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Motivated by applications in modelling quantum systems using coalgebraic techniques, we introduce
a fibred coalgebraic logic. Our approach extends the conventional predicate lifting semantics with ad-
ditional modalities relating conditions on different fibres. As this fibred setting will typically involve
multiple signature functors, the logic incorporates a calculus of modalities enabling the construction
of new modalities using various composition operations. Weextend the semantics of coalgebraic
logic to this setting, and prove that this extension respects behavioural equivalence.

We show how properties of the semantics of modalities are preserved under composition opera-
tions, and then apply the calculational aspect of our logic to produce an expressive set of modalities
for reasoning about quantum systems, building these modalities up from simpler components. We
then demonstrate how these modalities can describe some standard quantum protocols. The novel
features of our logic are shown to allow for a uniform description of unitary evolution, and support
local reasoning such as “Alice’s qubit satisfies conditionϕ” as is common when discussing quantum
protocols.

1 Introduction

In [1] a coalgebraic model of quantum systems was constructed using a novel fibrational structure to
introduce “enough contravariance” to represent the important physical symmetries of a quantum system.
The paper then raised the question of what a suitable “fibred coalgebraic logic” would look like, and that
is the question we address in this paper.

In the first half of the paper we propose an extension of coalgebraic logic based upon predicate
liftings [12, 14] (see also the excellent introduction [13]) which provides a convenient setting in which
to produce practical modal logics in a lightweight manner. New types of modalities are introduced
that allow explicit reasoning between different fibres, andcomposition operations are provided to build
modalities from simpler components. In the second half of the paper we exploit the calculational aspects
of our logic to construct modalities suitable for reasoningabout quantum protocols. The new features
of our logic provide mechanisms for describing important features such as unitary evolution, restriction
to subsystems and local measurements. Finally, we illustrate these features by applying them to two
standard quantum protocols.

Fibred constructions involving coalgebras are also considered in [7] and [6], in order to capture
parameterization of signature functors. The question of fibred coalgebraic logic using predicate liftings is
explored in the later paper, but primarily from the perspective of the relationship to the logical structure of
institutions [3] and this question is further pursued in [11]. In contrast to the work in this paper, the logic
discussed in these papers is exactly a conventional coalgebraic logic in each fibre, and the relationship
between the fibres does not appear directly in the syntax of the logic. In [9] a pseudo coalgebraic setting
was introduced for modelling quantum systems, in order to develop the representation result of [1] in a
simpler and more easily motivated setting. A coalgebraic logic was discussed in this setting, supporting
a single signature functor and modalities induced by its natural isomorphisms.
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2 Fibred Coalgebraic Logic

Each fibre of our modal logic will correspond to a different signature functor. A fibred signature will
describe a basic set of modalities that are available on eachfibre.

Definition 2.1 (Modal Signature). A modal signature Λ is a set of modality symbols, each with an
associated cardinal referred to as the arity of the modality.

Definition 2.2 (Fibred Modal Signature). A fibred modal signatureΦ is a small monoidal categoryC Φ

and for each objectA in C Φ an associated modal signatureΛΦ
A . For each pair of objectsA,B with A 6= B

we require thatΛΦ
A ∩ΛΦ

B = /0.

Given the basic set of modalities provided by the fibred modalsignature, additional modalities can
be constructed via various composition operations.

Definition 2.3 (Modality Expressions). Let Φ be a fibred modal signature. We inductively define a typed
language ofmodality expressions, with conjunctions bounded by a maximum cardinalityκ .

We have one introduction rule:

�λ ∈ ΛΦ
A with arity α

�λ : Aα → A

We can apply logical operations to modality expressions:

© : Aα → A
¬© : Aα → A

0< card(I)< κ and©i : Aα → A for eachi ∈ I
∧

i∈I ©i : Aα → A

We have 2 rules for constructing new modality expressions bycomposition:

©1 : Aα → A ©2 : B→ B
©2⊳©1 : (B⊗A)α → (B⊗A)

© : Bα → B f ∈ C Φ(A,B)

© f : Aα → A

The formulae applicable on each fibre are described by mutualinduction, allowing the application of
appropriate modality expressions as modalities:

Definition 2.4 (Syntax and Typing). For a fibred modal signatureΦ we now define a language of typed
formulae. We writeϕ : A for formulaϕ is of typeA, in which case we will refer toϕ as anA-formula .

Our language is defined inductively by the following rules, starting with the typing rules for standard
logical connectives forA an object inC Φ:

⊤A : A
ϕ : A
¬ϕ : A

ϕi : A for eachi ∈ I and 0< card(I)< κ
∧
(ϕi)i∈I : A

We have two application rules for the different types of modalities:

ϕ : B f ∈ C Φ(A,B)
f ϕ : A

ϕi : A for eachi ∈ α © : Aα → A
©(ϕi)i∈α : A
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Modalities of the formf for f a C Φ morphism will be referred to asadaptation modalities. These
modalities permit lifting of subformulae from different fibres in a suitable manner.

We will write L Φ
κ for the formulae with conjunctions of cardinality at mostκ andL Φ

κ (A) for the
A-formulae with conjunctions of cardinality at mostκ .
Remark2.5. The category[Set,Set] of endofunctors onSet and natural transformations between them
can be given the structure of a strict monoidal category, with the tensor given by functor composition.
Definition 2.6. We will write 2 : Setop → Set for the contravariant powerset functor. Define natural
transformation¬ : 2⇒ 2 on components as:

¬X(U) := X \U (1)

For each setI define natural transformation
∧

: 2I ⇒ 2 on components as:
∧

X

((Xi)i∈I ) :=
⋂

i∈I

Xi (2)

The semantics for our logic are described by providing a structure identifying types with signature
functors, and the morphisms between types as suitable natural transformations. The tensor product then
corresponds to the composition of signature functors.
Definition 2.7 (Structure). For a given fibred modal signatureΦ, a Φ-structure S is a strict monoidal
functor J−KS : C Φ → [Set,Set], and for each objectA in C Φ and modality�λ in ΛΦ

A of arity α an
associated natural transformationJ�λ KS : 2α ⇒ 2◦ JAKS, referred to as apredicate lifting of arity α .
Remark2.8. For a given fibred monoidal signatureΦ, the categoryC Φ will often be a monoidal subcat-
egory of[Set,Set], with the functorJ−K : C Φ → [Set,Set] given by the inclusion. In later sections we
will often identify the two when this is assumed to be the case.
Definition 2.9 (Modality Expression Semantics). The semantics of modality expressions are given by
suitable predicate liftings. LetΦ be a fibred modal signature andS a Φ-structure. Assume thatα is a
cardinal,A,B are objects ofC Φ, �λ ∈ ΛΦ

A , f : B → A is aC Φ morphism,© : Aα → A, for eachi ∈ I
©i : Aα → A and©′ : B→ B. The semantics for modality expressions are given inductively as follows:

J�λ K := J�λ KS (3)

J¬©K := (¬∗ JAKS)◦ J©K (4)

J
∧

i∈I

©iK := (
∧

∗JAKS)◦ 〈J©iK | i ∈ I〉 (5)

J© f K := (2∗ J f KS)◦ J©K (6)

J©′
⊳©K := (J©′K∗ JAKS)◦ J©K (7)

Above◦ and∗ denote vertical and horizontal composition of natural transformations respectively.
Definition 2.10 (Semantics ofA-formulae). Let Φ be a fibred modal signature andS a Φ-structure.
Assumeα is a cardinal,A is an object ofC Φ, © : Aα → A is a modality expression, andf : A→ B aC Φ

morphism. The semantics for a formulaϕ : A, is given inductively forJAK-coalgebra(X,γ) as follows:

J⊤AKX,γ := X (8)

J¬ϕKX,γ := X \ JϕKX,γ (9)

J
∧
(ϕi)i∈I KX,γ :=

⋂

i∈I

JϕiKX,γ (10)

J©(ϕi)i∈αKX,γ := γ−1◦ J©KX((JϕiKX,γ)i∈α) (11)

J f ϕKX,γ := JϕKX,J f KS
X◦γ (12)
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Remark2.11. The obvious relationships hold between logical operationson modality expressions and
logical operations on formulae. Also the logical operations commute appropriately with adaption modal-
ities. We will not need these properties for our examples, sothe details are omitted.

We now define a translation that will produce an equivalent formula with adaptation modalities re-
moved. This will allow use to reduce questions in the extended syntax to questions in the well understood
setting of coalgebraic logic with predicate liftings.

Definition 2.12 (Translation). For a given fibred modal signatureΦ, for f : A → B in C Φ, define the
syntax translationτ f as follows:

τ f (⊤
B : B) :=⊤A : A (13)

τ f (¬ϕ : B) := ¬τ f (ϕ) : A (14)

τ f (
∧

(ϕi)i∈I : B) :=
∧

(τ f (ϕi))i∈I : A (15)

τ f (©(ϕi)i∈α : B) :=© f (τ f (ϕi))i∈α : A (16)

τ f ( f ′ϕ : B) := τ f ′◦ f (ϕ) : A (17)

Proposition 2.13. For a given fibred modal signatureΦ andΦ-structure, for f: A→ B in C Φ:

JϕKX,J f KX◦γ = Jτ f (ϕ)KX,γ (18)

Theorem 2.14.The semantics of fibred coalgebraic logic respects behavioural equivalence.

Proof. By setting f to the identity in proposition 2.13 we get:

JϕKX,γ = Jτ1(ϕ)KX,γ (19)

So the semantics of fibred coalgebraic logic is equivalent tothe semantics of suitable formulae in standard
coalgebraic logic with predicate liftings, and this respects behavioural equivalence.

Example 2.15(Simple combination of modality expressions). For a unary functorF : Set→ Set, and
arbitrary setA, for eacha∈Awe have an obvious evaluation natural transformationeva : F(−)A ⇒F(−).

Now for signature functorP (the powerset functor), giving Kripke frames as coalgebras, the seman-
tics of the usual� modality is given by the following predicate lifting:

J�KX(U) := P(U) (20)

If we consider the signature functorP(−)A for (unbounded) labelled transition systems, the usual�a

modality can be constructed as the modality expression�eva

2.1 Semantics of Modality Expressions

In this section we consider some properties of predicate liftings such as monotonicity, continuity and
being a separating set, and how this is preserved under some of the composition operations described in
section 2. We restrict our attention to unary predicate liftings to simplify the presentation.

Lemma 2.16. LetΦ be a fibred modal signature and S be aΦ-structure. Let© : A→ A and©′ : B→ B
be modality expressions. Then ifJ©K andJ©′K are monotone (continuous) thenJ©′⊳©K is monotone
(continuous).
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Lemma 2.17. Let Φ be a fibred modal signature and S aΦ-structure. Let© : A → A be a modality
expression and f: B→A aC Φ morphism. Then ifJ©K is monotone (continuous) thenJ© f K is monotone
(continuous).

We now consider how expressive sets of predicate liftings are preserved under various operations.
Results of this type are known and described in [10]. We provide some results here for completeness and
in a form suitable for application in later examples.

Expressivity can be lifted to products and exponentials from a fixed domain.

Lemma 2.18. Let Φ be a fibred modal signature and S aΦ-structure. Let(Ai)i∈I be a family of objects
in C Φ. AssumeJAKS= ∏i∈I JAiK

S and that there existC Φ morphisms(π i : A→ Ai)i∈I such thatJπ iKS is
the corresponding projection natural transformation. Foreach i∈ I let (J©i, jK) j∈Ji be a separating set
of predicate liftings forJAiK

S. Then the predicate liftings(J©πi
i, jK)i∈I , j∈J are separating forJAKS.

Lemma 2.19. Let Φ be a fibred modal signature and S aΦ-structure. Let A,B be an objects inC Φ with
JBK= JAKA. Also let(eva : B→ A)a∈A beC Φ morphisms such thatJevaK is the corresponding evaluation
natural transformation as defined in example 2.15. Let(J©iK)i∈I be a separating set of predicate liftings
for JAKS. Then the predicate liftings(J©eva

i K)i∈I ,a∈A are separating forJBKS.

In general if we have separating sets of predicate liftings for two endofunctors, they do not combine
(in any way) to give a separating set for the composite functor. This is easily seen as, for example, the
functorPω has a separating set of liftings, but no separating set exists for Pω ◦Pω . (See parts of (1)
and (5) of example 23 in [14]). We examine a simple common casethat we will require later, in which
the behaviour is much better. The following notions will be useful:

Definition 2.20. Let T : Set→ Setbe an endofunctor. Consider a set of predicate liftings{λ i}.

• The liftings are said toseparate by singletonsif for an arbitrary setX, andx,y ∈ T(X), it is
sufficient to consider the image of singleton sets under theλ i to separatex andy.

• The liftings are said to bemutually surjective on singletonsif for an arbitrary setX and each
t ∈ TX the singleton set{t} is in im(λ i

X) for someλ i .

Lemma 2.21. For endofunctor T: Set→ Set, any mutually surjective on singletons set of predicate
liftings is a separating set.

Lemma 2.22. LetΦ be a fibred modal signature and S aΦ-structure. Let A,B objects inC Φ, (J©B
i K)i∈I

a set of predicate liftings onJBK that are mutually surjective on singletons, and(J©A
j K) j∈J a separating

set of predicate liftings onJAK that separate by singletons. Then the liftings(J©A
j ⊳©B

i K)i∈I , j∈J are
separating forJA⊗BKS.

3 Quantum Applications

We now consider a suitable signature functor for modelling quantum systems. In [1] a signature functor
describing a “question and answer system” for projective measurements was used. We instead introduce
a new functor based upon distributions of measurement outcomes for different physical quantities. When
reasoning about quantum protocols it is common to consider measurements in a suitable basis, rather than
projective measurements, and this signature functor make the physical quantities and distribution over
measurement outcomes explicit.
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3.1 Constructing a Fibred Logic for Quantum Systems

As an extended example, we construct an expressive set of modalities for reasoning about quantum
systems using simple components from well understood areassuch as labelled transition systems and
probabilistic logics. An alternative modular approach to the construction of coalgebraic logics is pre-
sented in [2], based on a notion of syntax constructors. Preservation of properties of modalities, such as
expressivity, under operations including composition, products and coproducts is analyzed in [10], and is
probably closer in spirit to the approach of this section. Many proofs are omitted throughout this section
for space reasons, all conclusions are based upon the composition based ideas in section 2.1 and standard
results, mainly from [14].

Definition 3.1. Let D : Set→ Setdenote the finite distribution functor, defined on objects asfollows:

D(X) := { f : X → [0,1] | f has finite support andΣx∈X f (x) = 1} (21)

and on morphisms:
D( f : X →Y)(g∈ D(X))(y∈Y) := Σx∈X. f (x)=yg(x) (22)

Lemma 3.2. The finite distribution functor D isω-accessible.

Now we introduce our two basic building block modalities from which all others will be constructed.

Lemma 3.3. For the finite distribution functor D, for each p∈ [0,1] there is a unary predicate lifting
JEqpK : 2⇒ 2◦D given by:

JEqpKX(U) := {d | Σu∈Ud(u) = p} (23)

These modalities separate by singletons.

Lemma 3.4. For a label setΣ, andσ ∈ Σ, define the unary predicate liftingJNextσK : 2⇒ 2◦ (Σ× (−))
as follows:

JNextσK(U) := {(σ ,u) | u∈U} (24)

These liftings are monotone and mutually surjective on singletons.

Now we lift to distributions over eigenvalues.

Lemma 3.5. For p∈ [0,1] and r∈R define predicate liftingJEqp,rK : 2⇒ D(R× (−)) as the composite
JEqp⊳NextrK. This lifting is given explicitly by:

JEqp,rKX(U) := {d | Σu∈Ud(r,u) = p} (25)

These liftings are separating.

Definition 3.6. For finite dimensional Hilbert spaceH with dimensionn, let An denote the set of self
adjoint operators. Define thedistribution based quantum signature functor Qd

n as follows:

Qd
n := D(R× (−))An (26)

There is an obviousquantum coalgebra for this signature, mapping pure states to distributions over
measurement outcomes and subsequent states.

Lemma 3.7. For a finite dimensional Hilbert space with dimension n, the functor Qd
n is accessible.

Now we can lift to distributions for each self adjoint operator (physical quantity), giving a set of
liftings for our quantum signature functorQd

n:
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Lemma 3.8. For finite dimensional Hilbert spaceH with dimension n, for p∈ [0,1], r ∈R andÂ∈ An

define unary predicate liftingJEqp,r,ÂK : 2⇒ 2◦Qd
n as follows:

JEqp,r,ÂK = JEqevÂ
p,r K (27)

Where evÂ is as defined in example 2.15. These liftings are given explicitly by:

JEqp,r,ÂKX(U) := { f | Σu∈U f (Â)(r,u) = p} (28)

and are separating.

Theorem 3.9. For finite dimensional Hilbert spaceH with dimension n, any coalgebraic logic with
at least modalities with semantics given by the predicate liftings in lemma 3.8 is expressive if we allow
conjunctions of sufficient cardinality.

Proof. By lemma 3.7 and proposition 3.8 the claim follows immediately by applying theorem 14 of
[14].

Although the unary predicate liftings based on equalities given in lemma 3.8 are very straightforward
and separating, they are not monotone. It is easy to follow similar steps to those above to construct a
monotone set of modalities, based on lower bounds on the required probabilities rather than equalities.
This can be done for example by taking conjunctions of equality based modalities above the required
threshold. This gives an expressive logic using monotone modalities with semantics similar to those of
probabilistic modal logics [8, 5]. For reasons of space, this direction is not pursued further here as the
equality based predicate liftings are sufficient for the quantum protocols we will address.

In reality, although we have good expressivity results for the liftings above, they are not particularly
natural for the needs of describing quantum protocols. To aid reasoning about these protocols, we would
like our modalities to better match the actions that are performed during their implementation. We now
introduce some additional more “practical” modalities.

Definition 3.10. By noting that the natural transformations⊤ : 1⇒ 2 and¬ : 2⇒ 2 are predicate lifting
for the identity functor, we can define 0-ary modality:

P̂ := Eq1,1,P̂⊳⊤ (29)

Intuitively, in the quantum model, this describes “a projective measurement̂P is certain to have a positive
outcome”. We can also define unary modality:

Cr,Â := Eq0,r,Â⊳¬ (30)

with the reading “it is certain that after getting measurement outcomer when measuring physical quantity
Â, ϕ will hold”.

Definition 3.11. Using similar tools to those above, we can combine our unary modalities to provide
a possibilistic polyadic modality, describing how subsequent states relate to possible measurement out-
comes:

Â(r1 7→ (−), ..., rn 7→ (−)) (31)

Informally this has semantics “after measuringÂ, if outcomer i occurs then theith postcondition will
hold.”
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3.2 Basic Quantum Operations

We first consider how some of the features of our fibred coalgebraic logic can be applied to describe
notions commonly considered when analyzing quantum systems and protocols.

Example 3.12(Unitary Evolution). For an arbitrary Hilbert spaceH we consider the quantum signature
functor. A unitaryÛ onH induces a function̂P 7→ ÛP̂Û† giving a natural transformationsQd

n ⇒ Qd
n by

precomposition. These give adaptation modalities in our fibred coalgebraic logic, which in the case of
the quantum coalgebra encode unitary (Heisenberg type) evolution of the system. In this approach the
unitary evolution is encodeduniformly across each coalgebra without extending the signature functor.
We will write Ûϕ for “after applying unitary transformation̂U , ϕ holds”.

Example 3.13(Restriction to Subsystems). We consider a 2 qubit quantum system, with corresponding
Hilbert spaceH2⊗H2. We then fix a basis and define a linear map|i j 〉 7→ |i〉, and then define natural
transformations Alice :Qd

4 ⇒ Qd
2 by precomposition with the inverse image of this linear map.This

natural transformation induces adaptation modalities in our logic such that we can read Aliceϕ as “if
we restrict our attention to Alice’s qubit,ϕ holds.” Note that we have not needed to explicitly introduce
mixed states to handle restriction to subsystems as this is encoded in the measurements selected by the
Alice natural transformation.

Example 3.14(Local Measurements). If we consider a single qubit system, theJP̂K predicate lifting
given in definition 3.10 describes certainty of projective measurement̂P. The natural transformation
Alice defined in example 3.13 then gives modalityP̂Alice giving certainty of measurement̂P locally on
Alice’s qubit in a 2 qubit composite system.

3.3 Quantum Teleportation

Definition 3.15. We will write P̂ψi for the projection operator corresponding to theith Bell state.

We consider the standard example of the quantum teleportation protocol [4]. This is a 3 qubit protocol
that can be informally described as follows:

Initially Alice has a qubit in (arbitrary) stateϕ and she also shares half of a two qubit
pair in the Bell state (the channel) with Bob. After a Bell basis measurement on both of
Alice’s qubits, if Bob applies a suitable correcting unitary, dependent on the outcome of the
measurement, he can be certain his qubit is now in stateϕ .

We can formalize this in our logic as the following formula:

P̂Alice
ϕ ∧ P̂Channel

ψ1
⇒ ÂBoth

Bell (r1 7→ BobÛ1 P̂ϕ , (32)

r2 7→ BobÛ2 P̂ϕ , (33)

r3 7→ BobÛ3 P̂ϕ , (34)

r4 7→ BobÛ4 P̂ϕ) (35)

As our modality is built from a conjunction of smaller modalities, we can adopt a more “post selection”
style perspective and decompose our teleportation protocol into various possible measurement outcomes.
Here we consider formulae capturing each of thei ∈ {1..4} measurement outcomes separately:

P̂Alice
ϕ ∧ P̂Channel

ψ1
⇒ CBoth

r i ,ÂBell
(BobÛi P̂ϕ) (36)
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3.4 Entanglement Swapping

Definition 3.16. To simplify notation for multi-qubit systems we will now write [i, j] for the restrict to
bits i and j, rather than define a proliferation of named subsystems suchas Alice, Channel etc. as in the
previous protocol and examples.

We now consider the 4 qubit entanglement swapping protocol [15], informally this protocol can be
summarized as:

Initially qubits 1 and 2, and qubits 3 and 4 are in the Bell state. After a measurement on
qubits 2 and 3 in the Bell basis and applying suitable corrective unitaries, dependent on the
measurement outcome, we can be certain to leave qubits 1 and 4and qubits 2 and 3 in the
Bell state.

This can be encoded in our modal logic for thei ∈ 1..4 measurement outcomes as formulae of the form:

P̂[1,2]
ψ1 ∧ P̂[3,4]

ψ1 ⇒ C[2,3]
r i ,ÂBell

([1,4] Ûi P̂ψ1 ∧ [2,3] Ûi ’ P̂ψ1) (37)

4 Conclusions and Future Work

We have presented a fibred coalgebraic logic and shown that itrespects behavioural equivalence. A
distribution based signature functor for modelling finite dimensional quantum systems was introduced
and the calculational aspects of our logic were exploited toconstruct suitable modalities for reasoning
about quantum protocols. It was shown that expressivity of the logic could be lifted via the composi-
tion operations from modalities for simpler and well understood signature functors. The fibred aspects
of our logic were exploited to capture key components of quantum computation, including a uniform
description of unitary evolution, restriction to local subsystems and encoding of local measurements on
composite systems.

The current work primarily concerns semantics. Proof theoretic aspects, particularly their suitability
for analysis of quantum protocols, will be pursued in later work. The logic presented here seems to po-
tentially be a special case of a general construction that could be applied to a suitable class of institutions
[3], this should be investigated further. Connections to the existing automated tools in coalgebraic logic,
and their application to analyzing quantum protocols should also be pursued.
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