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We propose a novel form of classification of multipartiteestain terms of the maximum degree of
non-locality they can exhibit under any choice of local alsables. This uses the hierarchy of notions
previously introduced by Abramsky and Brandenburger:rgfreontextuality, logical contextuality,
and probabilistic contextuality.

We study n-qubit pure states. We conjecture that for mone 2hgarties, all entangled states are
logically contextual. We prove a number of results in suppbthis conjecture: (1) We show thall
permutation-symmetric states are logically non-lo¢a) We study the class dfalanced states with
functional dependencie3hese states are described by Boolean functions and hasle stnucture,
allowing a detailed analysis, which again confirms the ot in this case.

1 Introduction

A general understanding of the structure of multipartittaegled quantum states has proved elusive.
The picture given by the SLOCC classification[[6] 10] doesyieit! much insight beyond the tripartite
case. Thus it seems worthwhile to consider other approaches

Our starting point is the hierarchy of empirical models blisaed in [3]. An empirical model is a
probability table describing measurement outcomes, fanfiiom Bell-type theorems. Such a table can
be realized in quantum mechanics by fixing a multipartitéestand a set of local observables at each
site.

In [3], a general approach was developed which unifies thaystfi non-locality and contextuality.
One of the key points which emerged from this analysis isttirate grades or degrees of contextuality/non-
locality for empirical models can be distinguished, andwaito form a strict hierarchy:

e A model isstrongly contextuaiff its support has no global section; that is, there is no fimmeous
assignment of outcomes to all the measurements whosetiestiio each compatible set of mea-
surements is in the support. Strong contextuality has a rumiequivalent characterizations. In
guantum mechanics, the model generated by the GHZ stateXwaiidY local observables pro-
vides a standard example of strong contextuality; while Bieb [12] are super-quantum devices
exhibiting strong contextuality.

e A model islogically (or relationally or possibilistically contextualif the following holds. Let
Us,...,Un be the compatible families of measurements. $dde the support of the model on the
joint outcomes folJ;. Then for somg, there is a proper subsBibof S; such that the set of global
sections which are compatible wil, i # j, all restrict toSatU;. This says that there are events
in the support atJ; which are not consistent with the supports of the other nreasent contexts,
when viewed as constraints on a putative global sectiondatdmi variable. This condition captures
in a precise way the idea of giving a proof of Bell's theorenthout inequalities or probabilities
[[7,[17,[4,8] 14]. It is characteristic of the well-known Harcbnstruction|[[8], which is logically
but not strongly contextual.
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e Finally, a model isveakly contextualf it is contextual, but neither strongly nor logically cest
tual.

These notions form a proper hierarchy. In our setting, mmality is a special case of contextuality.
Strong contextuality implies logical contextuality, whignplies contextuality in the usual sense. There
are weakly contextual models which are not logically contak and logically contextual models which
are not strongly contextual.

We now turn to the issue of classifying quantum states ingesfitheir non-locality propertiﬁ.ln
particular, we shall focus on-qubit pure states. If we fix local observables for each parigh a state
gives rise to a probability model as above. We can lift thgpprties of models to states.

e We say that a state is strongly non-local if Bmmechoice of local observables for each party, the
resulting empirical model is strongly contextual.

e We can similarly define logical non-locality for states; vegy shat a state is logically non-local if
for some choice of local observables, the resulting engdincodel is logically non-local; while
the state igiot strongly non-local.

e Finally, a state is probabilistically non-local if it is ndéacal, but neither of the previous two cases
apply.

This gives rise to a natural and challenging problem:

‘Characterize the multipartite states in terms of their mmaxn degree of non-IocaIitil.

We believe that an answer to this problem will shed conshderfight on the structure of multipartite
states, not least because it will necessitate solving tlewimg task:

‘ Given a multipartite state, find local observables whichesss its highest degree of non-Iocal’ty.

This problem motivates the following
Conjecture 1.1 For every n> 2, every n-partite entangled state is logically non-local.

Part of the thinking behind this conjecture is that the hipacase may actually be anomalous within the
landscape of multipartite entangled states. For examipéephly strongly contextual bipartite models
are the PR-boxes, which are of course not quantum realiz&yleontrast, for alh > 2, then-partite
GHZ states are strongly contextual [3]. Moreover, it is knatvat in the bipartite case, all entangled
statesexceptthe maximally entangled ones admit Hardy arguments, andehare logically contextual
[8]; and it seems to be folklore that this holds generally] #rat a Hardy-type argument requires some
symmetry-breaking. However, as we shall see in the nexiosedor n > 2 a different picture emerges.

In the remainder of this extended abstract, we shall repoprogress towards proving the conjecture:

e In Section 2, we shall show thatl permutation-symmetric states are logically non-locdlhis
makes use of results frorn [[13], which imply that all non-rmaaily permutation-symmetric states
are logically contextual, combined with a direct argumenshow that the Dicke states| [5], the
maximally permutation symmetric states, are logicallytegtual with respect t&X andZ local
observables.

e In Section 3, we consider a class of highly non-permutasigmimetric entangled states, thal-
anced states with functional dependenci€hese states are described by Boolean functions, and
have a rich structure, allowing a detailed analysis, whgdiraconfirms the conjecture in this case.

1Since we are in the case of Bell-type scenarios as standdistiyissed in non-locality theory, we shall use the ternaigyl
of non-locality rather than contextuality.
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2 Permutation-symmetric states

A permutation-symmetrici-qubit state is one which is invariant under the action offtiesymmetry
groupS,. A natural basis for the permutation-symmetric statesasgiged by theDicke stateg5], which
are also physically significant. For eagh> 2, 0< k < n we define:

. kqn—k
Sin,k) = Kp;mm 17Ky,

HereK = (E)_l/2 is a normalization constant, and we sum over all producksOskets anch— k 1-kets.

The well-knownW state is theS(3,2) Dicke state in the above notation.

Proposition 2.1 For each n> 2, and0 < k < n, the Dicke state (8, k) is logically non-local.

Proof Note that we exclude the cases- 0 andk = n, since in these cas&n, k) = |0") or |1"), and
these are obviously product states. We also exclude thetibgpease, for whiclg(2,1) is the EPR state
%. The bipartite case seems anomalous in a number of respects.

We shall fix the observables andZ in each party.

A Dicke stateS(n,k) gives rise to an(n,2,2) probability model, with a choice of two dichotomic
observablesX or Z, at each site. This table ha8 ®ws, corresponding to the possible choices of an
observable at each site. We shall focus firstly onflgﬁgall rowsrij, whereX observables are selected at
sitesi and j, andZ observables at the remaining sites. Bgtbe the support of the model at royy.

Now consider any joint outcome for this row in which there ard& +-outcomes andn — k) —-
outcomes, and the outcome ¥t is different to the outcome foxl. We claim thats is not in S;. If
we compute the inner product whose squared norm gives thalpility for s, we see that there are two
terms, of the formt-1/c and—1/c respectively. Thus the probability sfs 0, and it is not in the support.
We can express this in logical terms by saying thasatisfies the formula

A zrn A wo= (xex). 1)
k#£i,j,s(k)=+ ki, j,s(k)=—

We now consider the row wheEmeasurements are selected by every party. The supporsabthiis
described by the formula

k n
VIAziy A N~z (2)
moi=1 j=k+1
This is the logical counterpart of the descriptionSof, k) in the Z-basis.

From each disjundD of (2) together with the relevant instancesldf (1), we cav@tbatx < x; for
all i, j such thatz andz; appear with opposite polarity iD. Note that, by the conditions dnandn,
both polarities do appear iD. By the transitivity of logical equivalence, it follows thg <> X; can be
derived for alli, j. ThusD, together with the formulagl(1), implies the formula

N\ % < X;. (3)
i
Thus [2) together with the conjunction of all instanced dfidplies [3).
It follows that any global section which satisfies these falam must restrict to just two joint out-
comes in the row wher® measurements are selected by every party, namely thosaéhgitame out-
come at every part.
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To complete the argument, it suffices to show that these tvwcomes form a proper subset of the
support at that row. If we calculate the probability for eatlthese events, we obtain

Thus we must show that

or equivalently

which follows from Pascal’s rule;

n\ (n-1 . n—1

k)  \k—1 k )
Note however that to obtain a strict inequality, we need gsumption thah > 2; the argument for the
EPR stateS(2,1) fails at exactly this point. O

Using the results of7], we automatically obtain a logical Bell inequality whichniolated byS(n, k);
the violation is
(&)

~oon-1°

We also note that logical non-locality is preserved by theaaf local unitaried); ® --- @U,. If a
state|y) is logically non-local with respect to measurement bases

nfanJT»"'aanvr’ni>

thenU; ® --- @ Up|Y) is logically non-local with respect to the measurement base

Uln]J_r7U1n]T7 vee aUnr]rTaUnr’rT-
This follows since inner products and hence probabilitiespaeserved:

Uinf @---@Unnf | (U1 @Uy)|P)) = (U1 @Un)ny @ @nt | (Ui @Un)|g))
(U1®---@Un) (U1@---oUn)nf @ - o ni|y)
= (ny @--onyly).

Thus the orbits of the Dicke states under the actions of loc#ééries are all logically non-local.

Theorem 2.2 All permutation-symmetric n-partite entangled statesnfo- 2, are logically non-local.

Proof In [13] it is shown that all permutation-symmetric stateseptthe unitary orbit of the Dicke
states admit a Hardy argument, making use of the Majoran@septation of permutation-symmetric
states. This is easily converted into a proof of logical fmsality. The theorem now follows by combin-
ing this result with Proposition 2.1. O
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3 Functionally dependent states

We now turn to a class of highly non-permutation-symmetiites.
For eachn > 2, an-ary Boolean function is a functiok : {0,1}" — {0,1}. Eachn-ary Boolean
function can be expressed as a multivariate polynomial G&R):

12,...,

F(X,...,%) :a0+2ai1xi+2ai2’jxixj+...+an’ "Y1Xo . . . Xn
| 0]

There are 2=1+n+ (3) +...+ (}) summands in the expression of the above polynomial, each of

GF(2). Alternatively, eacm-ary Boolean function can be expressed as a propositionaiula in the
Boolean variablegy, ..., X, [9].

We define a balanced+ 1-qubit quantum state with a functional dependency givea byvariate
polynomialF as above to be a state which has the form

11.1

LIJF(I’H— 1) = —
@ qqu...qZ:OOMO

|0102. .. AnF (01,02,...,0n))

when expressed in th&basis.

In the rest of this section we shall classify the balancedtfanally dependen + 1-qubit quantum
states in terms of their contextuality properties. We sHallthis first for the three-partite case. A
classification of then 4 1-qubit states fon > 2 can then be obtained using the results from the three-
partite scenarios.

3.1 The three-partite case
3.1.1 Polynomials of degree zero

There are & = 16 three-partite balanced states with a functional depeyddwo of these, namely

1 (1941
é|ooo>+|010>+|100>+|110>_( 7 ) ® |0)

and

1 \0>+\1>>®2

=/001) +]011) + |10 +-|111) = ®|1

51000 013+ 108+ 113 = (222 ey
are obviously product states, and hence non-contextuaty €barrespond to the constant polynomials
Fo(q1,02) = 0 andF1(q1,02) = 1 respectively.

3.1.2 Degree one polynomials

There are six states whose corresponding polynomials heyese one. Two of these are given by the
functional dependencies which correspond to the two-lipropositional formulaX ORandNXOR
Another four states are given by so-called dictatorshigs,the value of the last qubit is dictated either
by the value of the first qubit or by the value of the second tgubfke shall look at these two classes of
states below.
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3.1.3 XOR and NXOR

The polynomials corresponding to tle@ORandN X ORstates have the forfAg (01, d2) = a+ a1+ g2
with a= 0 for XORanda =1 for NXOR

Theorem 3.1 The XOR state is strongly contextual if each party choosesdes Y and Z measure-
ments.

Proof The support of the probability table for tdORstate is

+++ ++— -+ = -4+ —F— ——F ——=
YYY| 1 1 1 1 1 1 1 1
YYz| o 1 1 0 1 0 0 1
Yzy| o0 1 1 0 1 0 0 1
ZYy| o 1 1 0 1 0 0 1
Yzz| 1 1 1 1 1 1 1 1
zyz| 1 1 1 1 1 1 1 1
zzy| 1 1 1 1 1 1 1 1
zzz| 1 0 0 1 0 1 1 0

One can simply inspect the table above and check that noihe gitctions in the support of tie Z
row can be extended to global sections (i.e. each possiblabhssignment consistent with the support
of theZZZ row will restrict to a section outside the support on at lesst of the three rowsY Z Y ZY
andZYY). Thus there cannot be any global assignment of outcomesemuastriction to each set of
compatible measurements is in the support of the model.

It is worth at this point to give a more formal expression tig ftrgument in order to gain a better un-
derstanding of what is actually going on. For this recalt tha+ and— eigenstates of th observable
are|0) and|1) respectively while for th&/ observable they are (modulo some normalization constant
which does not play any role in our argumejt) ) := |0) +i|1) and|y_) := |0) —i|1) respectively

We start our argument by assuming that a global section ddass é&ssume next that this global
section makes the assignmegt= +. The probability of obtaining the outcomgz,+ with z € {4, —}
is given by the squared norm of the inner product

(€26:0XOR = (e 8,011 0 +1018 * HOL 1110
wheree; =0 ande_ = 1. If we regard eaclk, as an element d&F(2) then the inner product above is
non-zero only if

FRoR(€2,62) =€, + &, =0
So the sections in the support of th& Zfor which zz = + must havez; = 2, as the table confirms.
Next consider theé’'Y Zset of compatible measurements. The probability (modulonatization
constants) of obtaining the outcomgy,+ with y; € {+, —} for this set of measurements is given by the
squared norm of the inner product

/000 1013 + 103 + 110

(yy1szO|XOR> = <Yy1sz 2 (4)
We have
(Y+Y+| = (00 +i(01f +i(10 — (11|
(Y+y-| = (00] —i{01f +i(10] + (11]
(Y-y+| = (00 +i{02] —i(10 + (11]
( ( ( (10—

00/ —i(01] —i(10 — (11

yy- | =
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and sinceFJoR(0,1) = F2oR(1,0) # 0 the imaginary part of the tensor products above will natdpany
contribution towards the value of the inner produgt (4). ©né contribution will come from the real
part of the tensor products above, and it is easy to see hatrier product (4) will vanish whep = ys.
So we must havg, # Y, in any global assignment which sermgo + in order to stay within the support
of theY'Y Zrow.

On the other hand, the probabilities of obtaining the outesyazys andzywys, wherez = z; = 2,
for theY ZYandZYY sets of compatible measurements are given by the inner gidu

(Vy,€2Yy5| XOR) = ((0e;0| + iy3(0e,1| +iy1(1€;0| — (y1ys)(le/1]) [XOR (5)
(€2Yy,Yys [ XOR) = ((€00] +iy3(e;01| +iy2(e,10 — (y2y3)(e;11]) [XOR (6)

If e, =0 the imaginary part of the two expressiondih (6) will be édquaero for all values of;. If e, =1
the real part of the two expressions|in (6) will vanish fonalues ofy;. In the first case the expressions
are non-zero only if; =y, = —y3 and in the second case they are non-zero onyy # y, = y3. But
both these assignments violate the previous requirematyitg: ys.

So far we have established the fact that no global sectiorasaign the outcome- to z3. If on
the other hand the outcome is assigned tas, we can construct a similar argument which yields a

contradiction. This time the sections in the supporZ@iZ for which zz = — must havezy = —z,. The
sections in the support 8fY Zmust havey; = y», while those in the support 0fZYandZY Y must either
havey; = —ys = —y> fore,, =0,e, =1 o0ry; =y3 = —y> fore;,, =1 ande, = 0. O

Theorem 3.2 The NXOR state is also strongly contextual if each party shsedetween Y and Z mea-
surements.

Proof The support of the probability table for tiNeX ORstate is

+4++ ++— +—+ +—— -4+ —+-—
YYY| 1 1 1 1 1
YYZ
YZY
zZYyY
YZZ
zZYz
zzy
777

|

|
+

|

|

|

PR, PFP,OOO
PR R R R
PR R R RRR

ORRPRRRLPEPPRE
PR RPRPROOO
PR RPROOO
ORRPRRRPRRERRR
PR RPRRPROOOR

1 0 0

The argument for strong contextuality follows the samegpatas for theX ORstate. We assume by
contradiction that a global section exists, and that it reake assignmergy = +. Then from theZZZ
row we obtain the requirement that+# z,. From theY'Y Zrow we obtain thay; =y, and from they ZY
andZY Y rows we obtain thay; # y», which is a contradiction.

Similarly, if zz = — we must have; = z andy; # y, from theZZZandYY Zrows. This means we
must also havg, =y, from theY ZY andZY Y rows, which again is a contradiction.

Note at this point that the similarity between these two argnts for strong contextuality is due
to the similar structure of the tables for tld@ORan NXORstates. Namely, the second table can be
obtained from the first by interchanging theand — signs which label the table columns. Thus the
second argument is the same as the first, only withttlaad — signs interchanged. O
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3.1.4 Dictatorships

The four degree one polynomials of the foFf¥(q1,dz) = a+ a1 andF{(qy,q2) = a+ 0 whereac {0,1}
correspond to the so-called dictatorship states, whergale of the last qubit is dictated by the value
of either the first or of the second qubit. In thdasis these states are

ag - 041D o 00

or
0)+]1) _ 03) +[10
V2 V2
if the dictatorship is given by the second qubit. Similaifythe dictatorship is given by the first qubit,
we have two possible states

A, =

ar = 1020 112) ]010s) + [1a1s)
v V2 V2
and
_ 02) +11 0413) + (1,0
A11:|2> 12)  10als) +[110)

V2 V2

where the subscripts 1, 2 and 3 indicate whether the qubiingsl to the first, second or third party
respectively.

Proposition 3.3 The four dictatorship states are weakly contextual foradlg dichotomic choices of
measurements.

Proof
Consider the general form of an observable, given in ternasgfesd and g on the Bloch sphere

. ( cos® e '¢sing
U(6.9):= < d9sind  —coso >

We will use the fact that the bell basis states = % and®~ = 99419 5¢ weakly contextual

with respect to suitable choices of measurements. Ve

It can be machine checked that the st@teis weakly contextual if we allow each party to choose
between the measuremeits=U (7, %) andB:=U (Z,2F), while the statap~ is weakly contextual if
we allow each party to choose between the measurer@entdJ (Z, ¥) andD :=U (3F,7)

In fact, it can also be machine checked that this choice ofsnrements gives a maximal violation
of Bell inequalities for both states.

The probability models of the dictatorship states can bainbtl from the probability models of the
statesd™ and®~ in a straightforward way. Let+a) and|—a) stand for the eigenstates Afand |+g)
and|—g) stand for the eigenstates Bf

Define the two constants
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Note thata, +a_ = 1. Similarly, define the two constants

b 1 =—=((+8|0) + (+8|1))

=Nl

b_:= E((—B\o>+<—s\1>)

Up to two decimal points precision, the probability tabletod d* state for the observablésandB is

| ++ +- -+ —=
AA|043 007 007 043
AB|0.07 043 043 Q07
BA | 0.07 043 043 007
BB | 007 043 043 007

The inner product formula for computing probabilities ineglthat the probability table of the dicta-
torship stated] can be expressed in terms of the constantsa_, b, andb_ and the probability table
of d+:

44+ - At = | -+ - - =
AAA| 0431, 007a, 007a, 043, | 043 007a_ 007a_ 043a
AAB | 0.07a, 0431, 043, 007a, |007a. 0432 043 0.07a
ABA | 0.07a, 043, 043, 007a, |007a. 0432 043 0.07a
ABB | 0.07a, 0431, 043, 007a, |007a. 043 043 0.07a
BAA| 043, 0070, 0070, 0430, | 043_ 007b_ 007 0430
BAB| 0070, 0430, 0430, 007, | 007 043_ 043_ 0.07b_
BBA| 0.07b, 0430, 0430, 007, | 0070 043b. 043b. 0.07b_
BBB| 0070, 0430, 0430, 007, | 007 043_ 043_ 0.07b_

Note also that the table of the dictatorship st&IewiII have the same values as the one above, but
the rows will be indexed in the ord&AA AAB, BAA BAB, ABA ABB, BBA BBB, since the coefficients
a,,_ andb,,_ come from the second qubit's contribution to the inner potdu

It is now straightforward to deduce that the stal¢sandA; are indeed weakly contextual for the
same choice of measurements for which ¢he state is weakly contextual, since any probability distri-
bution on the set of global sections of one of these two dicship states would restrict to a probability
distribution on the set of global sections of tihe state.

Next note that up to two decimal points precision, the prdligtiable of the ®~ state for the ob-
servable€ andD is

| ++ +- -+ —=
AA|043 007 007 043
AB|0.07 043 043 Q07
BA | 0.07 043 043 007
BB | 007 043 043 007

and the probability tables of th andA, dictatorship states can be expressed in terms of the table
above and four suitably defined constants_ andd. ,_, so by analogy with th&{ andA; case, these
states will also be weakly contextual. O
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Theorem 3.4 None of the four dictatorship states is logically contektéiar any dichotomic choice of
measurements.

Proof The relationship between probability tables discussedrap®sition[3.B allows us to reduce
the problem to the bi-partite scenario. Thus we seek to pifeaeneither of the two Bell basis states is
logically contextual for any given choice of measurements.

Let A:=U (6, @) andB:=U(6,, ). Letc, sand f stand for cod:, sin% andeé® respectively.
Similarly, letk, z and v stand for co:-';l, sin% and €% respectively. Then the general form of the
probability model of thep™ state is

++ +— —+ ——

AA| |2+ f?. &2 |cs—f2.cd? |cs— f2.cg? |2+ f2.¢??
AB | [ck+ fv-sZ? |cz— fv-sk? |sk—fv.cZ? |sz+ fv-ckf?
BA | |ck+ fv-s7? |sk— fv-cd? |cz— fv-sk? |sz+ fv-ck?
BB | [K2+Vv2-Z22 |kz—V?-kZ? |kz—V?-kZ? |2 +Vv2-K?|?

In most cases, all of the sections in the modeldof will be in the support, in which case the
state is clearly not logically contextual. However, forte@r values ofc, f, v andk (which may be
chosen independently of each other) the entries of the &iaee may vanish, which will exclude certain
sections from the support. It suffices therefore to check ttia resulting possibilistic models are not
logically contextual for any choices aof f, v andk (and implicitly also ofs andz) which would allow
one or more of the above table entries to vanish. We therefeeel to consider each element in the
powerset of the following set of conditions ons, f, v, zandk:

C = {cvke {0,£1}, fvve{xl, +i}, f:i\—ll, c=+4s k=427 ck=+sz cz:isk}

A computer can easily verify that no subset of the above sebiditions leads to a logically contex-
tual probability model.

Finally, using the relation between probability tablesrfr@ropositiori 313, we note that any global
section of the model above can be easily extended to a glebabs of the corresponding dictatorship
state model by adding the assignmertb the third party’s outcome for ttemeasurement, &, = 0 and
— otherwise, and similarly for the third party’s outcome esponding to th& measurement. We can
therefore conclude that for all possible choices of measangs, the dictatorship states corresponding to
®* can not be logically contextual.

For thed™ state note that the observab@s=U (¢, 6;) andD :=U (@, 6,) will give the probability
model

++ +- —+ ——
AA| cs—f?.cd? |2+ 2.7 |+ 2?7 [cs— f?-cg?
AB | [cz— fv-sK? |ck+ fv-sZ? |sz+ fv-ck]2 |sk— fv-cZ?
BA | |sk— fv-cZ? |ck+ fv-sZ? |sz+ fv-ck?2 |cz— fv-sk?
BB | |kz—Vv2-kz?2 |K2+Vv2-Z2 |2+Vv2-K]?  |kz—Vv?-kZ?

wherec, k, s,z now takeq /2 as arguments whilé andv take 6, as arguments.

We can show that this model is also not logically contextusing an argument completely analogous
to the one used for thé@™" state. Hence the dictatorship states corresponding t®thetate are also not
logically contextual. O
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3.1.5 Degree two polynomials

There are eight balanced functionally dependent statesevborresponding polynomials have degree
two. Four of these correspond to the two-variable propasiti formulasAND, NAND, ORandNOR
Their respective polynomials have the form

Finp(01, O2) = a+ a0

and
FSr=a-+ 0+ 02+ b0

with a= 0 for ANDandORanda= 1 for NANDandNOR

The other four states correspond to logical implication amdegation. We uséq, Lo, NL; and
NL, to denote the propositional formulag = gy, g = g1 andTr = Oz, O = 0z respectively. The
polynomials corresponding to these propositional formualee of the form

R, = a+d + 0102

with i € {1,2}, a= 0 for NL; anda= 1 for L.
All the eight states described above turn out to be logicadigtextual if we choos¥ andZ mea-
surements in each part.

Theorem 3.5 The AND state is logically contextual.
Proof The support of the probability table for tléN D state is

+4++ ++— -+ = -4+ —F— ——F ——=
YYY| 1 1 1 1 1 1 1 1
Yyz| 1 1 1 1 1 1 1 1
yzy| 1 1 0 1 1 1 1 0
zZyy| 1 1 1 1 0 1 1 0
Yzz| 1 0 1 1 1 0 1 1
zvz| 1 0 1 0 1 1 1 1
zzy| 1 1 1 1 1 1 1 1
zzz| 1 0 1 0 1 0 0 1

The global assignmemi z,z3y1Y»>Y3 = + + + + ++ is clearly consistent with the support of tA&ID
table, so this state is not strongly contextual YoandZ measurements. However, not all sections in
the support can be extended to global sections. Considex&mple the sectiopyy,z3 = + — — which
is in the support. The only section on tA&Z Z row consistent with it i12z3 = — — —. But it is now
impossible to assign an outcomeytpwhich will make the resulting global section restrict totsats in
the support of both of the rowsZY andZYY. In fact, there are only two sections in the support of the
Y'Y Zrow which cannot be extended to global ones. These are tliersewhere the twd¥ measurements
are assigned different outcomes, while Fimeasurement is assigned the outcome d

Theorem 3.6 The NAND state is logically contextual.
Proof The support of the probability table for tiNAN D state is
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+++ ++— 4+ F—— —++ —+— ——F ———
YYY| 1 1 1 1 1 1 1 1
Yyz| 1 1 1 1 1 1 1 1
Yzy| 1 1 1 0 1 1 0 1
Zyy| 1 1 1 1 1 0 0 1
Yzz| 0 1 1 1 0 1 1 1
zyz| o 1 0 1 1 1 1 1
zzy| 1 1 1 1 1 1 1 1
zzz| 0 1 0 1 0 1 1 0

Note that this table can be obtained from AND table by simply relabeling the columns. The relabeling
sends the first- to +, the second- to + and the third+ to —, and it sends the first twes to — and the
third one to+.

The same argument used in the proof of Theotem 3.5 can therbioused to prove the logical
contextuality of theNAND state, with the provision that the new labeling replacesotie used within
the old argument’s statements. d

Remark 3.7 The notation+ + + — + + — unambiguously describes the relabeling used in the proof of
Theoreni 3J6, and we shall use this shorthand notation iméurproofs.

Theorem 3.8 The OR, NOR, {, NL;, L, and NL, states are all logically contextual.

Proof The support of the probability tables for these states ae @btained from th&ND table by
column relabelings, so the argument used in the proof of idme®.5 can again be used to prove the
logical contextuality of these states. The necessary eétafs are

1) ++++— — — — for theORstate
2) ++++———+forNOR

3) +++—+——"Forl,

4) ++++— +—+forNLy

5) ++++ —+—forL;

6) ++++— —++ for NL,

Remark 3.9 The relabelings above can also be used for the probabililjesathemselves, not only for
their supports, but only for Y, Z measurements. For gendraioes of measurements there is no simple
relation between the probability tables of the balancedestavith functional dependency given by degree
two polynomials, nor between their supports.

3.2 Then+ 1-partite case forn > 2

We can use the results of the previous section to classify th&-partite balanced states which have a
functional dependency. In the rest of this sectionFHgdenote a polynomial in variables.
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3.2.1 Strongly contextual states

Theorem 3.10 Given a n+ 1-partite balanced quantum state whose functional dependengiven by
the polynomial k(as,...,0n), the state is strongly contextual if the polynomiglig-of the form

Fn(qlv"'7qn):qi+qj+anz(q]-?"'7qi7"'7qj7"'>qn)

for some variablesicand ¢ and some polynomialsf:

Proof If Y andZ measurements are chosen by each party, then we can shovotieabthe sections
in the support of th&ZZ...Z row can be extended to a global section.

Consider any fixed assignment of outcomes to Zhmeasurements performed by the finspar-
ties, except thé!" and the ™" party. Letoy € {+,—}, k#i,] denote the outcome corresponding
to the measurement performed by & party. Next evaluate the polynomi&}_, at the values of
ai,---,Gi,.--,dj,.-.,0n corresponding to the fixed assignment of outcomes, usingdheention that 0
corresponds to the- outcome and 1 corresponds to theoutcome. Usea to denote the result of the
evaluation.

Depending on the value afwe can use the argument made for the strong contextualitigherehe
XORor theNXORstate in order to show that there is no consistent assignaienttcomes which will
restrict to sections in the support for all four of the foliog rows:

..227...22Z...2Z
.Z%Z...2YZ...2Z
.ZZZ...2Y%Z...2ZY
ZXZ...2ZZ...2Y

N N NN

As in the three-partite case, the contradiction comes froenfact that, depending on the value
of a and the outcome assigned to tAemeasurement of the" party, the outcomes of thé and Y|
measurements must be assigned equal values on the one hamder to be in the support of the
Z...7YZ...ZY,Z...ZZ row, but on the other hand, opposite values in order to be enstipport of
the last two rows considered above, or viceversa.

Since this can be done for all possible assignments of owgsdmtheZ measurements performed
by the firstn parties, the quantum state we are considering must be stroogtextual. O

3.2.2 Logically contextual states

Theorem 3.11 Any n+ 1-partite balanced quantum state whose functional dependengiven by a
polynomial K(qs,...,qn) of degree at least two which is not of the form

Fn(qla---7qn):Cﬁ‘|‘qj+Fn—2(C]17---a(jia--wqja--qu)

for any choice of variables;@nd g and polynomial F, is logically contextual.

Proof Consider any two variableg andq; which appear in at least one of the terms with degree at
least two of the polynomidk,. The polynomialF, can be rewritten as

Fa(G1,---,Gn) = Fr o+ aiF2 5+ 03, + ggiFr,

whereFrL2 aren— 2 variable polynomials inf1,...,G,...,dj,...,0n.
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Next choose any assignment of outcomes tadineeasurements performed by the fitgtarties, ex-
cept tha'" and thejt" party, such that the polynomil* evaluates to 1 at the valuesaf ..., G, . .. 2Gj,- -5 0hn
corresponding to this assignment. Using this assignmentjave obtained a degree two polynomial in
two variablesg; andq;.

We can now use one of the arguments in Se¢tion3.1.5 in ordéemdify at least two sections in the
support of the

Z..ZXZ...ZY{Z...ZZ

row which cannot be extended to a global section consistéhttiae support of the rows

Z..72Z7...2Y;Z...ZY

Z..2XZ...2ZZ...ZY
and

Z..2%Z..27Z...7Z

Note however that showing that at least one global secta@sexist for the class of states consid-
ered in the Theorem above is not as simple as in the thredepasaise, so strong contextuality cannot
be immediately ruled out for these states even in the speai&# when one considers olMyand Z
measurements.

3.2.3 Weakly contextual states

Theorem 3.12 Any n+ 1-partite balanced quantum state whose functional dependengiven by a
polynomial R(qs,...,qs) of degree one which is not of the form

Fn(qla"'7qn):qi+qj+Fn—2(q17"'aq\ia"wq\ja"qu)

for any choice of variables;@nd ¢ and polynomial F, is weakly contextual.

Proof Any degree one polynomial which is not of the above form musttain precisely one term.
Thus the state we are dealing with is a so-called dictatprstate, i.e. the value of the last qubit is
dictated by the value of it8" qubit, and the state is either of the form

A=

<‘0> + ‘1>>®n ’0i0n+1> + ‘1i1n+1>
V2 V2

or

A = <|O> + |1>>®n® 0i1n+1) +[%iOn42)
o V2 V2
and its probability table can be expressed in terms of aldaitzhoice oih— 2 constants and the proba-
bility table of either theb™ or of thed ™ state.

A straightforward inductive argument based on the arguraset in Proposition 3.3 will show that
then+ 1-partite dictatorship states are also weakly contextahie measurements (7, 1), U (3, 3F)
andU (%,7),U (3F, %) respectively.

Moreover, the generalization of the argument used in The@&d shows that the+ 1-partite dicta-
torship states are not logically contextual for any possilithotomic choice of measurements. [
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3.2.4 Non-contextual states

Any n+ 1-partite balanced quantum state whose functional depegde given by a constant polynomial
is clearly a product state and hence non-contextual.

4 Final Remarks

In this paper, we have shown the logical contextuality of thesses of states, the permutation-symmetric
and functionally dependent states. Our proofs have beestrogtive, in that we have explicitly given
local observables which witness the logical contextualftthese classes of states.

What about the general case? In the forthcoming paper [2] Sltenggang Ying, we establish the
following result.

Let P(n) be the class afi-qubit pure states which, up to permutation, can be writtsieasor products
of 1-qubit and 2-qubit maximally entangled states. Lgt) be the set of logically contextualqubit
states.

Theorem 4.1 For alln > 1, P(n) and L(n) partition the set of n-qubit pure states.

Thus every pure state mither a state whose only form of entanglement is bipartite maxiemal
tanglement in 2-qubit subsystems; it is logically contextual. So logical contextuality, wittertain
bipartite exceptions, holds in general.

This result can moreover be proved constructively, leattingn algorithm which, given an-qubit
state, either returns that itisi®(n), or produces local observables which witness the logiaatiecduality
of the state. Strikingly, only+ 2 local observables are needed for-qubit state.
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