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Relative correctness is the property of a program to be more-correct than another program with re-
spect to a given specification. Among the many properties of relative correctness, that which we
found most intriguing is the property that programP′ refines programP if and only if P′ is more-
correct thanP with respect toanyspecification. This inspires us to reconsider program derivation
by successive refinements: each step of this process mandates that we transform a programP into
a programP′ that refinesP, i.e. P′ is more-correct thanP with respect toany specification. This
raises the question: why should we want to makeP′ more-correct thanP with respect to any specifi-
cation, when we only have to satisfy specificationR? In this paper, we discuss a process of program
derivation that replaces traditional sequence of refinement-based correctness-preserving transforma-
tions starting from specificationRby a sequence of relative correctness-based correctness-enhancing
transformations starting fromabort.
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1 Introduction

1.1 Background

Relative correctness is the property of a program to be more-correct than another program with respect
to a given specification. Intuitively,P′ is more-correct thanP with respect toR if and only if P′ obeys
R more often (i.e. for a larger set of inputs) thanP, and violatesR less egregiously (i.e. mapping inputs
to fewer incorrect outputs) thanP. We have found that relative correctness satisfies many intuitively
appealing properties, such as: It is reflexive and transitive, it culminates in absolute correctness, and it
logically implies enhanced reliability. Most interestingof all, we have found that a programP′ refines
a programP if and only if P′ is more-correct thanP with respect toany specification. This inspires
us to reconsider the process of program derivation by successive refinements from a specificationR:
whenever we transform a programP into a more-refined programP′, we are actually mandating thatP′

be more-correct thanP with respect toanyspecification. This raises the question: why should we impose
this condition with respect to all specifications when we have only one specification to satisfy? Acting
on this question, we propose to consider an alternative process, which we characterize by the following
premises:
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• Initial Artifact. Whereas in traditional program derivation we start the stepwise transformation
with the specification, in our proposed derivation we start with the trivial programabort, which
fails with respect to any non-empty specification.

• Intermediate Artifacts. Whereas in traditional program derivation intermediate artifacts are par-
tially defined programs, represented by a mixture of programming constructs and specification
constructs, in our proposed derivation all intermediate artifacts are finished executable programs.

• Stepwise Validation. Whereas in traditional program derivation a transformation is considered
valid if it proceeds by correctness-preserving refinement,in our proposed derivation a transfor-
mation is considered valid if it transforms a program into a more-correct program with respect
to the specification we are trying to satisfy. Because refinement is equivalent to relative correct-
ness with respect to arbitrary specifications, mandating relative correctness with respect to a single
specification appears to be a weaker requirement than refinement.

• Termination Condition. Whereas in traditional program derivation the stepwise transformation
ends when we have an executable program, in our proposed derivation the stepwise transforma-
tion ends when we obtain a correct program; alternatively, if obtaining a correct program is too
onerous, and we are satisfied with a sufficiently reliable program (for a given reliability require-
ment), then this process may end when the current program’s reliability reaches or exceeds the
required threshold. As we pointed out above, relative correctness logically implies enhanced relia-
bility, hence the sequence of programs generated by our derivation process feature monotonically
increasing reliability.

In the following subsection we discuss the motivation for exploring this alternative approach to program
derivation.

1.2 Motivation

The purpose of this section is to discuss some of the advantages that our proposed derivation process may
offer, by comparison with traditional refinement-based program derivation. In the absence of adequate
empirical evidence, all we can do is present some analyticalarguments to the effect that our proposed
approach offers some advantages that may complement those of refinement based program derivation.
Below are some of the arguments for our position:

• Simpler Transformations. The first argument we offer is that relative correctness with respect to
a specificationR is a weaker requirement than refinement, for the reason we discussed above:
refinement is equivalent to relative correctness with respect to all specification. Hence we are
comparing the condition of relative correctness with respect to a single specification against the
condition of relative correctness with respect to all specification. A simple example illustrates this
contrast: We consider the following specificationR and the following candidate programs,P, P′

andP′′, on a spaceSdefined by two natural variablesx andy.

– R= {(s,s′)|x′ = x+y},

– P: {while (y!=0) {x=x+1; y=y-1;}},

– P′: {x=x+y; y=0;},

– P′′: {x=x+y;}.

According to the definitions that we present subsequently, program P’ refines programP, and
programP′′ is more-correct (or as correct as) programP with respect toR, but it does not refine
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P. As we can see, programP′′ is simpler than programP′ because in fact it is subject to a weaker
requirement: whereasP′′ is more-correct thanP with respect toR, programP′ is more-correct than
P with respect to all specifications.

• Keeping Options Open. When we derive a program by successive refinements, every refinement
decision restricts the latitude of the designer for subsequent refinement steps. Consider again the
simple example above: Once we have decided to refine specification R by programP, we have
committed to assign zero to variabley, even though the specification does not require us to do so.
By looking at programP, we have no way to tell which part of the functional attributes of P are
mandated by the specification (addingx andy into x) and which part stems from previous design
decisions (placing 0 intoy). By contrast, program derivation by correctness enhancement keeps
the specification in the loop throughout the process, hence maintains the designer’s options intact;
in practice, this may come at the cost of additional complexity; further empirical observation is
needed to assess advantages and drawbacks.

• A Generic Model. Refinement based program derivation can only be applied to derive a correct
program from a specification. But today software development from scratch represents a small
fraction of software engineering activity; most software engineering person-months nowadays are
spent on software maintenance and software evolution, and much of software development in-
volves evolving existing applications rather than developing new applications from scratch. We
argue that the correctness enhancement derivation processthat we propose captures several soft-
ware engineering activities:

– Software development from scratch: This is the process we have discussed in the previous
section, that starts fromabort and culminates in a correct program.

– Corrective maintenance: Corrective maintenance consistsin starting from a programP that
is incorrect with respect to a specificationR (which it is intended to satisfy) and mapping it
onto a programP′ that is more-correct thanP with respect toR.

– Adaptive maintenance: Adaptive maintenance consists in starting from a programP that was
intended to satisfy some specificationRand alter it to now satisfy a different specificationR′;
this can be modeled as simply making the program more-correct with respect toR′ than it is
currently.

– Software upgrade: Given a specificationR and a programP, and given a specificationQ that
represents a feature we want to integrate intoP, upgradingP to satisfyQ amounts to altering
P to make it correct with respect toQ while enhancing or preserving its relative correctness
with respect toR.

– Software evolution: Given a specificationR, we want to develop a programP′ that is correct
with respect toR; but instead of starting from scratch, we start from a program P that already
satisfies many requirements ofR, and processP through correctness-enhancing transforma-
tions.

– Deriving reliable software: For most software products, asfor products in general, perfect
correctness is not necessary; very often, adequate reliability (depending on the level of crit-
icality of the application) is sufficient. In the program derivation process by correctness
enhancement, deriving a reliable program follows the same process as deriving a correct pro-
gram, except that it terminates earlier, i.e. as soon as the required reliability threshold is
matched or exceeded.
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• Fault Tolerant Derivation Process. By design, each transformation in the proposed approach trans-
forms an intermediate program into a more-correct program;hence if one step of this process in-
troduces a fault, subsequent steps may well correct it, since each transformation aims to enhance
correctness; in fact, every subsequent step is an opportunity to correct the program. By contrast,
in a refinement based (correctness-preserving) process, a fault in a stepwise transformation effec-
tively dooms the derivation since all subsequent steps refine a faulty specification.

• Usable Intermediate Artifacts. In a refinement-based process, only the final artifact is a usable /
executable program; hence if the process is terminated before its ultimate step, one has nothing to
show for one’s effort. By contrast, the proposed approach produces a succession of increasingly
correct (hence increasingly reliable) executable programs.

In the remainder of this paper, we briefly introduce the concept of relative correctness, use it to describe
a software development process, then illustrate it with a simple example. But first, we need to introduce
some mathematical notations that we use throughout the paper; this is the subject of the next section.

2 Mathematical Background

2.1 Relational Notations

In this section, we introduce some elements of relational mathematics that we use in the remainder
of the paper to support our discussions; our main source for definitions and notations is [2]. Dealing
with programs, we represent sets using a programming-like notation, by introducing variable names and
associated data type (sets of values). For example, if we represent setSby the variable declarations

x : X;y : Y;z : Z,
thenS is the Cartesian productX×Y×Z. Elements ofSare denoted in lower cases, and are triplets of
elements ofX,Y, andZ. Given an elementsof S, we represent itsX-component byx(s), itsY-component
by y(s), and itsZ-component byz(s). When no risk of ambiguity exists, we may writex to represent
x(s), andx′ to representx(s′), letting the references tosands′ be implicit.

A (binary) relation onS is a subset of the Cartesian productS×S; given a pair(s,s′) in R, we say
thats′ is animageof s by R. Special relations onS include theuniversalrelationL = S×S, the identity
relationI = {(s,s′)|s′ = s}, and theemptyrelationφ = {}. Operations on relations (say,RandR′) include
the set theoretic operations ofunion (R∪R′), intersection(R∩R′), difference(R\R′) andcomplement
(R). They also include therelational product, denoted by (R◦R′), or (RR′, for short) and defined by:

RR′ = {(s,s′)|∃s′′ : (s,s′′) ∈ R∧ (s′′,s′) ∈ R′}.

The power of relation R is denoted byRn, for a natural numbern, and defined byR0 = I , and for
n > 0, Rn = R◦Rn−1. The reflexive transitive closureof relation R is denoted byR∗ and defined by
R∗ = {(s,s′)|∃n≥ 0 : (s,s′) ∈ Rn}. Theconverseof relationR is the relation denoted bŷRand defined by
R̂= {(s,s′)|(s′,s)∈ R}. Finally, thedomainof a relationR is defined as the setdom(R) = {s|∃s′ : (s,s′)∈
R}, and therangeof relationR is defined as the domain of̂R.

A vector Ris a relation that satisfies the conditionRL= R; vectors on setShave the formA×S for
some subsetA of S. We use them as convenient relational representations of sets; for example, given a
relationR, the termRL is a vector, which represents the domain of relationR. A monotype Ris a relation
that satisfies the conditionR⊆ I ; monotypes have the form{(s,s′)|s′ = s∧ s∈ A} for some subsetA of
S; we represent them byI(A), or by I(a), wherea is the characteristic predicate of setA.
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2.2 Refinement Ordering

The concept of refinement is at the heart of any programming calculus; the exact definition of refinement
(the property of a specification to refine another) varies from one calculus to another; the following
definition captures our concept of refinement.

Definition 1 We let R and R′ be two relations on space S. We say that R′ refinesR if and only if

RL∩R′L∩ (R∪R′) = R.

We write this relation as:R′ ⊒ R or R⊑ R′. Intuitively, R′ refinesR if and only if R′ has a larger domain
thanR and is more deterministic thanR inside the domain ofR. As an illustration of this definition, we
let Sbe the space defined byS= {0,1,2,3} and we letRandR′ be the following relations:

R= {(1,0),(1,1),(1,2),(2,1),(2,2),(2,3)},
R′ = {(0,0),(0,1),(1,1),(1,2),(2,2),(2,1),(3,3),(3,2)}.

We find:
RL= {1,2}×S,
R′L = {0,1,2,3}×S,

whence
RL∩R′L∩ (R∪R′)

= {by inspection, we seeRL⊆ R′L}
RL∩ (R∪R′)

= {distributivity}
RL∩R∪RL∩R′

= {sinceR⊆ RL}
R∪RL∩R′

= {by inspection, we seeRL∩R′ ⊆ R}
R.

3 Absolute Correctness and Relative Correctness

Whereas absolute correctness characterizes the relationship between a specification and a candidate pro-
gram, relative correctness ranks two programs with respectto a specification; in order to discuss the
latter, it helps to review the former, to see how it is defined in our notation.

3.1 Program Functions

Given a programp on spaceS, we denote by[p] the function thatp defines on its space, i.e.
P= {(s,s′)|if programp executes on states then it terminates in states′}.

We represent program spaces by means of C-like variable declarations and we represent programs by
means of a few simple C-like programming constructs, which we present below along with their semantic
definitions:

• Abort: [abort] ≡ φ .

• Skip: [skip]≡ I .

• Assignment:[s= E(s)]≡ {(s,s′)|s∈ δ (E)∧s′ = E(s)}, whereδ (E) is the set of states for which
expressionE can be evaluated.
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• Sequence:[p1; p2]≡ [p1]◦ [p2].

• Conditional: [i f (t) {p}] ≡ T ∩ [p]∪T ∩ I , whereT is the vector defined as:T = {(s,s′)|t(s)}.

• Alternation: [i f (t) {p} else{q}]≡ T ∩ [p]∪T∩ [q], whereT is defined as above.

• Iteration: [while (t) {b}] ≡ (T ∩ [b])∗∩ T̂, whereT is defined as above.

• Block: [{x : X; p}]≡ {(s,s′)|∃x,x′ : (〈s,x〉,〈s′ ,x′〉) ∈ [p]}.
Rather than use the notation[p] to denote the function of programp, we will usually use upper caseP as
a shorthand for[p]. By abuse of notation, we may, when it is convenient and causes no confusion, refer
interchangeably to a program and its function (and we denoteboth by an upper case letter).

3.2 Absolute Correctness

Definition 2 Let p be a program on space S and let R be a specification on S.
• We say that program p iscorrectwith respect to R if and only if P refines R.

• We say that program p ispartially correctwith respect to specification R if and only if P refines
R∩PL.

This definition is consistent with traditional definitions of partial and total correctness [10, 14, 8, 5, 9].
Whenever we want to contrast correctness with partial correctness, we may refer to it astotal correctness.
The following proposition, due to [15], gives a simple characterization of correctness, and sets the stage
for the definition of relative correctness.
Proposition 1 Program p is correct with respect to specification R if and only if (P∩R)L = RL.
Note that because(P∩R)L ⊆ RL is a tautology (that stems from Boolean algebra), the condition above
can be written simply as:RL⊆ (P∩R)L; this condition can, in turn (due to relational algebra), bewritten
merely as,R⊆ (P∩R)L.

3.3 Relative Correctness: Deterministic Programs

Definition 3 Let R be a specification on space S and let p and p′ be two deterministic programs on space
S whose functions are respectively P and P′.

• We say that program p′ is more-correctthan program p with respect to specification R (denoted
by: P′ ⊒R P) if and only if: (R∩P′)L ⊇ (R∩P)L.

• Also, we say that program p′ is strictly more-correctthan program p with respect to specification
R (denoted by: P′ ⊐R P) if and only if(R∩P′)L ⊃ (R∩P)L.

Interpretation:(R∩P)L represents (in relational form) the set of initial states onwhich the behavior ofP
satisfies specificationR. We refer to this set as thecompetence domainof programP. Relative correctness
of P′ overP with respect to specificationRsimply means thatP′ has a larger competence domain thanP.
Whenever we want to contrast correctness (given in Definition 2) with relative correctness, we may refer
to it asabsolute correctness. Note that when we saymore-correctwe really meanmore-correct or as-
correct-as; we use the shorthand, however, for convenience. Note that programp′ may be more-correct
than programp without duplicating the behavior ofp over the competence domain ofp: It may have a
different behavior (sinceR is potentially non-deterministic) provided this behavioris also correct with
respect toR; see Figure 1. In the example shown in this figure, we have:

(R∩P)L = {1,2,3,4}×S,
(R∩P′)L = {1,2,3,4,5}×S,

whereS= {0,1,2,3,4,5,6}. Hencep′ is more-correct thanp with respect toR.



N. Diallo, W. Ghardallou, J. Desharnais & A. Mili 63

6

5

4

3

2

1

0

6

5

4

3

2

1

0

6

5

4

3

2

1

0

6

5

4

3

2

1

0

6

5

4

3

2

1

0

6

5

4

3

2

1

0

✘✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳❳③✘✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳❳③✘✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳❳③✘✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳❳③✘✘✘✘✘✘✘✘✘✿

✘✘✘✘✘✘✘✘✘✿

✘✘✘✘✘✘✘✘✘✿

✘✘✘✘✘✘✘✘✘✿

✘✘✘✘✘✘✘✘✘✿

✘✘✘✘✘✘✘✘✘✿

✘✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳❳③❳❳❳❳❳❳❳❳❳③❳❳❳❳❳❳❳❳❳③❳❳❳❳❳❳❳❳❳③❳❳❳❳❳❳❳❳❳③❳❳❳❳❳❳❳❳❳③

R P P′

Figure 1: Enhancing Correctness Without Duplicating Behavior: P′ ⊒R P

3.4 Relative Correctness: Non-Deterministic Programs

The purpose of this section is to define the concept of relative correctness for arbitrary programs, that
are not necessarily deterministic. One may want to ask: why do we need to define relative correctness
for non-deterministic programs if most programming languages of interest are deterministic? There are
several reasons why we may want to do so:

• Non-determinacy is a convenient tool to model deterministic programs whose detailed behavior is
difficult to capture, unknown, or irrelevant to a particularanalysis.

• We may want to reason about the relative correctness of programs without having to compute their
function is all its minute details.

• We may want to apply the concept of relative correctness, notonly to finished software products,
but also to partially defined intermediate designs (as appear on a stepwise refinement process).

We submit the following definition.

Definition 4 We let R be a specification on set S and we let P and P′ be (possibly non-deterministic)
programs on space S. We say that P′ is more-correct than P with respect to R (abbrev: P′ ⊒R P) if and
only if:

(R∩P)L ⊆ (R∩P′)L∧
(R∩P)L∩R∩P′ ⊆ P.

Interpretation:P′ is more-correct thanP with respect toR if and only if it has a larger competence
domain, and for the elements in the competence domain ofP, programP′ has fewer images that violate
R thanP does. As an illustration, we consider the setS= {0,1,2,3,4,5,6,7} and we letR, P andP′ be
defined as follows:

R= {(0,0),(0,1),(1,0),(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),
(4,3),(4,4),(4,5),(5,4),(5,5)}

P= {(0,2),(0,3),(1,3),(1,4),(2,0),(2,1),(3,1),(3,2),(4,1),(4,2),(5,2),
(5,3)}

P′ = {(0,2),(0,3),(1,2),(1,3),(2,0),(2,3),(3,1),(3,4),(4,2),(4,5),(5,2),
(5,3)}

From these definitions, we compute:
R∩P= {(2,1),(3,2)},
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Figure 2: Relative Correctness for Non-Deterministic Programs:P′ ⊒R P.

(R∩P)L = {2,3}×S,
R∩P′ = {(1,2),(2,3),(3,4),(4,5)}
(R∩P′)L = {1,2,3,4}×S
(R∩P)L∩P′ = {(2,0),(2,3),(3,1),(3,4)}
(R∩P)L∩R∩P′ = {(2,0),(3,1)}

By inspection, we do find that(R∩P)L = {2,3}×S is indeed a subset of(R∩P′)L = {1,2,3,4}×S.
Also, we find that(R∩P)L∩R∩P′ = {(2,0),(3,1)} is a subset ofP. Hence the two clauses of Definition
4 are satisfied. Figure 2 represents relationsR, P andP′ on spaceS. ProgramP′ is more-correct than
programPwith respect toRbecause it has a larger competence domain ({2,3} vs. {1,2,3,4}, highlighted
in Figure 2) and because on the competence domain ofP (={2,3}), programP′ generates no incorrect
output ({(2,0),(3,1)}) unlessP also generates it.

4 Program Derivation by Relative Correctness

The paradigm of program derivation by relative correctnessis shown in Figure 3; in this section, we
illustrate this paradigm on a simple example, where we show in turn, how to conduct the transformation
process until we find a correct program or (if stakes vs cost considerations warrant) until we reach a
sufficiently reliable program.

4.1 Producing A Correct Program

We let spaceSbe defined by three natural variablesn, x andy, and we let specificationRbe the following
relation onS(borrowed from [6]):

R= {(s,s′)|n= x′2−y′2∧0≤ y′ ≤ x′}.

Candidate programs must generatex′ andy′ (if possible) for a givenn. The domain ofR is the set of
statess such thatn(s) is either odd or a multiple of 4; indeed, a multiple of 2 whose half is odd cannot
be written asn = x′2 − y′2, since this equation is equivalent ton = (x′ − y′)× (x′ + y′), and these two
factors ((x′ − y′) and(x′ + y′)) have the same parity, since their difference (x′ + y′− x′+ y′ = 2× y′) is
even. Hence we write:

RL= {(s,s′)|n mod 2= 1∨n mod 4= 0}.
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Figure 3: Alternative Program Derivation Paradigms

Starting from the initial programP0 =abort, we resolve to let the next programP1 be the program that
finds this factorization fory′ = 0:

void p1()

{nat n, x, y; // input/output variables

{nat r; // work variable

x=0; y=0; r=0; while (r<n) {r=r+2*x+1; x=x+1;}}}

We compute the function of this program by applying the semantic rules given in section 3.1, and we
find:

P1 = {(s,s′)|n′ = n∧y′ = 0∧x′ = ⌈
√

n⌉}.
Whence we compute the competence domain ofP1 with respect toR:

(R∩P1)L
= {substitution, simplification}

{(s,s′)|n= x′2∧n′ = n∧y′ = 0}◦L
= {taking the domain}

{(s,s′)|∃x′′ : n= x′′2}.
In other words,P1 satisfies specificationR, whenevern is a perfect square.

We now consider the case wherer exceedsn by a perfect square, making it possible to fill the
difference withy2; this yields the following program:

void p2()

{nat n, x, y; // input/output variables

{nat r; // work variable

x=0; r=0; while (r<n) {r=r+2*x+1; x=x+1;}

if (r>n) {y=0; while (r>n) {r=r-2*y-1; y=y+1;}}

if (r!=n) {abort;}}}

This program preservesn, places inx the ceiling of the square root ofn, and places iny the integer
square root of the difference betweenn andx′2, and fails if this square root is not an integer. We write its
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function as follows:

P2 = {(s,s′)|n′ = n∧x′ = ⌈
√

n⌉∧y′2 = x′2−n∧y′ ≥ 0}.

We compute the competence domain ofP2 with respect toR:
(R∩P2)◦L

= {Substitutions}
{(s,s′)|n= x′2−y′2∧0≤ y′ ≤ x′∧n′ = n∧x′ = ⌈√n⌉∧y′2 = x′2−n

∧y′ ≥ 0}◦L
= {Simplifications}

{(s,s′)|n′ = n∧x′ = ⌈√n⌉∧y′2 = x′2−n∧y′ ≥ 0}◦L
= {Computing the domain}

{(s,s′)|∃n′′,x′′,y′′ : n′′ = n∧x′′ = ⌈√n⌉∧y′′2 = x′′2−n∧y′′ ≥ 0}
= {Simplifications}

{(s,s′)|∃y′′ : y′′2 = ⌈√n⌉2−n}.
In other words, the competence domain ofP2 is the set of statess such thatn(s) satisfies the following
property: the difference betweenn(s) and the square of the ceiling of the square root ofn(s) is a perfect
square. For example, a statessuch thatn(s) = 91 is in the competence domain ofP2, since⌈

√
91⌉2−91=

102 − 91= 9, which is a perfect square. The competence domain ofP2 is clearly a superset of the
competence domain ofP1, hence the transition fromP1 to P2 is valid.

The next program is derived fromP2 by resolving that if the ceiling of the integer square root ofn
does not exceedn by a square root, then we try the next perfect square (whose root we assign tox) and
we check whether the difference between that perfect squareandn is now a perfect square; we know that
this process converges, for any states for which n(s) is odd or a multiple of 4. This yields the following
program:

void p3() // fermat

{nat n, x, y; // input/output variables

{nat r; // work variable

x=0; r=0; while (r<n) {r=r+2*x+1; x=x+1;}

while (r>n)

{int rsave; y=0; rsave=r;

while (r>n) {r=r-2*y-1; y=y+1;}

if (r<n) {r=rsave+2*x+1; x=x+1;}}

}}

This program preservesn, places inx the smallest number whose square exceedsn by a perfect square
and places iny the square root of the difference betweenn andx2. If we let µ(n) be the smallest number
whose square exceedsn by a perfect square, we write the function ofP3 as follows:

P3 = {(s,s′)|n′ = n∧x′ = µ(n)∧y′ =
»

µ(n)2−n}.

We compute the competence domain ofP with respect toR:
(R∩P3)◦L

= {Substitutions}
{(s,s′)|n= x′2−y′2∧0≤ y′ ≤ x′∧n′ = n∧x′ = µ(n)∧y′ =

»

µ(n)2−n}◦L
= {Simplifications}

{(s,s′)|n= x′2−y′2∧n′ = n∧x′ = µ(n)}◦L
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= {Computing the domain}
{(s,s′)|∃n′′,x′′,y′′ : n= x′′2−y′′2∧n′′ = n∧x′′ = µ(n)}

= {Simplifications}
{(s,s′)|∃x′′,y′′ : n= x′′2−y′′2}

= {By inspection}
RL.

HenceP3 is correct with respect toR (by proposition 1) hence it is more-correct thanP2 with respect to
R. Hence we do have:

P0 ⊑R P1 ⊑R P2 ⊑R P3.

Furthermore, we find thatP3 is correct with respect toR; this concludes the derivation.

4.2 Producing A Reliable Program

We interpret the reliability of a program as the probabilityof a successful execution of the program on
some initial state selected at random from the domain ofR according to some probability distribution
θ . Given a probability distributionθ on dom(R), the reliability of a candidate programP is then the
probability that an element ofdom(R) selected according to the probability distributionθ falls in the
competence domain ofP with respect toR. Clearly, the larger the competence domain, the higher the
probability. Hence the sequence of programs that we generate in the proposed process feature higher
and higher reliability. So that if we are supposed to derive aprogram under a reliability requirement,
we can terminate the stepwise transformation process as soon as we obtain a program whose estimated
reliability matches or exceeds the specified threshold. So far this is a theoretical proposition, but an
intriguing possibility nevertheless. The sample program developed in the previous subsection may be
used to illustrate this idea, though it does not show a uniform reliability growth. For the sake of argument,
we suppose thatn ranges between 1 and 10000, and we estimate the reliability of each of the programs
generated in the transformation process.

• P0: The reliability ofP0 is zero, of course, since it never runs successfully.

• P1: If n takes values between 1 and 10000, then the domain ofR has 7500 elements (since 1 out
of four is excluded: even numbers whose half is odd are not decomposable); out of these 7500
elements, only 100 are perfect squares (12 to 1002). Hence the reliability ofP1 under a uniform
probability distribution is100

7500= 0.01333.

• P2: The competence domain ofP2 includes all the elementsn that can be written as:n= ⌈√n⌉2−y2

for some non-negative valuey. To count the number of such elements, we consider all possible
values ofx (between 1 and 100) and all possible values ofy such that(x−1)2 < x2−y2 ≤ x2. By
inverting the inequalities and addingx2 to all sides, we obtain:

0≤ y2
< 2x−1.

Hence the number of elements in the competence domain ofP2 can be written as

100+
100∑

x=1

√
2x−1.

We find this quantity to be equal to 996, which yields a probability of 996
7500= 0.1328.

• P3: Because the competence domain ofP3 is all of dom(R), the reliability of this program is 1.0.
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We obtain the following table.

Program Reliability

P0 0.0000
P1 0.0133
P2 0.1328
P3 1.0000

5 Conclusion

5.1 Summary

In this paper, we argue that program derivation by successive refinements may, perhaps, be imposing
an unnecessarily strong condition on each step of the transformation process; also, we submit that by
using the weaker criterion of relative correctness rather than refinement we may be achieving greater
flexibility in the design process, and perhaps simpler solutions, without loss of quality. With hindsight,
the proposed approach appears to be a natural alternative: Indeed, if we want to derive a correct program
from a given specification, we can either transform the specification in a correctness-preserving manner
until it becomes a program, or start from a trivial program and transform it in a correctness-enhancing
manner until it becomes correct. A simple way to contrast these two paradigms is to model them as
iterative processes, and to characterize each one of them by: its initial state, its invariant assertion, its
variant function, and its exit condition; this is shown below.

Attribute Refinement Based Relative Correctness Based

Initialization a = R a = abort

Invariant a is correct a is a program
Variant a increasingly concrete a increasingly correct
Exit test whena is a program whena is correct

The proposed paradigm appears to model several software engineering activities, including: the de-
velopment of (sufficiently) reliable programs; correctivemaintenance; adaptive maintenance; software
upgrade; and software evolution. Hence by advancing the state of the art in correctness-enhancing pro-
gram derivation, we stand to have a greater impact on software engineering practice than if we focus
exclusively on correctness-preserving program derivation. We have illustrated our thesis by a simple
example, although we admit than this example does not constitute evidence of viability.

5.2 Related Work

While, to the best of our knowledge, our work is the first to apply relative correctness to program deriva-
tion, it is not the first to introduce a concept of relative correctness. In [13] Logozzo discusses a frame-
work for ensuring that some semantic properties are preserved by program transformation in the context
of software maintenance. In [11] Lahiri et al. present a technique for verifying the relative correct-
ness of a program with respect to a previous version, where they represent specifications by means of
executable assertions placed throughout the program, and they define relative correctness by means of
inclusion relations between sets of successful traces and unsuccessful traces. Logozzo and Ball [12]
take a similar approach to Lahiri et al. in the sense that theyrepresent specifications by a network of
executable assertions placed throughout the program, and they define relative correctness in terms of
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successful traces and unsuccessful traces of candidate programs. Our work differs significantly from all
these works in many ways: first, we use relational specifications that address the functional properties of
the program as a whole, and are not aware of intermediate assertions that are expected to hold throughout
the program; second, our definition of relative correctnessinvolves competence domains (for determinis-
tic specifications) and the sets of states that candidate programs produce in violation of the specification
(for non-deterministic programs); third we conduct a detailed analysis of the relations between relative
correctness and the property of refinement.

Also related to our work are proposals by Banach and Pempleton [1] and by Prabhu et al. [7, 4, 3] to
find alternatives for strict refinement-based program derivation. In [1] Banach and Pempleton introduce
the concept ofretrenchment, which is a property linking two successive artifacts in a program derivation,
that are not necessarily ordered by refinement; the authors argue that strict refinement may sometimes
be inflexible, and present retrenchment as a viable substitute, that trades simplicity for strict correct-
ness preservation, and discuss under what conditions the substitution is viable. In [7, 4, 3] Prabhu et al.
propose another alternative to strict refinement, which isapproximate refinement. Whereas strict refine-
ment defines a partial ordering between artifacts, whereby aconcrete artifact is a correctness-preserving
implementation for an abstract artifact, approximate refinement defines a topological distance between
artifacts, and considers that a concrete implementation isacceptable if it is close enough (by some mea-
sure of distance) to the abstract artifact. Retrenchment and Approximate refinement are both substitutes
for refinement and are both used in a correctness-preservingtransformation from a specification to a pro-
gram; by contrast, relative correctness offers an orthogonal paradigm that seeks correctness enhancement
rather than correctness preservation.

5.3 Prospects

In this paper we merely suggested an alternative paradigm for the derivation of correct (or reliable)
programs from a specification; we neither showed, through empirical evidence, that this is a viable
alternative, nor showed how to apply it in general. These twoquestions are the most pressing issues in
our research agenda.
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