Im( B′qk
. . .B′q1

V0 ) ∀k ≤ j ∀qk, . . . ,q1 ∈ Q (81)

Claim: There is a number b such that

• if j < b then Vj >Vj−1

• if j ≥ b then Vj =Vj−1

• b≤ dim(Hn1⊕Hn2 )

Proof of claim: Define N := dim(Hn1⊕Hn2 ) and then

• Vj−1 ≤Vj ∀ j

• if Vj =Vj−1 then Vj+1 =Vj

• Vj ≤Hn1⊕Hn2 ∀ j

• dimVj−1 ≤ dimVj ≤ N ∀ j

• The strictly increasing section of the sequence of the dimVj must have length less than N

• We declare b to be the number such that Vc =Vb ∀c≥ b, and note b≤ N
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Let W be the kernal of the map
[
1 −1

][C1 0
0 C2

]
Claim:

Vj ≤W ∀ j ≤ N (82)

=⇒Vj ≤W ∀ j

Proof of claim: Since Vc = VN when c ≥ N ≥ b it is enough to show that this is the case for all Vj

when j≤N. This is implied by the assumption in our theorem; that for d ≤N our diagrammatic equation
holds, and so for any choice of d and q1, . . . ,qd this matrix equation holds:

[
1 −1

][C1 0
0 C2

][
B1,qd 0

0 B2,qd

]
. . .

[
B1,q1 0

0 B2,q1

][
G1,q0 0

0 G2,q0

][
idm

idm

]
= 0 (83)

We have shown that for any choice of inputs v ∈ Hp⊗ . . .⊗Hp⊗Hm, and parameters α j, δk>1 our
matrix equations hold, and by extension they hold on all elements of the space H⊗(m+d p), i.e. that:

∀d ≤ N ∀qd . . .q1[
1 −1

][C1 0
0 C2

][
B1,qd 0

0 B2,qd

]
. . .

[
B1,q1 0

0 B2,q1

][
G1,q0 0

0 G2,q0

][
idm

idm

]
= 0 (84)

=⇒∀d∀qd . . .q1[
1 −1

][C1 0
0 C2

][
B1,qd 0

0 B2,qd

]
. . .

[
B1,q1 0

0 B2,q1

][
G1,q0 0

0 G2,q0

][
idm

idm

]
= 0 (85)

And therefore:

J C1 KJ B1,qd K . . .J B1,q1 KJ G1,q0 K = J C2 KJ B2,qd K . . .J B2,q1 KJ G2,q0 K ∀d ≤ N ∀qd . . .q1
(86)

=⇒ J C1 KJ B1,qd K . . .J B1,q1 KJ G1,q0 K = J C2 KJ B2,qd K . . .J B2,q1 KJ G2,q0 K ∀d ∀qd . . .q1
(87)

And therefore for any choice of value for α j and δk>1:

r
{ D1 }

α1,...,αn,δ1,...,δm|δ1=d

z
=

r
{ D2 }

α1,...,αn,δ1,...,δm|δ1=d

z
∀d ≤ N (88)

=⇒
r
{ D1 }

α1,...,αn,δ1,...,δm|δ1=d

z
=

r
{ D2 }

α1,...,αn,δ1,...,δm|δ1=d

z
∀d (89)
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A.3 Proof of theorem 33

Theorem 33. Given a parameterised family of equations E, where the !-boxes are separated and well
nested, we can construct a finite set of simple equations {Eκ}κ∈K , such that:

{Eκ}κ∈K is sound =⇒ E is sound (39)

Proof. Throughout this proof we iterate on the set {Eκ}. While at all times {Eκ} is a finite verifying
set for E, it is only at the end that {Eκ} is a finite verifying set of simple equations. We first show the
existence of an ordered list of the !-boxes present in E, compatible with the nesting order on both of the
nesting diagrams of E.

Definition 35. We construct the ordered list δk1 � δk2 � ·· · � δkn by recursively picking a !-box that is
nested in no other !-boxes, then removing that !-box from the nesting diagram. Repeat on the new nesting
diagram.

Definition 36. The algorithm !-Removal:
• If we are copying variable names: Given a verifying set of equations {Eκ}κ∈K , and a !-box δk

nested in no other !-boxes present in the Eκ :
We define !-Remove(δk) as the process described in theorem 30. It acts on the set {Eκ}κ∈K by
acting on each of the Eκ in turn, finding the value Nκ , and creating the new verification set:

{Eκ}κ∈K′ :=
⋃

κ∈K

{Eκ

∣∣∣
δk=1

, . . . ,Eκ

∣∣∣
δk=Nκ

} (90)

• If we are creating child instances: We do as above, but we pick the !-box δk such that all its
child instances are nested in no other !-boxes present in the Eκ , and we act not only on each of the
Eκ in turn but also on each of the child instances of δk in turn.

Claims:
• !-Remove(δk) removes any dependency on δk in the verifying set {Eκ}κ∈K′

• {Eκ}κ∈K′ verifies {Eκ}κ∈K

• !-Remove(δk) does not alter the nesting ordering of any remaining !-boxes and phase variables in
the verification pair

• The ordered list δk1 � δk2 � . . . provides us with a sequence of !-boxes such that we can apply
!-Remove(δkn+1) to the output of !-Remove(δkn).

• This ordered sequence of !-Removes results in a finite verifying set that has no dependence on any
!-box.

Proof of claims: The first, second and fifth claims follow from Theorem 30. The third and fourth of these
claims are easy when we are copying variable names, but when creating child instances of !-boxes below
δk one should view instantiation as creating (distinctly named) copies of the nesting structure that exists
below δk.

Removing phase variables is trickier than removing !-boxes, because we know by theorem 32 that
to do so in a manner compatible with !-box removal we first need to know the largest number of !-box
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instances we are going to need. Since we have already constructed the {Eκ}κ∈K we can find the equation
that resulted from every !-box δk being instantiated at its largest amount, Nk, and use that equation.

Definition 37. We use E′ to denote the !-box free equation that is the result of instantiating each !-box
δk at its largest required amount Nk

Claim: The equation E′ contains the largest number of instances of α j compared to any other
equation Eκ

Proof of claim: The number of instances of α j is determined by the number of times the !-boxes have
been instantiated.

Definition 38. The algorithm α-Removal: Given a verifying set {Eκ}κ∈K we construct the set A j for
variable α j by considering the degree of α j in E′, and then choosing enough valid values of α j to reach
the amount dictated by theorem 18. We then form:

{Eκ}κ∈K′ :=
⋃

κ∈K,a∈A j

{Eκ

∣∣∣
α j=a
} (91)

Claim: By theorem 32 {Eκ}κ∈K′ verifies {Eκ}κ∈K

And finally:
Claim: Starting with the verifying set {E}: After applying !-Removes in the order dictacted by

≺ and then applying all possible α-Removes we construct a finite set {Eκ}κ∈K of simple equations that
verifies E.

B Generators and degrees

We show here the generators of our three example languages (ZX, ZH and ZWC ), and then show the
matrix degrees of these interpretations.

B.1 Generators

B.1.1 ZX

• The Z spider has the following interpretation in MatC

s{
α

. . .

. . .

}∣∣∣
α=a

{
=


1 0 . . . 0

0 0
...

...
. . .

0 0
0 . . . 0 eia

 (92)

Making the substitution Y := eiα (and therefore Y n = einα ) the Z spider has this interpretation in
MatC[Y,Y−1]:
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s
α

. . .

. . .

{
=


1 0 . . . 0

0 0
...

...
. . .

0 0
0 . . . 0 Y

 (93)

• The Hadamard node has the following interpretation

q y
=

[
1 1
1 −1

]
(94)

And admits no parameters.

• The X spider interpretation is found by applying Hadamards nodes on all inputs and outputs of the
corresponding Z spider.

B.1.2 ZH

• The H box in ZH has the following interpretation in MatC

s{
α

. . .

. . .

}∣∣∣
α=a

{
=


1 1 . . . 1

1 1
...

...
. . .

1 1
1 . . . 1 a

 (95)

We can simply equate Y := α and get the interpretation in MatC[Y,Y−1]:

s
α

. . .

. . .

{
=


1 1 . . . 1

1 1
...

...
. . .

1 1
1 . . . 1 Y

 (96)

• The Z spider in ZH admits no parameters, and has the following interpretation

s . . .

. . .

{
=


1 0 . . . 0

0 0
...

...
. . .

0 0
0 . . . 0 1

 (97)
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B.1.3 ZW

We are explicitly using ZWC here for compatibility with the other languages.

• The Crossing x has interpretation

s {


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 (98)

• The W spider in bra-ket notation has interpretation

s . . . {
=

n

∑
k=1
| 0 . . .0︸ ︷︷ ︸

k−1

10 . . .0︸ ︷︷ ︸
n−k

〉 (99)

• The Z spider is parameterised by α ∈ C and has interpretation

s{
α

. . .

. . .

}∣∣∣
α=a

{
=


1 0 . . . 0

0 0
...

...
. . .

0 0
0 . . . 0 a

 (100)

We can again simply equate Y := α and get the interpretation in MatC[Y,Y−1]:

s
α

. . .

. . .

{
=


1 0 . . . 0

0 0
...

...
. . .

0 0
0 . . . 0 Y

 (101)

B.2 degrees

We will consider nodes parameterised by a single variable α , and express their degree with respect to Y
following the convention of appendix B.1.

B.2.1 ZX

Using Y n := eniα , the degrees in Y of the generators (for n≥ 0) are:
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deg+α nα

. . .

. . .

= n deg−α nα

. . .

. . .

= 0 (102)

deg+α −nα

. . .

. . .

= 0 deg−α −nα

. . .

. . .

= n (103)

deg+α nα

. . .

. . .

= n deg−α nα

. . .

. . .

= 0 (104)

deg+α −nα

. . .

. . .

= 0 deg−α −nα

. . .

. . .

= n (105)

deg+α = 0 deg−α = 0 (106)

B.2.2 ZH

We equate Y := α , and for P any Laurent polynomial:

deg+α P(α)

. . .

. . .

= deg+Y P deg−α P(α)

. . .

. . .

= deg−Y P (107)

deg+α

. . .

. . .

= 0 deg−α

. . .

. . .

= 0 (108)

B.2.3 ZW

We equate Y := α , and for P any Laurent polynomial:

deg+α

. . .

. . .

= 0 deg−α

. . .

. . .

= 0 (109)

deg+α = 0 deg−α = 0 (110)

deg+α P(α)

. . .

. . .

= deg+Y P deg−α P(α)

. . .

. . .

= deg−Y P (111)

(112)

C Separability

We describe a non-separated pair of !-boxes as separable if we can perform the following operation:

...

. . .. . .

B1B2

δ1δ2

=

. . .. . .

B′1B′2

δ1δ2
B3

...
... (113)

We define pairs of nodes as separable if we can always separate !-boxes that are joined by edges
between these pairs of nodes. Note that we only need to consider nodes that have arbitrary arity, since
only they can be connected to !-boxes.
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• The following pairs of nodes are separable, by language:

ZX: (

. . .

. . .

,

. . .

. . .

) (

. . .

. . .

,

. . .

. . .

) (

. . .

. . .

,

. . .

. . .

) (114)

ZH: (

. . .

. . .

,

. . .

. . .

) (

. . .

. . .

,

. . .

. . .

) (

. . .

. . .

,

. . .

. . .

) (115)

ZW: (

. . .

. . .

,

. . .

. . .

) (

. . .

. . .

,

. . .

. . .

) (116)

The proofs of these follow immediately from the spider and bialgebra laws in the respective lan-
guages.

• The following pairs of nodes are assumed to not be separable, by language:

ZX: Always separable (117)

ZH: (

. . .

. . .

,

. . .

. . .

) (

. . .

. . .

,

. . .

. . .

) (118)

ZW: (

. . .

. . .

,

. . .

. . .

) (119)

Note that it is enough to specify the phase-free versions of these interactions, because phases can
always be moved away from the critical nodes.
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