
J. Derrick, B. Dongol and S. Reeves (Eds.):

Refinement Workshop 2018 (REFINE’18).

EPTCS 282, 2018, pp. 68–86, doi:10.4204/EPTCS.282.6

c© E. Sekerinski & S. Yao

This work is licensed under the

Creative Commons Attribution License.

Refining Santa: An Exercise in Efficient Synchronization

Emil Sekerinski Shucai Yao

Department of Computing and Software
McMaster University

Hamilton, Ontario, Canada

emil@mcmaster.ca yaos4@mcmaster.ca

The Santa Claus Problem is an intricate exercise for concurrent programming. This paper outlines the

refinement steps to develop a highly efficient implementation with concurrent objects, starting from

a simple specification. The efficiency of the implementation is compared to those in other languages.

1 Introduction

In 1994, Trono proposed the Santa Claus Problem as an exercise in concurrent programming [16]:

Santa Claus sleeps in his shop up at the North Pole, and can only be wakened by either all

nine reindeer being back from their year long vacation on a tropical island, or by some elves

who are having some difficulties making the toys. One elf’s problem is never serious enough

to wake up Santa (otherwise, he may never get any sleep), so, the elves visit Santa in a group

of three. When three elves are having their problems solved, any other elves wishing to visit

Santa must wait for those elves to return. If Santa wakes up to find three elves waiting at

his shop’s door, along with the last reindeer having come back from the tropics, Santa has

decided that the elves can wait until after Christmas, because it is more important to get his

sleigh ready as soon as possible. (It is assumed that the reindeer don’t want to leave the

tropics, and therefore they stay there until the last possible moment.) The penalty for the

last reindeer to arrive is that it must get Santa while the others wait in a warming hut before

being harnessed to the sleigh.

Trono’s original solution uses ten semaphores. The problem is indeed intricate: as Ben-Ari argues,

Trono’s solution assumes that a signalled process executes immediately: otherwise, when all reindeer

are signalled to proceed to the sleigh, some reindeer may still not be harnessed while others have already

finished delivering the toys [2]. A more robust solution would need additional semaphores for barrier

synchronization [1]. Ben-Ari argues that the rendezvous construct of Ada is particularly suitable for this

problem and compares a solution in Ada with one in Java using monitors. Downey proposes a solution

of a simplified problem employing only four semaphores, but makes the assumption that a signalling

process does not continue [9]; under some schedulers, e.g. the semaphore implementation of Python, the

first elf runs forever.

The Santa Claus Problem follows a line of whimsically named concurrency problems (see [9] for a

beautiful collection of those) that all are representative for specific aspects: here, these are priority (the

reindeer have priority over elves), multi-party synchronization (all reindeer have to be present to engage

with Santa and Santa engages either with reindeer or elves), barriers (all reindeer have to be harnessed,

then they jointly ride with Santa, then Santa dismisses them), and batch processing (Santa consults

elves one by one, but only if a group of three is present). The Santa Claus Problem has been used to

illustrate concurrency constructs, e.g. [3, 6, 7, 8, 13] and for comparing concurrency constructs [10].

http://dx.doi.org/10.4204/EPTCS.282.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

E. Sekerinski & S. Yao 69

Peyton Jones gives a solution in Haskell using software transactional memory [14]. Welch and Pedersen

present a process-oriented solution using Occam and discuss model-checking a CSP formulation of the

problem [17].

This paper develops a solution using concurrent objects by a series of refinement steps. The thrust is

to start the development with a specification that is as simple as possible, to add details about Santa, the

reindeer, the elves, and their interaction in refinement steps, and to arrive at an implementation that is

comparable to other efficient implementations. This work is part of an ongoing research program in de-

veloping a highly efficient implementation [12, 18] of concurrent objects together with an accompanying

verification and refinement theory [15].

The next section introduces concurrent objects with guard-based synchronization and discusses the

assumptions about atomicity. A general refinement rule for concurrent objects is given and informally

justified. This is followed by the presentation of the Santa Claus problem, the development of a solution

in five refinement steps, the timing results comparing four implementations, and a discussion. The proofs

of the refinement steps are sketched but not carried out in full detail: our goal is to argue that the cho-

sen model of concurrent objects allows both highly efficient implementations and intuitive correctness

reasoning.

2 Concurrent Objects

Concurrent objects here consists of fields, methods, and actions [4, 5, 11, 15]. Methods must be called to

execute but an action can execute on its own whenever its guard is true. Only one method or action can

execute at a time in one object, but all objects can execute concurrently. Objects communicate through

method calls; no separate mechanism is needed. For synchronization of objects, methods may also have

a guard, which can block the caller. Consider class Santa:

class Santa

var s: {Sleeping, Working} = Sleeping

method wakeup()

s = Sleeping → s := Working

action

s = Working → s := Sleeping

When object st is created by st := new Santa, the method wakeup can be called, st.wakeup(). The call

blocks if field s of st is not equal to Sleeping and sets s to Working otherwise. The single action of the

object is executed on its own when its guard is true, s = Working, and then sets field s to Sleeping. Thus

this represents a Santa who needs to be woken up externally, but will go to sleep on his own.

The guards of methods and actions of an object can depend only on fields of that object; the guard

cannot refer to fields of other objects or contain calls. This restriction is meant to allow for an efficient

implementation: all objects can evaluate their guards concurrently without interference; a guard can

change its value by execution with an object, hence guards only need to be reevaluated after a method or

action in that object executes.

All methods and actions are executed atomically, up to method calls. For example, if S is a statement

without calls, the sequence st.wakeup(); S ; st.wakeup() executes the first call st.wakeup() atomically,

then S atomically, then the second call st.wakeup() atomically. Using angular brackets to denote atomic

regions, this is equivalent to 〈 st.wakeup() 〉; 〈 S 〉 ; 〈 st.wakeup() 〉. Both calls to wakeup may block and

delay execution until the guard holds, i.e. Santa is sleeping again. In general, if the execution of a method

70 Refining Santa

or action is suspended, another method or action may start to execute or continue execution. There can

be arbitrarily many suspended method executions in an object. Once an action is chosen, that action will

be executed until termination before another action can be initiated, hence at most one action execution

can be suspended. There can only be as many concurrent executions as there are objects.

We assume that all fields of an object are private to the object, i.e. are accessed only by the methods

and actions of the object. The sole purpose of classes is to create objects. In general, class D refines

class C if a D object can be used instead of a C object. The following rule formalizes refinement with a

coupling relation that relates the fields of C and D:

Rule 1 (Class Refinement) Consider classes C,D with list f ,g of fields, initialized to f0,g0, with meth-

ods mk() with bodies Sk,Tk, and with actions Ai,B j. Class D may have new methods nl() with bodies Ul:

class C class D

var f = f0 var g = g0

method mk() method mk()
Sk Tk

action Ai method nl()
Ul

action B j

Class C is refined by class D if for some relation R over f and g:

(I) R f0 g0

(M) Sk ⊑R Tk for all k

(N) skip ⊑R Ul or Ai ⊑R Ul for all l and some i

(A) Ai ⊑R B j for all j and some i

Condition (I) requires that the field initializations have to establish the coupling relation R. Condition (M)

requires that each method of D refines the corresponding method of C through R. Condition (M) requires

that new methods of D either stutter, i.e. refine skip through R, or refine some action of C through R.

Condition (A) requires that all actions of D refine some action of C. Note that not all actions of C have

to be refined, i.e. D can restrict the behaviour of C.

For the refinement of statements through a relation, we give only a single rule and appeal to intuition

otherwise:

Rule 2 (Guarded Assignment Refinement) Let b, d be expressions over variables x, let c, e be expres-

sions over variables y, and let R be a relation between x and y:

b → x := d ⊑R c → y := e if Rxy∧ c ⇒ b and Rxy∧ c ⇒ Rd e

In refinement steps, new classes may be introduced and objects of those classes may be created. Above

rules are applied to ensure that the behaviour of existing objects is preserved.

3 Refining Santa

In the development below, subscripts are used to distinguish names across refinement steps.

E. Sekerinski & S. Yao 71

Specification: Santa’s Cycle

The activity at the North Pole centers around Santa. In the simplest form, Santa either sleeps or works.

This is expressed by a class with one field for Santa’s state and two actions that switch between these

two states, whenever Santa feels like doing so:

class Santa0

var s: {Sleeping, Working} = Sleeping

action s = Sleeping → s := Working

action s = Working → s := Sleeping

A single object st of class Santa0 is created:

st := new Santa0

Refinement 1: Splitting Santa’s Work

Santa’s work consists of either delivering toys or helping the elves: when Santa wakes up, he may either

go to state Delivering or Helping:

class Santa1

var s: {Sleeping, Delivering, Helping} = Sleeping

action s = Sleeping → s := Delivering

action s = Sleeping → s := Helping

action s = Delivering → s := Sleeping

action s = Helping → s := Sleeping

A single object st of class Santa1 is created:

st := new Santa1

For applying the rule for Class Refinement, as the coupling relation between Santa0 and Santa1 we take:

R1 s0 s1 =̂ s0 = Working ≡ s1 ∈ {Delivering,Helping}

Since there are no methods in Santa1, refinement follows from the conditions for the initialization and

the four actions of Santa1:

(I) R1 Sleeping Sleeping

(A1) s0 = Sleeping → s0 := Working ⊑R1
s1 = Sleeping → s1 := Delivering

(A2) s0 = Sleeping → s0 := Working ⊑R1
s1 = Sleeping → s1 := Helping

(A3) s0 = Working → s0 := Sleeping ⊑R1
s1 = Delivering → s1 := Sleeping

(A4) s0 = Working → s0 := Sleeping ⊑R1
s1 = Helping → s1 := Sleeping

Conditions (A1) to (A4) hold by the rule for Guarded Assignment Refinement.

72 Refining Santa

Refinement 2: Introducing Santa’s Sleigh

Santa’s shop coordinates the elves and Santa’s sleigh coordinates the reindeer. We first introduce and

prioritize the sleigh, postponing the introduction of the reindeer, the shop, and the elves. Here, the sleigh

is an active object: the sleigh signals to Santa that all reindeer are back, then Santa harnesses all reindeer,

then the reindeer pull the sleigh until Santa releases all reindeer and sleeps again. The synchronization

is expressed by the sleigh calling newly introduced methods of Santa. Class Santa2 splits the Delivering

state of Santa1 into Harnessing and Riding; field b is true if the reindeer are back from vacationing:

class Santa2

var s: {Sleeping, Harnessing, Riding, Helping} = Sleeping

var b: boolean = false

method back()

b := true

method harness()

s = Harnessing → s := Riding

method pull()

s = Riding → s, b := Sleeping, false

action s = Sleeping ∧ b → s := Harnessing

action s = Sleeping ∧¬ b → s := Helping

action s = Helping → s := Sleeping

class Sleigh2(st: Santa2)

var s: {Back, Harnessing, Pulling} = Back

action s = Back → s := Harnessing ; st.back()

action s = Harnessing → s := Pulling ; st.harness()

action s = Pulling → s := Back ; st.pull()

Object st of class Santa2 and object sl of class Sleigh2 are created; these objects can execute concurrently:

st := new Santa2 ; sl := new Sleigh2(st)

The first action of Sleigh2 calls st.back(), which executes immediately but under mutual exclusion with

any other action of st. The calls st.harness() and st.harness() will block until the corresponding guard

is true. For applying the rule for Class Refinement to show that Santa2 refines Santa1, we take as the

coupling relation:

R2 s1 (s2,b2) =̂ (s1 = Delivering ≡ s2 ∈ {Harnessing,Riding})∧ (s1 = Delivering ⇒ b2)

Refinement follows as back and harness of Santa2 stutter under R2 and pull refines the action s =
Delivering → s := Sleeping of Santa1 under R2. Field b of Santa2 reduces the nondeterminism that is

present among the actions of Santa1. Formally, the conditions are:

(I) R2 Sleeping (Sleeping, false)

(N1) skip ⊑R2
b := true

(N2) skip ⊑R2
s2 = Harnessing → s2 := Riding

(N3) s1 = Delivering → s1 := Sleeping ⊑R2
s2 = Riding → s2,b2 := Sleeping, false

(A1) s1 = Sleeping → s1 := Delivering ⊑R2
s2 = Sleeping∧b2 → s2 := Harnessing

(A2) s1 = Sleeping → s1 := Helping ⊑R2
s2 = Sleeping∧¬b2 → s2 := Helping

E. Sekerinski & S. Yao 73

(A3) s1 = Helping → s1 := Sleeping ⊑R2
s2 = Helping → s2 := Sleeping

These follow from the rule for Guarded Assignment Refinement.

Refinement 3: Introducing Reindeer

This step leaves Santa unchanged, refines Santa’s sleigh into a passive sleigh, and introduces active

reindeer. The sleigh coordinates the reindeer by keeping a count, c, for the number of reindeer that need

to come back, that need to be harnessed, and that need to be pulling. The reindeer cyclically call the

back, harness, pull methods of the sleigh. Since reindeer are not further refined, this is simply expressed

by a single action composing these calls in sequence rather than by three actions.

class Sleigh3(st: Santa2)

var s: {Back, Harnessing, Pulling} = Back

var c: 0 .. 9 = 9

method back()

s = Back → c := c − 1 ; if c = 0 then (s, c := Harnessing, 9 ; st.back())

method harness()

s = Harnessing → c := c − 1 ; if c = 0 then (s, c := Pulling, 9 ; st.harness())

method pull()

s = Pulling → c := c − 1 ; if c = 0 then (s, c := Back, 9 ; st.pull())

class Reindeer3(sl: Sleigh3)

action sl.back() ; sl.harness() ; sl.pull()

One sleigh and nine reindeer are created:

sl := new Sleigh3 ; for i := 1 to 9 do new Reindeer3(sl)

As a note, the refinement is also correct is more or fewer than nine reindeer are created: if there are more

than nine reindeer, the first nine arriving will be harnessed; if there are fewer than nine reindeer, Santa

can only occupy himself with the Elves and no presents will be delivered! The coupling relation between

Sleigh2 and Sleigh3 includes the identity relation on s and restricts c to be between 1 and 9:

R3 s2 (s3,c3) =̂ s2 = s3 ∧1 ≤ c3 ≤ 9

For brevity, we refer to the body of method m of class C as C.m. Refinement of Sleigh2 by Sleigh3 then

follows from:

(I) R2 Back (Back,9)

(N1) skip ⊑R3
Sleigh3.back or s2 = Back → s2 := Harnessing;st.back() ⊑R3

Sleigh3.back

(N2) skip ⊑R3
Sleigh3.harness or s2 = Harnessing → s2 := Pulling;st.harness() ⊑R3

Sleigh3.harness

(N3) skip ⊑R3
Sleigh3.pull or s2 = Pulling → s2 := Back;st.pull() ⊑R3

Sleigh3.pull

To show (N1), we distinguish the cases c > 1 and c = 1: if c > 1 initially, then Sleigh3.back simplifies

to s = Back → c := c− 1, which refines skip under R3; if c = 1 initially, then Sleigh3.back simplifies

to s = Back → s,c := Harnessing,9;st.back(), which refines s = Back → s := Harnessing;st.back()
under R3. The conditions (N2) and (N3) are shown similarly.

74 Refining Santa

Refinement 4: Introducing Santa’s Shop

Class Santa4 splits the Helping state of Santa2 into Welcoming and Consulting; field p is the number

of puzzled elves. Santa will be woken up only by a group of three elves but then has to consult each

individually. The shop is here an active object that represents the collective behaviour of elves: class

Shop4 maintains a count of the number of elves of the current group that still have to consult with Santa:

class Santa4

var s: {Sleeping, Harnessing, Riding, Welcoming, Consulting} = Sleeping

var b: boolean = false

var p: 0 .. 3 = 0

method back()

b := true

method harness()

s = Harnessing → s := Riding

method pull()

s = Riding → s, b := Sleeping, false

method puzzled()

p := 3

method enter()

s = Welcoming → s := Consulting

method consult()

s = Consulting → p := p − 1 ; if p > 0 then s := Welcoming else s := Sleeping

action s = Sleeping ∧ b → s := Harnessing

action s = Sleeping ∧p = 3∧¬b → s := Welcoming

class Shop4(st: Santa4)

var s: {Puzzled, Entering, Consulting} = Puzzled

var c: 0 .. 3 = 0

action s = Puzzled → s, c := Entering, 3 ; st.puzzled()

action s = Entering → s := Consulting ; st.enter()

action s = Consulting → c := c − 1 ; if c > 0 then s := Entering else s:= Puzzled ; st.consult()

One Santa and one shop are created:

st := new Santa4 ; sh := new Shop4(st)

As the coupling relation between Santa2 and Santa4 we take:

R4 (s2,b2)(s4,b4, p4) =̂ (s2 = s4 ∨ (s2 = Helping∧ s4 ∈ {Welcoming,Consulting}))∧
b2 = b4

Class Sleigh4 refines Sleigh2 as the methods back, harness, pull refine themselves under R4, new methods

puzzled, enter stutter under R4, new method consult stutters if p > 0 initially and refines s2 = Helping →
s2 := Sleeping if p = 0 initially, and the two actions of Sleigh4 refine actions of Sleigh2. Formally, the

conditions are:

(I) R4 (Sleeping, false)(Sleeping, false,0)

(M1) Sleigh2.back ⊑R4
Sleigh4.back

(M2) Sleigh2.harness ⊑R4
Sleigh4.harness

E. Sekerinski & S. Yao 75

(M3) Sleigh2.pull ⊑R4
Sleigh4.pull

(N1) skip ⊑R4
Sleigh4.puzzled

(N2) skip ⊑R4
Sleigh4.enter

(N3) skip ⊑R4
Sleigh4.consult or s2 = Helping → s2 := Sleeping ⊑R4

Sleigh4.consult

(A1) s2 = Sleeping∧b2 → s2 := Harnessing ⊑R4
s4 = Sleeping∧b4 → s4 := Harnessing

(A2) s2 = Sleeping∧¬b2 → s2 := Helping ⊑R4
s4 = Sleeping∧ p4 = 3∧¬b4 → s4 := Welcoming

Refinement 5: Introducing Elves

This step leaves Santa, the sleigh, and the reindeer unchanged, refines the shop into a passive shop, and

introduced active elves.

class Shop5(st: Santa)

var s: {Puzzled, Entering, Consulting} = Puzzled

var c: 0 .. 3 = 0

method puzzled()

s = Puzzled → c := c + 1 ; if c = 3 then (s := Entering; st.puzzled())

method enter()

s = Entering → s := Consulting ; st.enter()

method consult()

s = Consulting → c := c − 1 ; if c > 0 then s := Entering else s:= Puzzled ; st.consult()

class Elf5(sh: Shop)

action sh.puzzled() ; sh.enter() ; sh.consult()

One shop and 20 elves are created:

sh := new Shop5 ; for i := 1 to 20 do new Elf5(sh)

The coupling relation between Shop4 and Shop5 includes the identity relation on s. The count c is also

identical except in state Puzzled, as in Shop5 the elves may increment c one by one but in Shop4 it is set

to 3 at once:

R5 (s4,c4)(s5,c5) =̂ s4 = s5 ∧ (c4 = c5 ∨ (s5 = Puzzled ∧ c5 < 3))

Class Shop5 refines Shop4 as the new method puzzled stutters under R5 if c5 < 2 and refines the action

s4 = Puzzled → s4,c4 := Entering,3;st.puzzled() if c5 = 2, new method enter refines s4 = Entering →
s4 := Consulting;st.enter(), and new method consult refines s4 = Consulting → c4 := c4 − 1; if c4 >

0 then s4 := Entering else s4 := Puzzled;st.consult(). Formally, the conditions are:

(I) R5 (Puzzled,0)(Puzzled,0)

(N1) skip ⊑R5
Shop5.puzzled or s4 = Puzzled → s4,c4 := Entering,3;st.puzzled() ⊑R5

Shop5.puzzled

(N2) s4 = Entering → s4 := Consulting;st.enter() ⊑R5
Shop5.enter

(N3) s4 = Consulting → c4 := c4 −1; if c4 > 0 then s4 := Entering else s4 := Puzzled;st.consult() ⊑R5

Shop5.consult

76 Refining Santa

Summary of Refinement Steps

The final versions of classes Santa, Sleigh, Reindeer, Shop, and Elf are:

class Santa

var s: {Sleeping, Harnessing, Riding, Welcoming, Consulting} = Sleeping

var b: boolean = false

var p: 0 .. 3 = 0

method back()

b := true

method harness()

s = Harnessing → s := Riding

method pull()

s = Riding → s, b := Sleeping, false

method puzzled()

p := 3

method enter()

s = Welcoming → s := Consulting

method consult()

s = Consulting → p := p − 1 ; if p > 0 then s := Welcoming else s := Sleeping

action s = Sleeping ∧ b → s := Harnessing

action s = Sleeping ∧p = 3∧¬ b→ s := Welcoming

class Sleigh(st: Santa)

var s: {Back, Harnessing, Pulling} = Back

var c: 0 .. 9 = 9

method back()

s = Back → c := c − 1 ; if c = 0 then (s, c := Harnessing, 9 ; st.back())

method harness()

s = Harnessing → c := c − 1 ; if c = 0 then (s, c := Pulling, 9 ; st.harness())

method pull()

s = Pulling → c := c − 1 ; if c = 0 then (s, c := Back, 9 ; st.pull())

class Reindeer(sl: Sleigh)

action sl.back() ; sl.harness() ; sl.pull()

class Shop(st: Santa)

var s: {Puzzled, Entering, Consulting} = Puzzled

var c: 0 .. 3 = 0

method puzzled()

s = Puzzled → c := c + 1 ; if c = 3 then (s := Entering; st.puzzled())

method enter()

s = Entering → s := Consulting ; st.enter()

method consult()

s = Consulting → c := c − 1 ; if c > 0 then s := Entering else s:= Puzzled ; st.consult()

class Elf(sh: Shop)

E. Sekerinski & S. Yao 77

Repetitions

of Santa

Lime (guards) C (semaphores) Go (channels) Java (monitors)

10,000 0.04 / 0.04 / 0.00 0.87 / 0.26 / 1.18 0.08 / 0.12 / 0.01 6.38 / 2.48 / 5.30

100,000 0.30 / 0.30 / 0.00 8.82 / 2.50 / 12.0 0.77 / 1.18 / 0.06 60.3 / 21.6 / 52.0

1,000,000 2.91 / 2.90 / 0.01 93.0 / 24.8 / 123 7.51 / 11.6 / 0.55 ≈ 534 / 159 / 509

Table 1: Execution time in sec on AMD Ryzen Threadripper 1950X 16 core (32 threads) processor with

32 GB memory under Ubuntu 16.04. The compilers used are gcc 5.4.0, Java 9.0.4, Go 1.8.3 linux/amd64.

The times are reported as the average real / user / system times of 20 runs. Only a single run was used

for Java with 1,000,000 repetitions of Santa.

action sh.puzzled() ; sh.enter() ; sh.consult()

The main program creates active objects for Santa, reindeer, and elves; these use the passive sleigh

and shop objects for synchronization:

st := new Santa

sl := new Sleigh(st) ; for i := 1 to 9 do new Reindeer(sl)

sh := new Shop(st) ; for i := 1 to 20 do new Elf(sh)

4 Results

We have implemented an experimental compiler for Lime, a language that closely follows the above

theory of concurrent objects. Appendix A contains the Lime implementation of the Santa Claus Prob-

lem. The key contributions of the compiler are the management of dynamically growing stacks, the

efficient evaluation of method and action guards, a mapping of actions to coroutines, and a distribution

of coroutines onto processor cores. The details are in [18].

The Lime implementation is compared to implementations in C using semaphores of the Pthreads

library, in Go using channels, and in Java using monitors, see Appendix A. Table 1 shows the running

times for Santa with 9 reindeer and 20 elves. Santa’s division of work is that for 10,000 rounds until

retirement, he rides the sleigh 2,000 times and helps 8,000 times groups of three elves, or for 20 elves,

each elf on average 1,200 times. For 100,000 and 1,000,000 rounds until Santa’s retirement the ratio is

the same. Some observations are in order:

• The Java implementation uses a single monitor for all synchronization. While it would be natural

to have Santa, reindeer, and elf processes as well as sleigh, shop, and Santa monitors (synchro-

nizing reindeer, elves, and the sleigh / shop, respectively), this leads to the nested monitor call

problem, for example when elves are calling the shop and the shop calls Santa. Ben-Ari’s and our

implementation use, therefore, a single monitor with the functionality of sleigh, shop, and Santa

monitors. This limits concurrency, e.g. reindeer and elves cannot assemble independently. Java

necessitates that each monitor method contains a notifyAll() for waking up all threads, most of

which will immediately sleep again. The timing results confirm that this is wasteful; in particular,

the ratio between user and system times make the synchronization effort evident.

• The C implementation uses operating systems threads, which require more cycles when switching

than lightweight threads as used by Lime, Go, and Java. Compared to Java with monitors, only

the “right” threads are woken up, but the ratio of user to system time tells that switching operating

systems threads is expensive.

78 Refining Santa

• The Go implementation uses CSP-like synchronous channels, which are particularly suitable for

barrier synchronization with Santa; by comparison, of the semaphore P() and V () operations,

only one blocks, meaning that two semaphores are needed for each synchronization point. The

goroutines (lightweight threads) of Go are mapped to coroutines, like in Lime, and distributed over

cores (like in Lime), leading to good performance. Go does not support priorities when receiving

or sending over channels, so to give reindeer priority over elves, a workaround is needed.

• The Lime runtime system is designed for very quickly switching between actions when a guard

blocks. Since the bodies of methods and actions in the Santa Claus Problem are short, this pays

off. Interestingly, the real time is the user time, suggesting that only one core was active. The Lime

runtime system is also designed for distributing a very large number of concurrent objects among

cores. As there are relatively few objects here and the bodies of methods are so short that work

stealing is not effective, the Lime runtime system is not able to utilize more than one core.

The Haskell implementation of Peyton Jones was not included as its proper functioning depends on

the presence of delay statements. Trono’s implementation does not run reliably under Pthreads and has

more relaxed synchronization constraints than the Lime version, so is not included in the comparison

either.

5 Discussion

In ongoing work, we observed on a number of concurrency examples, that Lime compares favourably

to all other languages that we compared with [18], which made us wonder if that would be the case for

the Santa Claus Problem as well. It took us by surprise that Lime is close to three times faster than Go,

about 32 times faster than C, and more than 180 times faster than Java when measuring elapsed time.

This line of work provides evidence that the evaluation of guards in methods and actions, compared to

synchronizing with semaphores and monitors or sending over channels, is not intrinsically less efficient;

the overall efficiency depends more on the techniques used for mapping actions to coroutines and quickly

switching between them. This is encouraging for the use of verification and refinement techniques that

rely on guards, as these can an applied to highly efficient implementations.

References

[1] Gregory R. Andrews (1991): Concurrent Programming: Principles and Practice. Benjamin/Cummings

Publishing Company.

[2] Mordechai Ben-Ari (1998): How to solve the Santa Claus problem. Concurrency - Practice and Experience

10(6), pp. 485–496, doi:10.1002/(SICI)1096-9128(199805)10:6<485::AID-CPE329>3.0.CO;2-2.

[3] Nick Benton (2003): Jingle bells: Solving the Santa Claus problem in

Polyphonic C#. Technical Report, Microsoft Research. Available at

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/santa.pdf.

[4] Marcello M. Bonsangue, Joost N. Kok & Kaisa Sere (1999): Developing Object-based Distributed

Systems. In P. Ciancarini, A. Fantechi & R. Gorrieri, editors: 3rd IFIP International Conference

on Formal Methods for Open Object-based Distributed Systems (FMOODS’99), Kluwer, pp. 19–34,

doi:10.1007/978-0-387-35562-7 3.

[5] Martin Büchi & Emil Sekerinski (2000): A Foundation for Refining Concur-

rent Objects. Fundamenta Informaticae 44(1,2), pp. 25–61. Available at

http://content.iospress.com/articles/fundamenta-informaticae/fi44-1-2-02.

http://dx.doi.org/10.1002/(SICI)1096-9128(199805)10:6$<$485::AID-CPE329$>$3.0.CO;2-2
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/santa.pdf
http://dx.doi.org/10.1007/978-0-387-35562-7_3
http://content.iospress.com/articles/fundamenta-informaticae/fi44-1-2-02

E. Sekerinski & S. Yao 79

[6] Peter A. Buhr (2016): High-Level Concurrency Constructs. In: Understanding Control Flow:

Concurrent Programming Using µC++, Springer International Publishing, Cham, pp. 425–522,

doi:10.1007/978-3-319-25703-7 9.

[7] Nick Cameron, Ferruccio Damiani, Sophia Drossopoulou, Elena Giachino & Paola Giannini (2006): Solving

the Santa Claus problem using state classes. Technical Report, Dip. di inf., Univ. di Torino. Available at

http://www.di.unito.it/~damiani/papers/scp.pdf.

[8] Steingrim Dovland (2006): Liberating Coroutines: Combining Sequential and Parallel Ex-

ecution. Master’s thesis, University of Oslo, Department of Informatics. Available at

http://urn.nb.no/URN:NBN:no-11637.

[9] Allen B. Downey (2016): Little Book of Semaphores. Green Tea Press. Available at

http://greenteapress.com/semaphores.

[10] Jason Hurt & Jan B. Pedersen (2008): Solving the Santa Claus Problem: a Comparison of Various Concurrent

Programming Techniques. In Peter H. Welch, Susan Stepney, Fiona A.C. Polack, Frederick R.M. Barnes,

Alistair A. McEwan & Adam T. Sampson Gardiner S. Stiles, Jan F. Broenink, editors: Communicating

Process Architectures 2008, IOS Press, pp. 381–396, doi:10.3233/978-1-58603-907-3-381.

[11] Jayadev Misra (2002): A Simple, Object-Based View of Multiprogramming. Formal Methods in System

Design 20(1), pp. 23–45, doi:10.1023/A:1012904412467.

[12] Joshua Moore-Oliva, Emil Sekerinski & Shucai Yao (2014): A Comparison of Scalable Multi-Threaded

Stack Mechanisms. Technical Report CAS-14-07-ES, McMaster University, Department of Computing and

Software. Available at http://www.cas.mcmaster.ca/cas/0reports/CAS-14-07-ES.pdf.

[13] Piotr Nienaltowski (2007): Practical framework for contract-based concurrent object-oriented programming.

Ph.D. thesis, ETH Zürich, doi:10.3929/ethz-a-005363875.

[14] Simon Peyton Jones (2007): Beautiful concurrency. In A. Oram & G. Wilson, editors: Beauti-

ful Code: Leading Programmers Explain How They Think, O’Reilly, pp. 385–406. Available at

https://www.schoolofhaskell.com/school/advanced-haskell/beautiful-concurrency.

[15] Emil Sekerinski (2005): Verification and Refinement with Fine-Grained Action-Based Concurrent Objects.

Theoretical Computer Science 331(2–3), pp. 429–455, doi:10.1016/j.tcs.2004.09.024.

[16] John A. Trono (1994): A new exercise in concurrency. ACM SIGCSE Bulletin 26(3), pp. 8–10,

doi:10.1145/187387.187391.

[17] Peter H. Welch & Jan B. Pedersen (2010): Santa Claus: Formal Analysis of a Process-oriented Solution.

ACM Trans. Program. Lang. Syst. 32(4), pp. 14:1–14:37, doi:10.1145/1734206.1734211.

[18] Shucai Yao (2018, Draft): An Efficient Implementation of Guard-based Synchronization for an Object-

Oriented Programming Language. Ph.D. thesis, McMaster University.

Appendix A

These implementations are used in the comparison of timing results.

Listing 1: Implementation with Lime

class Santa

var s: {Sleeping, Harnessing, Riding, Welcoming, Consulting}
var b: boolean

var p: int

init ()

s, b, p := Sleeping , false , 0

method back()

b := true

method harness()

http://dx.doi.org/10.1007/978-3-319-25703-7_9
http://www.di.unito.it/~damiani/papers/scp.pdf
http://urn.nb.no/URN:NBN:no-11637
http://greenteapress.com/semaphores
http://dx.doi.org/10.3233/978-1-58603-907-3-381
http://dx.doi.org/10.1023/A:1012904412467
http://www.cas.mcmaster.ca/cas/0reports/CAS-14-07-ES.pdf
http://dx.doi.org/10.3929/ethz-a-005363875
https://www.schoolofhaskell.com/school/advanced-haskell/beautiful-concurrency
http://dx.doi.org/10.1016/j.tcs.2004.09.024
http://dx.doi.org/10.1145/187387.187391
http://dx.doi.org/10.1145/1734206.1734211

80 Refining Santa

when s = Harnessing do

s := Riding

method pull()

when s = Riding do

s, b := Sleeping , false

method puzzled()

p := 3

method enter()

when s = Welcoming do

s := Consulting

method consult()

when s = Consulting do

p := p − 1

if p > 0 then

s := Welcoming

else

s := Sleeping

action action1

when s = Sleeping and b do

s := Harnessing

action action2

when s = Sleeping and p = 3 and not b do

s := Welcoming

class Sleigh

var s: {Back, Harnessing, Pulling }
var c: int

var st : Santa

init (santa : Santa)

s, c, st := Back, 9, santa

method back()

when s = Back do

c := c − 1

if c = 0 then

s, c := Harnessing, 9

st . back()

method harness()

when s = Harnessing do

c := c − 1

if c = 0 then

s, c := Pulling , 9

st . harness()

method pull()

when s = Pulling do

c := c − 1

if c = 0 then

s, c := Back, 9

st . pull ()

class Reindeer

var sl : Sleigh

init (sleigh : Sleigh)

sl := sleigh

action action1

sl . back()

sl . harness()

E. Sekerinski & S. Yao 81

sl . pull ()

class Shop

var s: {Puzzled, Entering, Consulting}
var c: int

init (santa : Santa)

s, c, st := Puzzled, 0, santa

method puzzled()

when s = Puzzled do

c := c + 1

if c = 3 then

s := Entering

st . puzzled ()

method enter()

when s = Entering do

s := Consulting

st . enter ()

method consult()

when s = Consulting do

c := c − 1

if c > 0 then

s := Entering

else

s := Puzzled

st . consult ()

class Elf

var sh: Shop

init (shop: Shop)

sh := shop

action action1

sh. puzzled ()

sh. enter ()

sh. consult ()

class Start

var st : Santa

var sl : Sleigh

var sh: Shop

init ()

st := new Santa()

sl := new Sleigh(st)

sh := new Shop(st)

for i := 1 to 9 do new Reindeer(sl)

for i := 1 to 20 do new Elf(sh)

Listing 2: Implementation with C

#include <stdbool.h>

#include <pthread.h>

#include <semaphore.h>

#define P(sem) (sem wait(&(sem))) /∗ uses P and V for the wait and ... ∗/

#define V(sem) (sem post(&(sem))) /∗ ... signal semaphore operations ∗/

sem t wakeup, wakeupReindeer, wakeupElves;

sem t harness, harnessDone;

sem t pull , pullDone;

82 Refining Santa

sem t enter , enterDone;

sem t consult , consultDone;

sem t reindeerBack , reindeerBackDone;

sem t reindeerHarness , reindeerHarnessDone;

sem t reindeerPull , reindeerPullDone;

sem t elfPuzzled , elfPuzzledDone;

sem t elfEnter , elfEnterDone;

sem t elfConsult , elfConsultDone;

bool b;

void ∗Santa(void ∗arg) {
for (int t = 0; t < 10000; t ++) { // Sleeping

P(wakeup); // woken up by Sleigh or Shop

if (b) { // Delivering

b = false ; V(wakeupReindeer);

P(harness) ; V(harnessDone);

P(pull) ; V(pullDone);

} else { // Helping

V(wakeupElves);

for (int i = 0; i < 3; i ++) {
P(enter) ; V(enterDone);

P(consult) ; V(consultDone);

}
}

}
}
void ∗Sleigh (void ∗arg) {

for (;;) {
for (int i = 0; i < 9; i ++) V(reindeerBack) ;

for (int i = 0; i < 9; i ++) P(reindeerBackDone);

b = true ; V(wakeup); P(wakeupReindeer);

for (int i = 0; i < 9; i ++) V(reindeerHarness) ;

for (int i = 0; i < 9; i ++) P(reindeerHarnessDone);

V(harness) ; P(harnessDone);

for (int i = 0; i < 9; i ++) V(reindeerPull) ;

for (int i = 0; i < 9; i ++) P(reindeerPullDone);

V(pull) ; P(pullDone);

}
}
void ∗Reindeer(void ∗arg) {

for (int t = 0; t < 2000; t ++) {
P(reindeerBack) ; V(reindeerBackDone);

P(reindeerHarness) ; V(reindeerHarnessDone);

P(reindeerPull) ; V(reindeerPullDone) ;

}
}
void ∗Shop(void ∗arg) {

for (;;) {
for (int i = 0; i < 3; i ++) V(elfPuzzled) ;

for (int i = 0; i < 3; i ++) P(elfPuzzledDone) ;

V(wakeup); P(wakeupElves);

for (int i = 0; i < 3; i ++) {
V(elfEnter) ; P(elfEnterDone);

V(enter) ; P(enterDone);

V(elfConsult) ; P(elfConsultDone) ;

E. Sekerinski & S. Yao 83

V(consult) ; P(consultDone);

}
}

}
void ∗Elf (void ∗arg) {

for (;;) {
P(elfPuzzled) ; V(elfPuzzledDone) ;

P(elfEnter) ; V(elfEnterDone);

P(elfConsult) ; V(elfConsultDone) ;

}
}
void main() {

sem init (&wakeup, 0, 0); sem init (&wakeupReindeer, 0, 0); sem init (&wakeupElves, 0, 0);

sem init (&harness, 0, 0); sem init (&harnessDone, 0, 0);

sem init (&pull, 0, 0); sem init (&pullDone, 0, 0);

sem init (&enter, 0, 0); sem init (&enterDone, 0, 0);

sem init (&consult, 0, 0); sem init (&consultDone, 0, 0);

sem init (&reindeerBack, 0, 0); sem init (&reindeerBackDone, 0, 0);

sem init (&reindeerHarness, 0, 0); sem init (&reindeerHarnessDone, 0, 0);

sem init (&reindeerPull , 0, 0); sem init (&reindeerPullDone, 0, 0);

sem init (&elfPuzzled , 0, 0); sem init (&elfPuzzledDone, 0, 0);

sem init (&elfEnter , 0, 0); sem init (&elfEnterDone, 0, 0);

sem init (&elfConsult , 0, 0); sem init (&elfConsultDone, 0, 0);

pthread t tid ;

for (int i = 0; i < 9; i ++) pthread create (&tid , NULL, Reindeer, NULL);

for (int i = 0; i < 20; i ++) pthread create (&tid , NULL, Elf, NULL);

pthread create (&tid , NULL, Sleigh, NULL); pthread create (&tid , NULL, Shop, NULL);

pthread create (&tid , NULL, Santa, NULL); pthread join (tid , NULL);

}

Listing 3: Implementation with Go

package main

var reindeerBack , reindeerHarness , reindeerPull chan bool

var back, harness, pull chan bool

var elfPuzzled , elfEnter , elfConsult chan bool

var puzzled , enter , consult chan bool

var done chan bool

func Santa() {
b, p := false , false // reindeer back, elves puzzled

for t := 0; t < 10000; t ++ { // invariant : !b

if !p { // neither reindeer back nor elves puzzled

select { // wait for either one

case <− back: b = true

case <− puzzled: p = true

}
}
if p { // elves puzzled

select { // check if reindeer back as well

case <− back: b = true

default :

}
}
// either b or p is true , pick one

if b { // prefer reindeer

84 Refining Santa

<− harness ; <− pull ; b = false

} else { // otherwise elves

for i := 0; i < 3; i ++ {
<− enter ; <− consult

}
p = false

}
}
done <− true

}
func Sleigh () {

for {
for i := 0; i < 9; i ++ {<− reindeerBack}
back <− true

for i := 0; i < 9; i ++ {<− reindeerHarness}
harness <− true

for i := 0; i < 9; i ++ {<− reindeerPull}
pull <− true

}
}
func Shop() {

for {
for i := 0; i < 3; i ++ {<− elfPuzzled}
puzzled <− true

for i := 0; i < 3; i ++ {
<− elfEnter ; enter <− true ; <− elfConsult ; consult <− true

}
}

}
func Reindeer() {

for r := 0; r < 2000; r++ {
reindeerBack <− true ; reindeerHarness <− true ; reindeerPull <− true

}
}
func Elf () {

for {
elfPuzzled <− true ; elfEnter <− true ; elfConsult <− true

}
}
func main() {

reindeerBack , reindeerHarness , reindeerPull = make(chan bool), make(chan bool), make(chan bool)

back, harness, pull = make(chan bool), make(chan bool), make(chan bool)

elfPuzzled , elfEnter , elfConsult = make(chan bool), make(chan bool), make(chan bool)

puzzled , enter , consult = make(chan bool), make(chan bool), make(chan bool)

done = make(chan bool)

go Santa() ; go Sleigh () ; go Shop()

for i := 0; i < 9; i ++ {go Reindeer() }
for i := 0; i < 20; i ++ {go Elf () }
<− done

}

Listing 4: Implementation with Java

enum R {Relaxing, Back, Harnessing, Harnessed, Pulling , Done}
enum E {Working, Puzzled, Entering , Entered, Consulting , Enlightened}
enum Task {deliver , help}
class SantasShop {

E. Sekerinski & S. Yao 85

int rc = 9, ec = 3; // reindeer count, elf count

R rs = R.Relaxing; // state of reindeer

E es = E.Working; // state of elves

synchronized void back() /∗ called by reindeer ∗/ {
while (rs != R.Relaxing) try {wait() ;} catch (Exception x) {}
rc −= 1; if (rc == 0) {rs = R.Back; rc = 9;} notifyAll () ;

}
synchronized void harness() /∗ called by reindeer ∗/ {

while (rs != R.Harnessing) try {wait() ;} catch (Exception x) {}
rc −= 1; if (rc == 0) {rs = R.Harnessed; rc = 9;} notifyAll () ;

}
synchronized void pull () /∗ called by reindeer ∗/ {

while (rs != R.Pulling) try {wait() ;} catch (Exception x) {}
rc −= 1; if (rc == 0) {rs = R.Done; rc = 9;} notifyAll () ;

}

synchronized void puzzled () /∗ called by elves ∗/ {
while (es != E.Working) try {wait() ;} catch (Exception x) {}
ec −= 1; if (ec == 0) {es = E.Puzzled; ec = 3;} notifyAll () ;

}
synchronized void enter () /∗ called by elves ∗/ {

while (es != E.Entering) try {wait() ;} catch (Exception x) {}
es = E.Entered; notifyAll () ;

}
synchronized void consult () /∗ called by elves ∗/ {

while (es != E.Consulting) try {wait() ;} catch (Exception x) {}
es = E.Enlightened ; notifyAll () ;

}

synchronized Task wakeup() /∗ called by Santa ∗/ {
while (rs != R.Back && es != E.Puzzled) try {wait() ;} catch (Exception x) {}
if (rs == R.Back) {rs = R. Harnessing; notifyAll () ; return Task. deliver ;}
else {es = E.Entering ; notifyAll () ; return Task. help ;}

}
synchronized void hitch () /∗ called by Santa ∗/ {

while (rs != R.Harnessed) try {wait() ;} catch (Exception x) {}
rs = R.Pulling ; notifyAll () ;

}
synchronized void ride () /∗ called by Santa ∗/ {

while (rs != R.Done) try {wait() ;} catch (Exception x) {}
rs = R.Relaxing; notifyAll () ;

}
synchronized void welcome() /∗ called by Santa ∗/ {

while (es != E.Entered) try {wait() ;} catch (Exception x) {}
es = E.Consulting ; notifyAll () ;

}
synchronized void explain () /∗ called by Santa ∗/ {

while (es != E.Enlightened) try {wait() ;} catch (Exception x) {}
ec −= 1; if (ec == 0) {es = E.Working; ec = 3;} else es = E.Entering ;

notifyAll () ;

}

public static void main(String [] args) {
SantasShop shop = new SantasShop();

new Santa(shop). start () ;

86 Refining Santa

for (int i = 0; i < 9; i ++) new Reindeer(shop). start () ;

for (int i = 0; i < 20; i ++) {Thread e = new Elf(shop, i) ; e. setDaemon(true); e. start () ;}
}

}
class Santa extends Thread {

SantasShop shop;

Santa(SantasShop ss) {shop = ss ;}
public void run() {

for (int t = 0; t < 10000; t ++) {
Task task = shop.wakeup();

if (task == Task. deliver) {
shop.hitch () ; shop.ride () ;

} else {
for (int i = 0; i < 3; i ++) {shop.welcome(); shop.explain () ;}

}
}

}
}
class Reindeer extends Thread {

SantasShop shop;

Reindeer(SantasShop ss) {shop = ss ;}
public void run() {

for (int t = 0; t < 2000; t ++) {shop.back() ; shop.harness() ; shop.pull () ;}
}

}
class Elf extends Thread {

SantasShop shop; int num;

Elf (SantasShop ss , int n) {shop = ss ; num = n;}
public void run() {

for (;;) {shop.puzzled () ; shop.enter () ; shop.consult () ;}
}

}

	1 Introduction
	2 Concurrent Objects
	3 Refining Santa
	4 Results
	5 Discussion

