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In a traditional formal development process, e.g. using the B method, the informal user requirements
are (manually) translated into a global abstract formal specification. This translation is especially
difficult to achieve. The Event-B method was developed to incrementally and formally construct
such a specification using stepwise refinement. Each increment takes into account new properties
and system aspects. In this paper, we propose to couple a graphical notation called Algebraic State-
Transition Diagrams (ASTD) with an Event-B specification in order to provide a better understanding
of the software behaviour. The dynamic behaviour is captured by the ASTD, which is based on
automata and process algebra operators, while the data model is described by means of an Event-B
specification. We propose a methodology to incrementally refine such specification couplings, taking
into account new refinement relations and consistency conditions between the control specification
and the data specification. We compare the specifications obtained using each approach for read-
ability and proof complexity. The advantages and drawbacks of the traditional approach and of our
methodology are discussed. The whole process is illustrated by a railway CBTC-like case study. Our
approach is supported by tools for translating ASTD’s into B and Event-B into B.
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1 Introduction

Specifying a system with formal languages is not straightforward. Our main objective is to specify a
whole safety-critical system by using only formal notations and techniques. For validating the whole
modelling process, we focus on a railway case study.

The new methodology introduced in this paper is based on the coupling of formal notations and on
the joint refinement of both parts of the model. The choice of a specification language is often difficult
and depends on the characteristics of the system to be specified. Most often, several languages are good
candidates, but none of them, if taken alone, really fits well, because some aspects of the requirements
would not be explicitely taken into account. For instance, when we first consider a state-based formal
language like B [2], safety properties are well captured, but dynamic properties like ordering or liveness
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properties are not straightforward to express and verify. Likewise, an event-based formal language like
CSP [16] or LOTOS [5] is more convenient for representing dynamic properties, but data models are
difficult to capture in these languages. In addition to this issue, some syntactical, semantical or technical
specificities of a language may constrain a specifier in describing the system. For instance, if there is no
modularity or refinement, some systems are difficult to model ex nihilo.

In those circumstances, the coupling of specification languages may bring a solution. The aim is
to take advantage of the benefits of each notation. However, coupling two distinct formal languages is
not an easy task. Syntactically, such an approach must provide a way for reusing the existing notations,
especially language operators, in order to be easily understood by people used to specify with one or
the other language. Semantically, the different parts of the model must be consistent, so the approach
must provide techniques in order to ensure that. Technically, existing tools supporting one or the other
language should be reused, as much as possible.

One of the main issues with such couplings comes from the development of the whole system. Con-
cepts like refinement are then required. Instead of writing a complete specification for the whole system
in one single step, the different features are specified step by step. In the context of coupling of specifica-
tion languages, these techniques are even more tricky. For instance, refinement of one part of the model
must not introduce inconsistencies with respect to the other part. Sometimes, refinement is considered
only in one part of the model in order to prevent that. An embedding of one language into the other one
then ensures the consistency of the whole model. Recent work [21, 18, 25, 4] try either to define a formal
language with a unifying semantics, or to define proof obligations generation rules for showing in which
conditions one piece of specification can be refined without introducing inconsistencies.

In our approach, a formal graphical notation, called ASTD [12], is combined with B-like state-based
formal specifications for describing the system. The dynamic behaviour is captured with an ASTD, which
is based on automata and process algebra operators, while the data model is described by means of B-like
specifications. These formal languages will be detailed in Section 2. As a main contribution, we explore
complementarity and consistency between ASTD and B-like refinements. Section 3 introduces the main
principles of our methodology. The case study is detailed in Sect. 4. Section 5 concludes the paper with
some perspectives.

2 Background

2.1 B and Event-B

B is a formal method [2] supporting the main stages of the software development life cycle. Specifica-
tions are composed of abstract machines, which encapsulate state variables, an invariant constraining the
state variables, an initialisation of all the state variables, and operations on the state variables. The in-
variant is a first-order predicate in a simplified version of the ZF-set theory, enriched by many relational
operators. Abstract sets or enumerated sets are used for typing the state variables. In B, state variables
are modified only by means of substitutions. The initialisation and the operations are specified in a gener-
alisation of Dijkstra’s guarded command notation, called the Generalised Substitution Language (GSL),
that allows the definition of non-deterministic and preconditioned substitutions. An operation is gener-
ally a preconditioned substitution, of the form PRE P THEN S END, where P is the precondition and S
is a substitution. The state transition specified by a preconditioned substitution is guaranteed only when
the precondition is satisfied. The main substitutions that will be used in the case study are: assignment
substitution (denoted by :=); substitution of the form x : |(P), which states that state variable x is up-
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dated such that predicate P becomes true; simultaneous substitutions (||); finally, SELECT substitutions
defines many substitutions, each one being guarded by a predicate.

Through refinement steps, the initial abstract machine is transformed, step by step, into a B model of
the code. Translation tools are then available for synthesising the final code. Proof activity consists in
proving all the generated proof obligations for the abstract machine and for each refinement step. In that
aim, the B method is supported by several tools like Atelier B1, ProB2 and RODIN3.

Event-B [1] is an evolution of the B language to specify complex systems by using decomposition
and event-based descriptions. In Event-B, specifications describe “closed” event systems, in order to
consider a system and its interactions with its environment as a whole. The behaviour is then modelled
by events on the system. An event is defined by a guard, a blocking condition that ensures the consistency
of the system if the event is executed, and an action described by GSL as in B. An event is of the form
ANY x,y, ... WHERE P(x,y, ...,v,w, ...) THEN S(x,y, ...,v,w, ...) END, where x,y, ... are local variables
and v,w, ... are constants or state variables of the event system, predicate P is the guard, and substitution
S, the action. An event system may be refined. Refinement in Event-B not only refines data structures
like in B, but also allows new events to be added. However, only new concrete variables can be modified
by new events. The state refinement is expressed, like in B, with a gluing invariant between the abstract
state and the concrete state.

2.2 ASTD

ASTD [12] is a formal graphical notation, which is an extension of Harel’s Statecharts [15] with pro-
cess algebra operators. Each ASTD type corresponds to either a hierarchical automaton or a process
algebra operator like sequence, choice, Kleene closure, guard, synchronisation, choice and interleave
quantification. One of the main important features of ASTDs is to allow parameterised instances and
quantifications. Moreover, the graphical representation brings important means for communicating with
stakeholders and for validating the system model. This formal language has notably been used in the
context of secure web services for security policy specification [20, 9]. For the sake of concision, we
introduce only the ASTD operators that will be used in the case study: automaton, quantified parame-
terised synchronisation, Kleene closure and weak synchronisation. The complete operational semantics
is in [14].

An ASTD automaton is similar to a classical automaton, except that its states can be of any ASTD

type, and that its transition relation δ can refer to substates of automaton states. Hence, there are three
kinds of arrows: local transition between two states n1 and n2 of the automaton, denoted by (loc,n1,n2);
transition from n1 to substate n2[ of n2; and transition from substate n1[ of n1 to n2. A transition can also
be guarded or considered as final (i.e. it is triggered only if its source state is final). Thus, a transition
from δ is of the form (t,σ ,g,final?), where t denotes the arrow, σ is the event, g is the guard, and final?
is a boolean denoting whether the transition is final. For the sake of concision, history states are omitted
here. A state of an automaton is of the form (aut◦,n,s) where n is the name of its current state and s is
the current substate of the state. For example, rule aut1 describes the semantics of a local transition

δ ((loc,n1,n2),σ
′,g,final?) Ψ

aut1
(aut◦,n1,s)

σ ,Γ−−→ (aut◦,n2, init(ν(n2)))

1http://www.atelierb.eu
2http://www.stups.uni-duesseldorf.de/ProB
3http://www.rodintools.org
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Figure 1: Methodology of the specification

Predicate Ψ is a premiss which checks if the source state is final for final transitions, if the guard holds,
and if the event received, noted σ , is equal, under the current transition environment Γ, to the event
specified in the transition relation, noted σ ′. Expression init((ν(n2))) represents the initial state of the
ASTD whose name is n2. Thus, the target state of the transition is the initial state of the destination state
in δ .

Then we need Kleene closure: a Kleene closure ASTD is an ASTD that can be executed zero, one or
more times. When the final state is reached, the ASTD can restart.

The next ASTD we consider is parameterised quantified synchronisation. The behaviour is defined as
follows. Many ASTDs are executed in parallel. For each event whose label belongs to a synchronisation
set ∆, all ASTDs must execute this event at the same time; otherwise, they are executed by interleaving.
The first requirement may be too strong to satisfy in some situations. In particular, if a quantified pa-
rameterised synchronisation is used to specify the behaviour of several entities in parallel, it would be
very restrictive to prevent a large subset of entities from executing a synchronised event because some of
them are not ready or can be considered as having stopped their activity.

To take such cases into account, a weak synchronisation has been defined. A state of the ASTD is
then of the form (t◦, f ), where f maps an ASTD state to each quantification parameter value. In the
type corresponding to this kind of ASTDs, ∆ represents the set of the actions that synchronise as above,
and predicate p characterises which instances of the quantified ASTD must synchronise. There are two
inference rules:

α(σ) /∈ ∆ f (v)
σ ,([x := v])CΓ−−−−−−−−→ s′

t1
(t◦, f )

σ ,Γ−→ (t◦, f C−{x 7→ s′})

α(σ) ∈ ∆ ∀v ∈ T.((¬([x := v]p)∧ f (v) = f ′(v))∨( f (v)
σ ,([x := v])−−−−−−→ f ′(v)))

t2
(t◦, f )

σ ,Γ−→ (t◦, f ′)

Rule t1 is applied when there is no synchronisation. Rule t2 corresponds to the case with synchronisa-
tion: all the ASTDs for which p is true execute the event at the same time and the state of the other ASTDs
does not change.

3 Overview of the approach

Our approach uses a coupling of the graphical ASTD notation and Event-B to specify a system. The
specification methodology is shown in Fig. 1. A system can be viewed in two parts. The first part models
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the dynamic behaviour of the system, and is specified in ASTD (box on the left in Fig. 1). The second
part focuses on data, and is described in Event-B (box on the right in Fig. 1). Transitions constitute the
link between the two parts: to each action label in ASTD corresponds an event in Event-B. To ensure
the global consistency of the system, the ASTD and Event-B specifications are translated into classical B
(middle box in Fig. 1). As we will explain later, the classical B is only used for technical reasons.

3.1 ASTD specification.

With graphical notations and process algebra operators, an ASTD specification models the ordering of
actions. Since formal notations are not always easy to understand, ASTD provides a graphical visuali-
sation which makes the model validation easier, while still remaining formal. Compared to Statecharts,
the ASTD language is based on process algebra operators, like quantified parameterised synchronisation,
which allows to represent many processes in parallel.

3.2 Event-B specification.

Event-B specification contains an event for each action label declared in ASTD. The ASTD part just
describes the ordering of actions. In the Event-B part we specify the effects on the data model of each
ASTD action. Static properties like safety and typing constraints are specified by means of Event-B
invariants. Sometimes we need temporal properties which are not supported by the Event-B notation. In
that case, we encode these temporal properties by using theorems. Rodin tools are used to generate and
prove the proof obligations associated to invariant preservation and additional theorems.

3.3 B specification.

The classical B specification contains two B machines. The first one is the translation of the ASTD

specification, the second one is a transcription of the Event-B specification.
The ASTD to B translation can be summed up as follows. ASTD states are encoded by B state vari-

ables. To every ASTD action label corresponds a B operation. Its precondition checks that the state
variable is in the initial state of the ASTD transition. Its postcondition assigns to the state variable the
final state of the transition. Moreover, to link the resulting B operation with the data model, we would
like to execute the events defined in the Event-B part during the transition. But technically, a B operation
cannot call an Event-B event. That is why we also have to translate the events into B operations.

For the translation of the Event-B machine, variables and typing invariants remain unchanged. Events
are rewritten into B operations: their guards are simply changed into preconditions and their postcondi-
tions remain identical. Grouping the two parts together in one unique B specification allows the global
consistency (one horizontal level in Fig. 1) of the system to be proved: when we call an operation in B,
the generated proof obligation checks that the precondition of the called operation is true before execut-
ing it. To prove the calling proof obligations, invariants are added in the B machine that is the translation
of the ASTD. These invariants link the variables of the Event-B description and the variables that encode
the states of the ASTD.

Event-B provides the expressiveness and the refinement relation required for the system to be mod-
elled, but it lacks some modularity features. There exist theoretical foundations for modularity in Event-
B [18], but in practice, they are not yet supported by existing tools. B is then used for technical reasons.
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3.4 Refinement of the model.

The methodology uses two refinements. On one side we refine the ASTD specification (left refinement
arrow in Fig. 1), on the other side we refine the data specification in Event-B (right refinement arrow in
Fig. 1).

A first definition of ASTD refinement is proposed in [13]. This refinement definition requires the
traces to be preserved and three generic application patterns are described. By trying to apply this ASTD

refinement relation on the case study described here, we realise that it is too restrictive. Consequently
we have introduced new patterns that weaken the original definition but preserve behaviour consistency:
the properties that are true in a state of the abstract ASTD specification have to be preserved in the
corresponding state of the concrete specification. This new refinement definition is detailed in section 4.4.

The Event-B part of the specification is refined using Event-B definition of refinement. The proof
obligations are automatically generated by the RODIN tool. The Event-B refinement guarantees the
preservation of the invariants in the data specification. This refinement definition is one of the reasons
why we chose Event-B to specify the data part of the system: The classical B refinement does not allow
events to be added, while ASTD refinement allows new transitions.

4 Case Study

Our Event-B/ASTD coupling is used to specify a train system, more precisely a CBTC-like train con-
troller. CBTC is an automatic train control system based on communications between two subsystems.
The track controller manages the entire track where the trains are moving. An on-board controller drives
each train. At the most abstract level, the specification consists of trains moving independently. The aim
is to define a two-part-system: a part of the system drives the trains, another part manages all the trains
on the track. Informally, the property we want to prove for the system is the absence of collision.

Using formal methods to specify railway systems has already been done in the litterature. Ferrari and
al. [11] use semi-formal methods to specify a complete CBTC specification. They define a methodology
in a software product line approach. Many articles describe the use of formal methods to specify inter-
locking system: Abrial specifies it with Event-B in the Event-B book [1], James et al. with CSP‖B [19].
Silva uses Event-B too to specify a train system in his PhD thesis [26]. Our specification starts from a
more abstract global view of the system and we refine it into the specification of two controllers. The
other approaches directly specify the behaviour of each controller, without considering their global com-
position as we do.

4.1 Modelling Choices

At the most abstract level, we consider a unique track on which a set of trains are moving in the same
direction. This is realistic since, if there are trains in the opposite direction, they are blocked at switches.
Furthermore, all issues concerning switches, interlocking, etc... are not considered in this paper. They
can be dealt with in subsequent refinement steps. Consequently, we check only the absence of front-to-
rear collision

We define a set named TRACK on which there is a total, strict order relation (irreflexive, transitive
and asymetric) called is behind. x1 7→ x2 ∈ is behind means that the element x1 is behind the element x2
on the track.

In the following, we present four levels of specification. In the first one, the trains are moving
independently, the second one introduces a controller for each train, the third one groups the controllers
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Start(t)

S3S1
* S2 (t)

Movement(t)

S2.2S2.1

Stop(t)

|||(t : TRAIN) CBTC*

[position0 ∉
    ran(position)]

Figure 2: First ASTD Specification

together into one single control operation and the last one splits the variables between two entities,
preparing for the decomposition.

4.2 First Specification

We start by specifying the system behaviour in ASTD (in Fig. 2). The fact that we have many trains is
represented by the quantified interleaving operator. Each train can start, move and stop. S2(t) is an ASTD

of type Kleene closure: this means that the body of S2(t) (i.e. the movement transition) can be performed
zero, one or more times. When it is stopped, a train can restart thanks to the Kleene closure.

Since we assume that the trains are moving in the same direction on one track, the non-collision
property can be expressed by two predicates:

∀(t1, t2).(t1 ∈ TRAIN ∧ t2 ∈ TRAIN∧ t1 6= t2⇒
position(t1) 6= position(t2)) (1)

Predicate (1) means that the position of two distinct trains are different. Another predicate is needed to
express that a train cannot jump over another train.

∀(t1, t2).(t1 ∈ TRAIN ∧ t2 ∈ TRAIN∧position(t1) 7→ position(t2) ∈ is behind⇒
X(position(t1) 7→ position(t2) ∈ is behind)) (2)

Predicate (2) checks that the order of trains does not change. Symbol X denotes the ”next” operator from
temporal logic [22].

To express these predicates in Event-B we introduce a set TRAIN and a state variable position which
is a partial function from TRAIN to TRACK (position∈ TRAIN 7→TRACK). Variable position is set when
the train starts and until it stops. The EventB event, corresponding to the movement action, that acts on
the data is called movement act. It updates the variable such as (see Figure 3):

• the new position is different from the positions of the other trains;

• the new position stays behind the position of the trains that were located before;

• the new position cannot be located behind the old position.

Predicate (1) is directly defined as an invariant of the data specification. Predicate (2) uses an operator
coming from temporal logic and cannot be model checked by ProB. To avoid this issue, we translate
temporal logic predicate (2) into assertions on the states, written as Event-B theorems. An Event-B
theorem is an assertion that has to be proved with the invariants of the machine. A theorem is written for
each event of the machine. For example, the theorem corresponding to the movement act event checks
that for all trains train1, train2 and train3 such that train1 6= train2, (a) if train1 is behind train2, (b) if
the precondition of the movement act operation is true for train3, (c) if we execute movement act(train3)
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Event movement act =̂
any

tt
where

gu1 : tt ∈ T RAIN
gu2 : tt ∈ dom(position)

then
act1 : position : |(∃pp·(pp ∈ TRACK∧position’ = positionC−{tt 7→ pp}∧

(∀t2 ·(t2 ∈ dom(position’)∧ t2 6= tt⇒pp 6= position’(t2)))∧
(∀t2 ·(t2 ∈ dom(position)∧position(tt) 7→ position(t2) ∈ is behind⇒

pp 7→ position(t2) ∈ is behind))∧
(pp = position(tt)∨position(tt) 7→ pp ∈ is behind)))

end

Figure 3: First Specification: The movement act event

then train1 stays behind train2. Note that this theorem includes the three possible cases: train3 = train1,
train3 = train2 and (train3 6= train1 and train3 6= train2)

ASTD and Event-B specification are then translated into classical B. We detail the example of the
movement action label. In the ASTD translation, a movement operation is created. The precondition of
the operation verifies that the state variable is the initial state of the precondition (state 2.1 of ASTD S2(t)
in Fig. 2). The postcondition assigns the final state of the transition to the state variable (state 2.2 of
ASTD S2(t) in Fig. 2) and calls the translation of the Event-B movement act operation. The operation is

movement(t) =

PRE State S2(t) = S2.1

THEN State S2(t) := S2.2||movement act(t)

END.

The translation of movement act operation is
movement act(t) =

PRE t ∈ dom(position)

THEN position : |(P)
END

where P is the same predicate as in the act1 part of the Event-B postcondition of movement act.
In the data specification we have already proved that the invariant is preserved if the guards of the

events are true. In the unifying machine, generated proof obligations require to prove the precondition
(hence the guard of the event) of the called operation movement act (t ∈ dom(position)) to be true when
the operation is called (i.e. State S2(t) = s1.1). These two proofs imply that the invariant is always
preserved. This justifies the need of a unifying machine for proving the horizontal consistency.

4.3 First Refinement

At the abstract level, the movement act operation describes the properties that the new position must
satisfy. In this refinement, we show how such a position can be chosen. A computing operation is added
for each train. It computes a limit for the train, called mal (Movement Authority Limit), given all the
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S1
Start(t)

S3
Stop(t)

* S2(t)

S2.3

Compute_l(t)Movement(t)

S2.2S2.1
S1.1

Compute_l(t)

[position0 ∉
    ran(position)]

||| (t :  TRAIN) CBTC*

Figure 4: First Refinement - ASTD Specification

Event compute l act =̂
any

tt
where

gu1 : tt ∈ TRAIN
gu2 : tt ∈ dom(position)

then
act1 : mal : |(∃mm·(mm ∈ TRACK∧

∀t2 ·(t2 ∈ TRAIN∧ t2 ∈ dom(position)∧
position(tt) 7→ position(t2) ∈ is behind⇒mm 7→ position(t2) ∈ is behind)∧
(position(tt) 7→ mm ∈ is behind∨position(tt) = mm)∧
mal’ = malC−{tt 7→ mm}))

end

Figure 5: First Refinement: The compute l act Event

positions of the other trains. The movement act operation now updates the position such that the train
cannot overtake the limit.

In the ASTD specification, the action label compute l that computes the limit is added twice. Just
after a train starts, the system computes a mal. Each time a train has moved, the system has to compute
a new mal. The new ASTD specification is in Fig. 4. The refinement is proved using the refinement
definition given in [13].

Since a new action label is added in the ASTD, we need to describe its effects on the data model in
Event-B. It computes a limit for the train. This limit is the mal variable of the Event-B specification. The
invariant properties associated to mal are:

∀(t1, t2).(t1 ∈ TRAIN∧ t2 ∈ TRAIN∧position(t1) 7→ position(t2) ∈ is behind⇒
mal(t1) 7→ position(t2) ∈ is behind (3)

∀t.(t ∈ TRAIN⇒ (position(t) 7→ mal(t) ∈ is behind ∨position(t) = mal(t))) (4)

Predicate (3) checks that the mal of a train is always located behind the trains that are in front of it.
Predicate (4) checks that a train cannot overtake its limit.

The compute l act operation (see Figure 5) computes the limit for a train t such that: (a) the new
mal(t) is in front of or equal to current position(t), (b) for all trains t2 whose position(t2) is in front of
position(t), the new mal(t) is behind position(t2).
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Event movement act =̂
refines movement act

any
tt

where
gu1 : tt ∈ TRAIN
gu2 : tt ∈ dom(position)
gu3 : tt ∈ dom(mal)

then
act1 : position : |(∃pp·(pp ∈ TRACK∧position′ = positionC−{tt 7→ pp}∧

(position(tt) = pp∨ (position(tt) 7→ pp) ∈ is behind)∧
(pp = mal(tt)∨ (pp 7→ mal(tt)) ∈ is behind)))

end

Figure 6: First Refinement: The movement act Event

S1 S3

* S2(t)

S2.3
Movement(t)

S2.1 S2.2
Compute Stop(t)

S1.1
Start(t) Compute

⋔(t ∈ TRAIN)(State_cbtc(t) ∈ {S2;s1.1}))({Compute}) CBTC*

Figure 7: Second Refinement - ASTD Specification

Since we compute limit for the trains, we modify the movement act operation (Figure 6) such that
the new position of a train t is chosen depending on mal(t): the new position pp is between the old
position(t) and mal(t).

Predicates (1) and (2) are preserved by refinement. Predicate (1) is obvious because of invariant
preservation by refinement. Predicate (2) was translated in terms of postconditions and refinement guar-
antees the compatibility of postconditions of refined events.

4.4 Second Refinement

In this level of refinement, all the local computing operations compute l(t) are grouped into one global
compute operation. It is synchronised for all the started trains (t operator). The new specification is
depicted in Fig. 7.

This refinement transforms an interleaving ASTD |||(t ∈ TRAIN)A(t) into a synchronised ASTD t (t ∈
TRAIN)C(t). The set of accepted traces is restricted. But we want to preserve behaviour consistency:
For each train tn ∈ TRAIN the ASTD C(tn) is a refinement of the ASTD A(tn) according to the definition
proposed in [13]. It means that if the global set of traces accepted by the ASTD specification is reduced,
the local behaviour of each entities is preserved.

Since we change the local compute l operation into a global one, we need to define this operation
in the data specification. This operation computes for all trains a limit such that the limit respects the
invariants defined in section 4.3. The specification of compute act is shown on Figure 8.
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Event compute act =̂
begin

act1 : mal : |((dom(mal’) = dom(position)∧mal′ ∈ TRAIN 7→TRACK∧
(∀t1, t2 ·(t1 ∈ dom(position)∧ t2 ∈ dom(position)∧

position(t1) 7→ position(t2) ∈ is behind⇒
mal′(t1) 7→ position(t2) ∈ is behind))∧

(∀tt·(tt ∈ dom(mal′)⇒ (position(tt) 7→ mal′(tt) ∈ is behind∨
mal′(tt) = position(tt))))))

end

Figure 8: Second Refinement: The compute act Event

Proving this refinement is not possible in Event-B: a set of local events cannot be refined by a global
one. To prove the consistency of our specification, we proved that executing compute act operation is
equivalent to execute any sequence of compute l act (which means an interleaving of compute l act).

To prove the refinement, events are expressed as relations between the state of a variable before and
after executing the event. We write RelEv the relation for an event Ev and RelEv(t) if the event has a param-
eter. We proved that (a) for all t1 and t2, t1 and t2 being in TRAIN, RelCompute l act(t1);RelCompute l act(t2) =
RelCompute l act(t2);RelCompute l act(t1) which means that for all couples of trains, the order in which we
execute Compute l act event does not change the result. Using (a) and by induction on the set of trains,
we proved that all the sequences of Compute l act execution are equivalent. Finally, we proved that ex-
ecuting an arbitrary sequence of Compute l act is equivalent to execute Compute act. This implies that
executing Compute act is equivalent to execute an interleaving of Compute l act event.

4.5 Third Refinement

We want our system to have two subsystems. The on-board system drives the trains. It modifies variable
position, using variable mal. The track system manages the entire subsystem. It computes variable mal
using variable position. To share the variables between two subsystems, communications are introduced.

Each variable of the second refinement is refined by two variables: one variable called track variable
is used and modified by the track controller and the other one called on-board variable is used and modi-
fied by the on-board controller. The gluing invariant is mal = track mal∧position = on board position.

In the data specification, variable mal is replaced by track mal in the operations that modifies it,
and variable position is replaced by on board position. The rest of the specification remains almost
unchanged: some guards are added to prove the Event-B refinement. A communication operation
CommBT act (resp. CommTB act) send variable on board position (resp. track mal) from the board
to the track (resp. from the track to the board). The specification of the CommBT act is shown in
Figure 9

In the control specification, after each operation that modifies variable on board position (the oper-
ation Start and Movement), a communication operation from the board to the track (CommBT) is added.
Dually, a communication operation from the track to the board (CommTB) is added after the Compute
operation. The ASTD specification can be seen in Figure 10.

The ASTD refinement follows the refinement definition of [13]. The refinement of the data specifica-
tion follows the Event-B definition of the refinement.
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Event commBT act =̂
any

tt
where

gu1 : tt ∈ T RAIN
gu2 : tt ∈ dom(on board position)

then
act1 : track position(tt) := on board position(tt)

end

Figure 9: Third Refinement: The commBT act event

Start(t)

S1 S3S1.1

CommBT(t)
* S2(t)

S2.1

Movement(t) Compute

S2.2 S2.3 S2.5

CommTB(t)

S2.4

CommBT(t) Stop(t)

S1.2 S1.3

CommTB(t)Compute

⋔(t ∈ TRAIN)(State_cbtc(t) ∈ {S2;S1.1;S1.2;S1.3})({Compute}) CBTC*

[position0 ∉
    ran(position)]

Figure 10: Train System ASTD Specification: Fourth Refinement

4.6 Discussion about the specification

In this section, we want to evaluate the efficency of our specification method. For this purpose, a bench-
mark specification was specified. First, we sum up our case study. Then the benchmark specification is
explained. Finally, the specifications are compared.

Summary of the case study In this paper, four levels of specification are presented out of six in the
entire case study. The rest of the case study is described in a technical report [10]. The table in Figure 11
sums up the statistics of this case study. It contains the number of lines of specification and the number
of proof obligations. The specifications presented in this paper are level 2 to 5. Our aim is to evaluate
the efficiency of the ASTD langage. Thus we only present the statistics about the control specification.
The second column is the number of lines in the generated B specification. The last four columns are
the number of generated proof obligations. The first column is the total number of proof obligations, the
second and third ones are respectivelly the number of automatically and manually proved obligations.
The Atelier B tool allows one to save the user proof tactics. Since some proof obligations are similar,
some tactics can prove many proof obligations. The last column contains the number of proof tactics that
are sufficient to prove all proof obligations.

The benchmark specification To see the advantages and drawbacks of our methodology, a benchmark
B specification was written following the traditional development process. This benchmark specification
is a specification of the control specification that we have manually derived from the ASTD specification.
The ASTD specification is used as a user requirement.

One state variable is added for each transition label of the ASTD specification. This state variable
contains the instance of trains for which the transition is enabled. The precondition of an operation
verifies if the transition is enabled. The post condition removes the instance for the disabled operations,
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Specification
Level

Number of lines:
Generated B
Specification

Number of Proof Obligations

Total
Automatically

Proved
Manually

Proved
Number of

User Tactics
Level 1 98 30 25 5 5
Level 2 145 265 225 40 4
Level 3 185 342 252 90 14
Level 4 201 391 239 152 15
Level 5 277 871 337 534 58

Benchmark
Specification

121 149 16 133 13

Level 6 422 2710 1989 721 60

Figure 11: Size of the case study

Movement(tt) =

PRE
tt ∈ TRAIN∧
tt ∈ movement enabled

THEN
comm BT enabled := comm BT enabled∪{tt}||
movement enabled := movement enabled−{tt}||
stop enabled := stop enabled−{tt}||
Movement act(tt)

END;

Figure 12: The benchmark specification of the movement transition

and adds it for the enable operation. For example, the movement operation is shown in Figure 12. It
means that the Movement transition can be executed for the train tt if it is in the set movement enabled.
After this operation, neither Movement nor Stop operations are enabled, comm BT becomes enabled.
The benchmark specification contains 121 lines and generates 149 proof obligations, 133 are proved
manually with 13 user tactics.

Comparison and discussion We compare the level 5 of our case study with the benchmark specifica-
tion. Level 5 required to manually prove 534 obligations which were discharged with 58 tactics. The
benchmark specification is shorter (121 lines vs 277) and generates less proof obligations (149 vs 871,
13 tactics required vs 58) than our specification. This comes from the fact that the control specification
is automatically generated. As a comparison, the Movement operation in the generated B code contains
4 levels of SELECT substitution, which generate a lot of different proof cases. The specification of this
operation is not given here for the sake of concision; it is about 30 lines long.

On one hand, the benchmark specification is shorter and easier to prove, but it is almost impossible
to be sure it respects the behaviour of the ASTD specification without proving it. On the other hand, the
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ASTD/B specification is automatically translated from the ASTD specification: thus we are sure it respects
the ASTD specification but the resulting specification is a little hard to prove. We also try to prove the
equivalence between the ASTD/B specification and the benchmark specification. This proof is about as
hard as proving the entire ASTD/B specification, and mistakes were found which shows the necessity of
the proof of equivalence.

This comparison provides some evidence that the ASTD langage is a good, formal and easy to read
langage to express user requirements. It can be used in a formal specification methodology, but the result-
ing specification is hard to prove and a little complex. In the future, we plan to improve the specification
methodology to reduce the complexity of the generating specification and to help the user with the proof
work.

5 Conclusion

5.1 Related work.

There exist several methods that combine state-based specifications with process algebras. In csp2B [6],
a CSP specification is translated into a B machine. Only a subset of CSP operators are allowed for se-
mantics reasons and there are some restrictions on the use of synchronisation and interleaving operators.
Contrary to our approach, the basic idea of csp2B is to use one of the two languages (e.g. B) as a central
support for verification and refinement.

CSP || B [27, 24] consists in associating B machines with CSP controllers, such that B operations are
constrained by the CSP process. Communications between B machines are modelled through their re-
spective CSP controllers. The approach provides the sufficient conditions to verify the consistency of the
whole specification. This work is probably the closest to our approach. Intrinsically, the decomposition
of the system into several pairs B machine/CSP controller implies a clear separation between data model
and behavioural description. However, it also induces a very constrained organisation of the model,
which may be not straightforward for some systems. Moreover, compared to ASTD, expressiveness of
CSP controllers is limited (see [12] for a comparison between ASTD and CSP).

Circus [28, 21] is a formal language based on Z [7] and CSP, which integrates the refinement cal-
culus of [3]. The semantics is inspired by the unifying theory of programming [17]. The key idea is
to distinguish state transitions from the communications of the main action system that represents the
behaviour of the system. CSP roughly offers the same process algebra as ASTD but without a graphical
view. Moreover our data refinement is based on Event-B.

Finally iUML-B combines Event-B with UML. A state machine or a class diagram can be added to
an Event-B machine. Those diagrams are translated into Event-B specifications. It does not support the
quantified synchronisation that is needed in our case study. Moreover, there is no formal semantics for
now.

Let us now focus on refinement. Introducing extra operations is one of the main issues. Event-B
refinement [1] allows that, as opposed to classical B. In several event-based formal languages like CSP, a
denotational semantics is defined [23]: refinement is then based on inclusions of sets representing obser-
vations of the system behaviour. The simplest observation is to consider all the sequences of operations
that the system can perform; this corresponds to the traces model. Contrary to ASTD refinement, such
an inclusion of sets of traces allows loss of traces during refinement. Moreover, this semantics does not
allow new operations to be added. There are also some minor differences in the other observation models
(failures, divergences) such that ASTD allows definition of extra operations during refinement (see [13]
for a more detailed comparison between CSP and ASTD refinements). Several work [8, 25, 4] deal with
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the consequences of the introduction of extra operations on the CSP, B or Z refinement semantics. Com-
patibility in such couplings requires observations on the input/output operations in the models used for
refinement. This is consistent with respect to the ASTD refinement definition.

5.2 Lessons learnt and perspectives.

Our main objective is to formalise the process of transforming informal, high-level user requirements
into a global abstract formal specification by stepwise refinement, as advocated in the Event-B method.
Through a railway CBTC-like case study, we have shown how to model with two complementary for-
mal languages, e.g. ASTD and Event-B. Then, we have explored the complementarity and consistency
between ASTD and B-like refinements.

By adopting a specification in two parts, there is a clear separation between data aspects and be-
havioural description. The refinement steps illustrated in the case study show the interest of considering
both refinements. For instance, the first refinement step is ASTD-oriented and brings more details in the
event ordering for describing a specific process. When the state space must be updated, then the Event-B
part will be refined. Such refinements are focused on one part of the model, and the idea is to propagate
on the other part when some extra specifications are required (e.g. when a new event is inserted in an
ASTD, then it must be defined by means of Event-B substitutions).

An interesting refinement is illustrated by the second refinement step. It corresponds to a joint re-
finement of both parts of the model. Not only several actions are put together to form a new one (a kind
of merge) which is consistent in terms of postcondition, but the main behaviour is modified such that
this new action becomes a synchronisation barrier for the different trains, thus implying a behavioural
refinement.

We now aim at generalising all these lessons learnt in order to define a complete methodology, that
generates a readable and more easily provable specification. The development of supporting tools is
work in progress.
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