
M. Gleirscher, S. Kugele, S. Linker (Eds.): 2nd International
Workshop on Safe Control of Autonomous Vehicles (SCAV 2018)
EPTCS 269, 2018, pp. 32–47, doi:10.4204/EPTCS.269.4

c© R. Bhadani, J. Sprinkle & M. Bunting
This work is licensed under the
Creative Commons Attribution License.

The CAT Vehicle Testbed: A Simulator with Hardware in the
Loop for Autonomous Vehicle Applications

Rahul Kumar Bhadani
Department of Electrical and Computer Engineering

University of Arizona
Tucson, USA

rahulbhadani@email.arizona.edu

Jonathan Sprinkle Matthew Bunting
Department of Electrical and Computer Engineering

University of Arizona
Tucson, USA

sprinkjm@email.arizona.edu mosfet@email.arizona.edu

This paper presents the CAT Vehicle (Cognitive and Autonomous Test Vehicle) Testbed: a research
testbed comprised of a distributed simulation-based autonomous vehicle, with straightforward tran-
sition to hardware in the loop testing and execution, to support research in autonomous driving tech-
nology. The evolution of autonomous driving technology from active safety features and advanced
driving assistance systems to full sensor-guided autonomous driving requires testing of every pos-
sible scenario. However, researchers who want to demonstrate new results on a physical platform
face difficult challenges, if they do not have access to a robotic platform in their own labs. Thus,
there is a need for a research testbed where simulation-based results can be rapidly validated through
hardware in the loop simulation, in order to test the software on board the physical platform. The
CAT Vehicle Testbed offers such a testbed that can mimic dynamics of a real vehicle in simulation
and then seamlessly transition to reproduction of use cases with hardware. The simulator utilizes
the Robot Operating System (ROS) with a physics-based vehicle model, including simulated sensors
and actuators with configurable parameters. The testbed allows multi-vehicle simulation to support
vehicle to vehicle interaction. Our testbed also facilitates logging and capturing of the data in the real
time that can be played back to examine particular scenarios or use cases, and for regression testing.
As part of the demonstration of feasibility, we present a brief description of the CAT Vehicle Chal-
lenge, in which student researchers from all over the globe were able to reproduce their simulation
results with fewer than 2 days of interfacing with the physical platform.

1 Introduction

The last decade has seen a rapid increase in the research interest in autonomous driving technology. An
increasing trend towards bringing various levels of autonomy can be seen in the vehicular technology,
which has taken an incremental approach (rather than disruptive approach of the DARPA Grand Chal-
lenge’s demonstrations [3, 7, 29, 34]) to bring autonomy to passenger vehicles. Vehicular automation has
slowly moved from self-parking and lane assistance to traffic aware cruise control and conditional au-
tomation. In recent years, a number of major industry players have emerged to advance the autonomous
driving technology [9, 28]. Motor vehicle companies such as BMW, Audi, Bosch, and General Mo-
tors have predicted the readiness of vehicles with full automation and its mass production by 2020 and
companies like Google and Uber are investing heavily to bring full automation in driving [6]. Research
groups in academia and industry have built their own platforms to investigate research problems in au-
tonomous driving [15, 12, 27]. Despite the advances in autonomous driving technology, high fidelity

http://dx.doi.org/10.4204/EPTCS.269.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


R. Bhadani, J. Sprinkle & M. Bunting 33

automation in driving requires testing of autonomous features in every scenario. The design, implemen-
tation, and testing of vehicles under a wide range of use cases and in realistic traffic conditions is costly,
time consuming, complicated, and often un-reproducible. Integration testing with the physical platform
in these cases are unnecessarily complex and often performed in the last stage of development process.
This makes prototype design, implementation, intensive testing and simulation with an actual vehicle in
the simulation loop the most effective way to verify and validate the design idea. Software in the loop
(SIL) simulation in the laboratory environment offers a safe way to perform prototyping and implemen-
tation of vehicle control and algorithms. Incorporating an actual vehicle and sensors in the simulation
loop (called hardware in the loop or HIL) validates the design and reduce the time required for the system
verification.

1.1 Contributions

The contribution of this work is a testbed with HIL simulation that offers an integrated architecture for
investigating, prototyping, implementing, and testing a concept in autonomous driving technology. Our
testbed allows researchers to examine the performance of sensor-guided driving in a repeatable fashion
for safe, flexible and reliable validation. The main contributions can be summarized as follows:

• An open-source, experimentally validated and scalable testbed with HIL support for autonomous
driving applications that uses ROS.

• A simulated physics-based model of the autonomous vehicle that mimics a real world vehicle
capable of driving autonomously.

• A multi-vehicle simulator that provides a virtual environment capable of testing a research appli-
cation requiring vehicle to vehicle interaction.

• A research paradigm that enables distributed teams to implement and validate a proof of concept
before accessing the physical platform.

• Software packages, descriptions of sensors and methodology employed to develop autonomous
vehicle applications.

1.2 Related Works

Although autonomous driving has been an area of research interest for a long time, the DARPA Grand
Challenge inspired research community to develop a number of autonomous vehicle testbeds across the
academia and the industry. Stanford’s Junior [17] provides a testbed with multiple sensors for recognition
and planning. It is capable of dynamic object detection and tracking and precision localization. Other
few notable testbed born as a result of DARPA challenge are Talos from MIT [16], NavLab11 and Boss
from CMU [36]. Costley et al. discuss a testbed for automated vehicle research available in Utah State
University [10]. Researchers at University of California, San Diego have also developed a testbed named
LISA-Q [19] for intelligent and safe driving. Availability of testbeds for vehicle research is not limited
to ones mentioned here, but to the authors’ knowledge they lack extensive support for HIL simulation.
Moreover, none of the previous works mention any physics-based simulator offering support for multi-
vehicle simulation.

In this paper, we describe the CAT Vehicle (Cognitive and Autonomous Test Vehicle) Testbed, which
is comprised of the Robot Operating System (ROS) [26] based simulator that takes advantage of the ODE
physics engine [2]. The testbed provides packages for a number of control applications and sensor sim-
ulations, and interfaces through which new custom packages can be installed. The testbed is designed



34 CAT Vehicle Testbed: A Simulator with HIL for Autonomous Vehicle Applications

to support code generation, in which researchers can transfer their MATLAB or Simulink [8] imple-
mentations from simulation to the physical platform through a straightforward workflow. The testbed is
further equipped with a tool to visualize data being streamed by either real hardware such as an actual
autonomous vehicle (AV) and sensors or simulated AV and sensors, through straightforward reconfigu-
ration.

Further, in this paper, we describe the architecture of the testbed, software tools, vehicle dynamics
and supported sensors. We further describe the physical platform for the implementation, communication
channels, visualization for diagnostics and debugging, and data. At the end, we discuss how the testbed
enables a research paradigm in which distributed teams validate and test their work before they have
access to the physical platform. In the subsequent stage, teams are then able to demonstrate their results
on the physical platform in the span of 2 days or less. We conclude with lessons learned with our
development and outlook for the future work.

2 Overview of Testbed Architecture

A schematic diagram of the architecture of the CAT Vehicle Testbed is shown in figure 1. It supports
modular design with an emphasis on scalability. The testbed consists of a virtual environment, a vehicle
model, a physics engine, sensor models, a visualization tool, command line tools and scripting tools for
interfacing and code generation capability. Each component is discussed in the subsequent sections.

The testbed is based on packages compatible with ROS, using C++ and Python [26]. ROS provides
libraries and tools for writing control and perception algorithms, and other applications for autonomous
vehicles. With various levels of software and hardware abstraction, device drivers for seamless interface
of sensors, libraries for simulating sensors and visualizers for diagnostics purposes, ROS provides a
middleware and repository by which distributed simulation can take place, and the software installation is
straightforward. Being a distributed computing environment, it implicitly handles all the communication
protocol.

However, standard ROS packages lack domain-specific requirements for experimentation with a car-
like robot. A typical setup of autonomous vehicle consists of a vehicle controller and sensors strategically
mounted on different points of the vehicle. In order to control motion in a seamless way, we require
uniform interfaces for control and consistent consumption of sensor data. The goal of the CAT Vehicle
Testbed is to demonstrate how to estimate current state and issue control signals well before the physical
platform is engaged. Once algorithms have been demonstrated in SIL, HIL simulation or execution
takes place, in which one or all of the physical platform (vehicle and/or sensors) can be replaced by its
equivalent simulated version.

Our testbed offers a modular platform with software interfaces to develop and deploy algorithms
using model-based design. In this modular platform, there is no distinction between a simulated au-
tonomous vehicle (AV) and a real AV. As a result, the testbed makes deployment and debugging simpler.
There are two ways the testbed provides the simplicity for validating and verifying the dynamics of the
AV under wide variety of conditions. First, the virtual environment generates synthetic data from the
simulated sensors, as if they are from the onboard sensors. These data are relayed to the real AV, which
uses the controller designed to produce control commands. The control commands are sent back to the
simulated sensors, which close the loop. Alternatively, the real onboard sensors can be used to receive
the data and relay to the simulated AV. A controller on the simulated AV receives these sensor data and
produces control commands to alter the state of the AV.



R. Bhadani, J. Sprinkle & M. Bunting 35

Vehicle Model (Simulated 

or Real Vehicle)

Vehicle State

(published as 

ROS messages)

Hardware 

Interface

Simulated sensors on 

real platform

Real Sensors

Control computer/

device with control 

algorithm

Sensor Data buses and protocols

(managed by ROS)

Actuator databuses

And protocols

Joint Limits, Efforts, 

Transmissions etc 

ROS/JAUS Bridge

Figure 1: A block diagram showing important components in the CAT Vehicle Testbed. Dotted line around real sensors denotes that a virtual
environment can host real sensors.

3 Virtual Environment

The virtual environment consists of an approximate vehicle model, a simulated world and simulated
sensors. The most important component that creates a virtual environment is the simulator. In the CAT
Vehicle Testbed, the virtual environment uses the Gazebo simulator, which utilizes the ODE physics
engine to simulate laws of physics. The Gazebo models are specified to approximate the true physical
behavior by tuning friction coefficients, damping coefficients, gravity, buoyancy, etc.

Our virtual environment enables multi-vehicle simulation, which can be used to simulate vehicle to
vehicle interaction, create a leader-follower scenario and traffic like situations. The vehicle model used
in the CAT Vehicle Testbed is a kinematics model, which uses simulated controllers to actuate joints of
the autonomous vehicle. It uses a ROS-based control mechanism through Gazebo to send control inputs
to the car.

3.1 Vehicle Model

The complexity of developing a realistic car-like robot in simulation is significant due to a few contribut-
ing factors: (1) runtime solvers approximate motion based on constraint satisfaction problems, which
can be computationally expensive if the vehicle model’s individual components are unlikely to approxi-
mate physical performance; (2) kinematic robotic simulation typically utilizes joint-based control, rather
than velocity based (or based on transmission/accelerator angles and settings) like a physical platform;
and (3) the dynamics of individual vehicle parts is such that physically unrealistic behavior may emerge,
meaning that physical approximations of linear and angular acceleration should be imposed on individual
joints, to prevent unlikely behaviors. The following section discusses these details.



36 CAT Vehicle Testbed: A Simulator with HIL for Autonomous Vehicle Applications

In the vehicle model (figure 2b), left and right rear wheels move the robot using a joint velocity
controller, simulating rear-wheel drive for the vehicle. The wheels use a PID-controlled mechanism to
meet linear velocity set points, with constraints that prevent unrealistic acceleration (or deceleration). As
alluded to above, the physical dynamics of motion on a plane mean that there is typically slippage of
tires. In lieu of a limited slip differential (the approach on modern physical cars) to reduce rear tire slip
when turning, the velocity controller of the CAT Vehicle utilizes the circle of curvature to geometrically
determine a modifier for the desired rotational velocity of each rear tire, depending on the steering angle.

When steering the vehicle, the steering position controller utilizes the Ackermann steering model
for the front two tires [33, 23]. The Ackermann steering model states that while turning on a curvature,
inner and outer tires need to be turned at different angle to avoid tire slip as shown in figure 2a. If
a simulated car-like robot does not account for this physical constraint, then the physics-based solver
will return infeasible solutions, and/or result in tremendous slow-down of the computation speed for the
solver. Steering values are set based on expected dynamics of a realistic steering controller; this results
in a time delay between set angles, to reflect the time taken to steer from one angle to another. These
dynamics are set in the steering controller, and can be configured.

(a) The steering mechanism used in the vehicle model
uses Ackermann steering principle:

cot(δ0)− cot(δi) = w/l. The vehicle receives single
value of steering angle as input which is calculated as

cot(δ ) = cot(δ0)+cot(δi)
2 .

SICK 

Laser

Velodyne 3D 

Lidar

PointGrey 

Cameras

GPS/

INS

(b) A schematic diagram of vehicle model
showing positions of different sensor mounted on it.

Figure 2

The structure of the vehicle model is represented using the Unified Robot Description Format (URDF),
which is in the form of XML Macros (xacros). An URDF file contains description of the visual geom-
etry and configuration of different parts of the vehicle and specifies how different parts are connected
together. Furthermore, this file specifies where simulated sensors will be mounted on the vehicle. This
file also contains information about inertial properties of different parts of the vehicle and collision ge-
ometry (different from its visual geometry). We also specify actuator and transmission configuration in
the URDF file. Physical attributes such as kinematics and dynamics constraints on the different com-
ponents of the vehicles such as coefficients of frictions and damping coefficients are specified in a SDF
format file end with extension .gazebo. This file also contains additional plugins that bind to the vehicle
model to provide specific functionality.

3.2 Simulated World

The virtual world or simulated world provides a virtual reality where a simulated vehicle and its sensors
interact with each other and with virtual objects rendered in the virtual world. The CAT Vehicle Testbed
uses Gazebo and built-in ODE physics engine to render the virtual reality. The configuration of the virtual
world can modify the simulation step size, which is the maximum time step by which every system in



R. Bhadani, J. Sprinkle & M. Bunting 37

the simulation interacts with states of the world. One can also specify real time factor to slow down or
speed up the simulation. The .world also offers a way to adjust real time update rate at which physics
engine update the state of the simulation. Some aesthetical aspects such as look and feel, geometric
orientation of the world and lighting can also be adjusted. An example of simulated world in Gazebo
is shown in figure 3. Importantly, the world file permits users to develop approximations of the desired
HIL verification environment, so that the SIL testing can be shown to work in an approximation of the
physical environment. Various components from Gazebo can be used to add pavement, signs, traffic
cones, etc., in order to more closely approximate the expected HIL scenarios.

3.3 Simulated sensors

Figure 3: A simulated world, with front-mounted laser data vi-
sualized in Gazebo.

The CAT Vehicle Testbed offers three types of sim-
ulated sensors: Front Laser Rangefinder, Velodyne
LIDAR, and two side cameras. The Front Laser
Rangefinder simulates the behavior of commercially
available SICK LMS 291 Rangefinder, which is also
a part of physical platform available with the CAT Ve-
hicle Testbed. The Front Laser Rangefinder can detect
an object at a distance of upto 80 m and scans its sur-
rounding from 0 to 180 degree at a rate of 75 Hz. The
angular resolution of the Rangefinder is 0.0175 radian.

The Velodyne LIDAR produces point cloud data
that can be analyzed to obtain three-dimensional infor-
mation about its surroundings. Our simulated LIDAR
only provides one measurement channel. Hence, it does not provide any color information. Point cloud
data from the Velodyne LIDAR is published at a rate of 5 Hz by default. In the CAT Vehicle Testbed,
the Velodyne LIDAR is configured for 100 horizontal beams and 20 vertical beams. By default, each
horizontal beam has minimum angle of -0.4 radian and maximum angle of 0.4 radian. Each vertical
beam has angular range of -0.034906585 to 0.326 radian. With a resolution of 0.02m, the Velodyne
LIDAR can detect objects as far as 50 meters from its position. Although, these values are default, they
are potentially reconfigurable depending on the use case. As a result of its fine resolution, the volume
of data produced by the LIDAR is in the order of Gigabytes per minute. Hence, caution must be taken
while using the Velodyne LIDAR data, otherwise data channels can be flooded with point cloud data and
other packets might be dropped altogether.

Two cameras are mounted on the left and right side of the vehicle. Each Camera produces images
of the size 800x800 at a rate of 30 Hz in the RGB 8 bit format. They have horizontal field of view of
1.3962634 radians. ROS offers different data types to obtain camera images in raw, RGB and grayscale
format. Outputs from these cameras can be consumed by standard computer vision toolboxes such as
Simulink toolboxes or OpenCV.

4 Physical Platform

The physical platform used for the CAT Vehicle HIL is a modified Ford Hybrid Escape vehicle (Figure
4a), upon which is mounted a SICK LMS 291 Front Laser Rangefinder, a Velodyne HDL-64E S2 LIDAR,
two Pointgrey Firefly MV FFMV-03M2C cameras and a Novatel GPS/IMU. The sensors are collectively



38 CAT Vehicle Testbed: A Simulator with HIL for Autonomous Vehicle Applications

called as the perception unit.

(a) The CAT Vehicle with GPS/IMU
and Laser Rangefinder mounted on it.

(b) The model of the CAT Vehicle
used in the simulation

Figure 4: Left: The the autonomous vehicle used in the CAT Vehicle Testbed.
Right: An equivalent 3D model in the simulation.

4.1 The Autonomous Vehicle in the Simulation Loop

The physical testing platform used for autonomous vehicle application is TORC ByWire XGV drive-by-
wire platform with modified Ford Hybrid Escape vehicle. This physical platform consists of multiple
hardware subsystem control modules, a central embedded controller and a TORC SafeStop ES-220 mul-
tilevel wireless emergency stop system designed to command pause and stop states in the event of an
emergency. This vehicle utilizes the Joint Architecture for Unmanned Systems (JAUS) [37] as the stan-
dard interface to receive state data from the vehicle and send controller inputs to the vehicle. All com-
munication with the computer that manages the low-level actuation and control of the vehicle requires
commands delivered through JAUS. Since our virtual platform uses ROS, we created a ROS/JAUS bridge
to create a layer of abstraction to facilitate sending control command to vehicle using the ROS [24]. Use
of this bridge made integration with the ROS-based Gazebo simulator feasible. The onboard computer
of the CAT Vehicle runs Ubuntu 14.04, which has ROS packages and the ROS/JAUS bridge installed for
running device drivers to interface with sensors and for control commands.

4.2 Perception Unit

A SICK LMS 291 Laser Rangefinder, a Velodyne HDL-64e LIDAR, two Pointgrey cameras and a No-
vatel GPS/IMU constitute perception unit. The Laser Rangefinder is mounted on the front bumper of the
car at a height of approximately 75 cm from the ground. The Rangefinder gives the distance information
in the form of 180 points every 1/75 seconds. It offers the simplest solution to make decisions about
steering and collision avoidance. The measurement resolution provided by SICK LMS 291 LIDAR is
10mm. The Velodyne LIDAR is mounted on the top of the vehicle that provides the ability to construct
three-dimensional imagery of the surrounding area. It uses 905nm laser beam to provide 360 degrees
field of view. Pointgrey cameras can be mounted on the left and the right side of the vehicle to get
information about parallel traffic. In the simulation, getting a real time position of the vehicle is trivial
which is accomplished physically by using a Novatel GPS/IMU unit. The Novatel GPS/IMU unit is
based on Global Navigation Satellite System (GLONASS) and The Global Positioning System (GPS). It
has performance accuracy of 1.5m for single point L1/L2, 0.6m for SBAS and 0.4m for DGPS. For the
purpose of velocity estimation, accuracy of the GPS/IMU unit is sufficient but for higher accuracy, the
system must have a base station that our current infrastructure does not support.



R. Bhadani, J. Sprinkle & M. Bunting 39

5 Modeling and Implementation

ROS-based packages and APIs enable developers and researchers to write applications for autonomous
vehicle in modular fashion to interact with simulation and physical platform. The CAT Vehicle Testbed
uses C++ and Python APIs available from the ROS open source community for prototyping, designing
and testing control algorithms and solutions for autonomous vehicles. Each component (node) of ROS
can receive and send data from and to other nodes by virtue of the distributed communication feature
of the ROS. Each ROS node can be reused and instantiated multiple times, thereby facilitating multi-
vehicle simulation. Command line and scripting tools from ROS enables developer to define relationships
between different components and develop custom solutions. In some cases, handling and processing of
complex data such as point cloud data from a LIDAR using C++ and Python packages prove to be
unnecessarily complex and substantially slow down the development process. The Robotics System
Toolbox in MATLAB/Simulink provides a component-based solution where existing components from
other domains such Control Systems, and Computer Vision can be reused with the Robotics Systems
Toolbox to speed up the development time [18, 11]. Simulink provides model-based design with the
drag and drop feature. One such Simulink model is shown in figure 5. Its code generation facility allows
generation of ROS packages in the form of C++ artifacts that can be integrated with the existing testbed.
Users can export generated C++ code to an existing ROS workspace, for use with either the simulator or
HIL. They can be run on either the CAT Vehicles onboard computer or bound with the simulated AV.

During a simulation, the Gazebo simulator publishes the sensor data from the simulated world that
can be subscribed by the velocity controller, either implemented in the physical vehicle or attached
with the simulated vehicle. Based on the sensor data, the velocity controller produces the required
command that is consumed by a ROS-based controller and translated to inputs for the actuators. In this
process, a ROS-based controller does not distinguish between a simulated vehicle and an actual vehicle.
Actuators in the actual vehicle compute the forces and torques required to achieve the desired velocity
and accordingly apply brake pressure or throttle.

The testbed also offers a multi-vehicle simulation to study vehicle to vehicle interactions, leader-
follower scenarios, and to explore novel traffic model. Our testbed provides ready-to-use configuration
files that can be used to spawn new vehicle models in the simulator on the go. These newly spawned
vehicle models can be given different velocity profiles to simulate human driving behaviors or act as
another autonomous vehicle. A user can drive these simulated vehicles (or even the real CAT Vehicle)
using a PS2 joystick.

5.1 Data

In the initial stage of testing a prototype, a physical vehicle is almost never used for safety reasons. ROS
provides command line tools to capture date-stamped data published by other nodes in the system (such
as the onboard computer from the CAT Vehicle) in the form of bag files. These bag files may contain
data from actual sensors such as GPS/IMU, LIDAR or Rangefinder, as well as vehicle data such as its
velocity, brake pressure and throttle. These bag files may be played back in real time in the simulation
loop to reconstruct the exact scenario against which a controller prototype can be tested and validated.
Bag files collected from the sensors while driving the CAT Vehicle can also be used for regression testing,
verification and debugging.



40 CAT Vehicle Testbed: A Simulator with HIL for Autonomous Vehicle Applications

Figure 5: A Simulink model for implementation of fuzzy-based car-following algorithm. It has two functional blocks: Follow-
ing Distance Error and Decision maker 2. The first block takes headway distance and instantaneous velocity as an input and calculate a
distance error in seconds and feeds to the second block. The second blocks makes the decision about the next step based on the inputs it
receives.

5.2 Visualization

Logging sensor information and visualization of data is an imperative part of the development and debug-
ging processes. ROS provides Rviz as a visualization tool for debugging and diagnostics purposes. The
CAT Vehicle Testbed provides a custom configuration that can be loaded in

Figure 6: Rviz visualization.

Rviz to visualize a path traced by either a simu-
lated vehicle or an actual vehicle, LIDAR point-
cloud data, rangerfinder data and camera data. Rviz
provides an ability to change the frame of reference
from one component to another thereby providing
a mechanism to test correct kinematics and dynam-
ics of the different components involved in the au-
tonomous vehicle applications. Figure 6 demon-
strates one such visualization obtained during our
experiments. Visualization can be performed in real
time by suitable coordinate transform, or by play-
ing back recorded data from bag files in real-time at
either slower- or faster-than-real-time.

Figure 7a and 7b presents velocity and headway
profile obtained from the testbed with the same con-
troller ran first in the simulation and then with the physical platform without any need for further modifi-
cation. The controller used in this example was a velocity controller that implements a vehicle-follower
algorithm. In the simulation, the preceding vehicle was given a constant velocity profile as a command
input whereas in the physical platform demonstration a human was driving the preceding vehicle. The



R. Bhadani, J. Sprinkle & M. Bunting 41

controller used for this simulation was designed to send command inputs to the autonomous vehicle to
follow its preceding vehicle.

0 10 20 30 40 50 60 70 80

Time (seconds)

0

0.5

1

1.5

2

2.5

3

3.5

4

V
el

o
ci

ty
 (

m
/s

)

Instantaneous velocity and commanded velocity of simulated vehicle

Commanded velocity

Instantaneous velocity

0 10 20 30 40 50 60 70 80

Time (seconds)

0

10

20

30

40

50

60

70

80

D
is

ta
n

ce
 (

m
et

er
)

Headway distance in simualtion

Headway distance in simulation

(a) Velocity and headway
profile from the pure simulation

0 10 20 30 40 50 60 70 80

Time (seconds)

1.5

2

2.5

3

3.5

4

4.5

V
el

o
ci

ty
 (

m
/s

)

Instantaneous velocity and commanded velocity of

the CAT Vehicle with the physical platform in the loop

Commanded velocity

Instantaneous velocity

0 10 20 30 40 50 60 70

Time (seconds)

30

35

40

45

50

55

60

65

70

D
is

ta
n

ce
 (

m
et

er
)

Headway distance obtained from

actual Laser Rangerfinder

Headway distance with CATVehicle and

physical platform in the loop

(b) Velocity and headway
profile from physical platform

Figure 7: Both plots were generated from data obtained as a result of running the same controller, first in a simulation and then on the physical
platform. In the lower subplots, headway distance are presented in its raw format without any smoothing. Spikes in headway distance are

results of curvature in the vehicle trajectory and deviation of road surface from perfect flatness.

5.3 System Safety

From the inception of an idea to its final prototype and testing, safety of vehicle applications have re-
mained our prime concern. HIL simulation mitigates the risk of failure or unintended action of con-
trollers under test by extensive testing in the virtual environment with synthetic as well as real data and
a combination of simulated and real sensors. The testbed architecture ensures the validity of controller
requirements and design with multiple testing with SIL simulation followed by HIL simulation. Thus,
the CAT Vehicle Testbed provides safety by allowing researchers to design safe system dynamics.

Considering that autonomous vehicle applications consist of high-risks scenario, we provide a layer
of package for collision avoidance called as obstaclestopper. Obstaclestopper guarantees safety by con-
tinuously monitoring the minimum distance calculated from the Rangefinder data. As needed, it modifies
the desired velocity commanded to the AV to prevent any potential collision. Further, as discussed in
section the 6.2, we have shown that another layer of abstraction can be created to ensure functional cor-
rectness of the system with the help of the CAT Vehicle Testbed. In addition to that, the physical platform
consists of an emergency stop that can be utilized in an unforeseen event to prevent any damage to life
and property.

Although the testbed offers various degrees of permissive safety and functional correctness, it does
not offer any kind of security since the testbed uses ROS for message communication. In ROS network,
anyone with the information about IP address of ROS master can access messages being exchanged by
subscribing to specific topics. Any other process can kill a node in the network and a new process with
the same name can supersede another node [32]. Further, node-to-node communication are done in plain



42 CAT Vehicle Testbed: A Simulator with HIL for Autonomous Vehicle Applications

text which is vulnerable to spoofing [20]. As a result, any sensor data are prone to manipulation and even
failure which can result in catastrophic situations.

6 Enabled Research and Applications

During its development process, the CAT Vehicle Testbed has enabled research progress in Domain
Specific Modeling Languages (DSMLs), traffic engineering and intelligent transportation systems, visu-
alization and perception applications of sensor data, and promoting STEM education and robotics among
school kids. In the following subsections, we present a brief summary of research works and projects
that employed the CAT Vehicle Testbed.

6.1 Dissipation of stop-and-go traffic waves

In 2016, we conducted an experiment to reproduce Sugiyama experiment [31] with some mdodifications
to suit common driving conventions in the United States. In this experiment, we demonstrated that
intelligent control of an autonomous vehicle can be used to dissipate stop-and-go traffic waves that can
arise even in the absence of a physical condition or a lane change [30]. In this experiment, the CAT
Vehicle Testbed played an imperative role in proving the hypothesis. The velocity controller used in
dampening the traffic waves was designed using MATLAB/Simulink and Robotics System Toolbox,
and utilized extensive bagfile-based regression testing, and component-based testing, in order to take
advantage of the dynamically-realistic simulator. The top-level schematic of the controller can be seen
in figure 8.

Velocity Controller

CAT Vehicle
Front Laser 

Rangefinder

Sends instantaneous velocity

Provides headway distance

Commands a new velocity based on 

Instantaneous velocity, headway 

distance and rate of change 

of headway distance

Designed using ROS and 

Simulink

Mounted on the front 

bumper of the CATVehicle

Figure 8: The top-level schematic of velocity controller used to dampen emergent traffic waves.

6.2 Domain Specific Modeling Language for non-experts

An autonomous vehicle is an example of a system that requires experts from multiple domains to col-
laborate to provide a safe solution. A higher level of abstraction provides a verification tool to domain
experts to check for dynamic behavioral constraints. With proper modeling and verification tools, even
non-experts can program custom behaviors while ensuring that the system behaves correctly and safely.
Using the CAT Vehicle Testbed and WebGME [35], we created a domain specific modeling language
(DSML) with a focus on non-experts. The domain in our work consists of driving a vehicle through a set
of known waypoints by means of multiple simple motions in a specified manner. Model verification was
implemented to ensure safety of the platform, and validation of the problem solution. The language was
then provided to a group of 4th grade students to create unique paths. Models created by these children



R. Bhadani, J. Sprinkle & M. Bunting 43

were used to generate controller artifacts and operate the CAT Vehicle on a soccer field [4]. Figure 9b
shows the modeling interface that was used by kids to design paths for the CAT Vehicle to follow. Figure
9a shows the meta model of DSML that the modeling interface uses to generate C++ artifacts for the
CAT Vehicle.

(a) The metamodel for designing paths.

(b) The modeling interface that 4th graders used to operate an
autonomous vehicle in non-expert fashion.

Figure 9

6.3 CAT Vehicle Challenge

In the spring of 2017, the CAT Vehicle challenge took place to broaden participation in Cyber-Physical
Systems. The competition was conducted in four phases from January 2017 to April 2017 [5]. We
provided a version of the CAT Vehicle simulation environment, tested by the participants with data
obtained from driving the CAT Vehicle. The goal of the CAT Vehicle Challenge was to use data to
classify potential obstacles along and off the path, with synthesis of a realistic world file at the conclusion
of driving the vehicle.

During the first three stages of the competition, participants were unable to access the physical plat-
form. They used the CAT Vehicle Testbed with the software in the loop simulation and validated their
algorithms and model, submitting bagfile artifacts from their simulation in order to qualify for contin-
ued performance in the challenge. In the fourth and final stage, selected participants were invited to the
University of Arizona campus to work with the physical platform.

Each team selected in the final stage of the competition was able to verify their model with the CAT
Vehicle and real sensors within the span of two days. They successfully demonstrated their controllers
in action by operating the CAT Vehicle autonomously. The result of the final stage was a configuration
file for Gazebo simulator to create a virtual world to mirror the environment from which the data was
extracted. The CAT Vehicle Challenge proved to be a remarkable example of the research paradigm
that employs software and hardware in the loop simulation for design, verification and validation of
applications for autonomous vehicles.



44 CAT Vehicle Testbed: A Simulator with HIL for Autonomous Vehicle Applications

6.4 CAT Vehicle REU Program

Since its inception in 2014, the CAT Vehicle Testbed has grown alongside CAT Vehicle REU (Research
experience for undergraduates) program. Every year, the CAT Vehicle Testbed and CAT Vehicle REU
program has contributed to make each other stronger. Each summer CAT Vehicle REU program recruits
undergraduates from different institutions across the United States who work under the mentorship of
PhD students and professors to advance the autonomous driving technology. Participants in the REU
program have made significant contribution to the number of projects in DSML, vehicle perception al-
gorithms, velocity controllers, use of cognitive radio in autonomous vehicle applications and automotive
radar [25, 21, 13, 14, 22].

7 Conclusion and Outlook

This paper has described a testbed that has enabled progress in autonomous driving technology and
STEM education during the last 4 years. The CAT Vehicle Testbed is unique in the sense that it offers
seamless transfer of controller design from simulated environment to physical platform without rewrit-
ing any component of the controller. It features an autonomous vehicle that is based on open source
packages widely used by robotics community. With the spirit of open source principle, the CAT Vehicle
Testbed is available open source on CPS-VO website and GitHub to contribute towards the progress of
the autonomous vehicle technology [1].

Although the CAT Vehicle Testbed has proven to be remarkably useful in autonomous vehicle appli-
cations, there is much work needed to be done to improve its scope and functionality. In its current state,
the CAT Vehicle Testbed is limited to testing velocity-based controllers. The testbed does not provide
any interface for acceleration, brake or throttle input. This is in par with the physical platform where the
CAT Vehicle can only take velocity input as the control command in its autonomous mode. Currently
the testbed is based on Ubuntu 14.04, ROS Indigo and Gazebo 2.0. The future release of the testbed
will target newer versions of Ubuntu, ROS and Gazebo. For incorporating security aspects, we may be
looking to adopt Secure ROS [32] to mitigate the vulnerabilities discussed in 5.3. We will also be looking
to create different flavors of interfaces to test wide variety of controllers.

8 Acknowledgments

Support for this project was provided by the National Science Foundation and the Air Force Office of
Scientific Research under awards 1253334, 1262960, 1419419, 1446435, 1446690, 1446702, 1446715
1521617. The authors express their thanks to the many REU Students who contributed to the codebase
that makes up the CAT Vehicle Testbed, especially Sam Taylor, Alex Warren, Kennon McKeever, Ashley
Kang, Swati Munjal and a former PhD student Sean Whitsitt. The authors also express their gratitude to
Mathworks for sponsoring CAT Vehicle Challenge.

References

[1] J. Sprinkle et al.: CAT Vehicle Testbed. https://cps-vo.org/group/CATVehicleTestbed. Accessed:
2018-01-23.

[2] R. Smith et al. (2005): Open Dynamics Engine. http://www.ode.org/. Accessed: 2018-01-26.

https://cps-vo.org/group/CATVehicleTestbed
http://www.ode.org/


R. Bhadani, J. Sprinkle & M. Bunting 45

[3] Reinhold Behringer, Sundar Sundareswaran, Brian Gregory, Richard Elsley, Bob Addison, Wayne Guth-
miller, Robert Daily & David Bevly (2004): The DARPA grand challenge-development of an autonomous ve-
hicle. In: Intelligent Vehicles Symposium, 2004 IEEE, IEEE, pp. 226–231, doi:10.1109/IVS.2004.1336386.

[4] Matt Bunting, Yegeta Zeleke, Kennon McKeever & Jonathan Sprinkle (2016): A safe autonomous vehicle tra-
jectory domain specific modeling language for non-expert development. In: Proceedings of the International
Workshop on Domain-Specific Modeling, ACM, pp. 42–48, doi:10.1145/3023147.3023154.

[5] CAT Vehicle challenge 2017. https://cps-vo.org/group/CATVehicleChallenge. Accessed: 2018-
01-23.

[6] Ching-Yao Chan (2017): Advancements, prospects, and impacts of automated driving systems. International
Journal of Transportation Science and Technology 6(3), pp. 208–216, doi:10.1016/j.ijtst.2017.07.008.

[7] Qi Chen, Umit Ozguner & Keith Redmill (2004): Ohio State University at the 2004 DARPA Grand
Challenge: developing a completely autonomous vehicle. IEEE Intelligent Systems 19(5), pp. 8–11,
doi:10.1109/MIS.2004.48.

[8] Code generation with simulink. https://www.mathworks.com/help/robotics/

code-generation-and-deployment.html. Accessed: 2018-01-26.

[9] Jim Colquitt, Dave Dowsett, Abhishek Gami, Invesco Fundamental Equities, Evan Jaysane-Darr, Invesco
Private Capital Partner, Clay Manley, Fundamental Equity, Rahim Shad & Invesco Fixed Income (2017):
Driverless cars: How innovation paves the road to investment opportunity.

[10] Austin Costley, Chase Kunz, Ryan Gerdes & Rajnikant Sharma (2017): Low Cost, Open-Source Testbed to
Enable Full-Sized Automated Vehicle Research. arXiv preprint arXiv:1708.07771.

[11] NR Gans, WE Dixon, R Lind & A Kurdila (2009): A hardware in the loop simulation plat-
form for vision-based control of unmanned air vehicles. Mechatronics 19(7), pp. 1043–1056,
doi:10.1016/j.mechatronics.2009.06.014.

[12] Martial H Hebert, Charles E Thorpe & Anthony Stentz (2012): Intelligent unmanned ground vehi-
cles: autonomous navigation research at Carnegie Mellon. 388, Springer Science & Business Media
doi:10.1007/978-1-4615-6325-9.

[13] Alberto Heras, Lykes Claytor, Haris Volos, Hamed Asadi, Jonathan Sprinkle & Tamal Bose (2015): Intersec-
tion Management via the Opportunistic Organization of Platoons by Route. In: WinnComm 2016.

[14] Sterling Holcomb, Audrey Knowlton, Juan Guerra, Hamed Asadi, Haris Volos, Jonathan Sprinkle & Tamal
Bose (2016): Power Efficient Vehicular Ad Hoc Networks. Reston, VA.

[15] Jonathan P How, Brett Behihke, Adrian Frank, Daniel Dale & John Vian (2008): Real-time indoor au-
tonomous vehicle test environment. IEEE control systems 28(2), pp. 51–64, doi:10.1109/MCS.2007.914691.

[16] John Leonard, Jonathan How, Seth Teller, Mitch Berger, Stefan Campbell, Gaston Fiore, Luke Fletcher,
Emilio Frazzoli, Albert Huang, Sertac Karaman et al. (2008): A perception-driven autonomous urban vehicle.
Journal of Field Robotics 25(10), pp. 727–774, doi:10.1002/rob.20262.

[17] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren Kammel, J Zico
Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt et al. (2011): Towards fully autonomous driving:
Systems and algorithms. In: Intelligent Vehicles Symposium (IV), 2011 IEEE, IEEE, pp. 163–168,
doi:10.1109/IVS.2011.5940562.

[18] Mariano Lizarraga, Vladimir Dobrokhodov, Gabriel Elkaim, Renwick Curry & Isaac Kaminer (2009):
Simulink based hardware-in-the-loop simulator for rapid prototyping of uav control algorithms. In: AIAA In-
fotech@ Aerospace Conference and AIAA Unmanned... Unlimited Conference, p. 1843, doi:10.2514/1.3648.

[19] Joel C McCall, Ofer Achler & Mohan M Trivedi (2004): Design of an instrumented vehicle test bed for
developing a human centered driver support system. In: Intelligent Vehicles Symposium, 2004 IEEE, IEEE,
pp. 483–488, doi:10.1109/IVS.2004.1336431.

http://dx.doi.org/10.1109/IVS.2004.1336386
http://dx.doi.org/10.1145/3023147.3023154
https://cps-vo.org/group/CATVehicleChallenge
http://dx.doi.org/10.1016/j.ijtst.2017.07.008
http://dx.doi.org/10.1109/MIS.2004.48
https://www.mathworks.com/help/robotics/code-generation-and-deployment.html
https://www.mathworks.com/help/robotics/code-generation-and-deployment.html
http://dx.doi.org/10.1016/j.mechatronics.2009.06.014
http://dx.doi.org/10.1007/978-1-4615-6325-9
http://dx.doi.org/10.1109/MCS.2007.914691
http://dx.doi.org/10.1002/rob.20262
http://dx.doi.org/10.1109/IVS.2011.5940562
http://dx.doi.org/10.2514/1.3648
http://dx.doi.org/10.1109/IVS.2004.1336431


46 CAT Vehicle Testbed: A Simulator with HIL for Autonomous Vehicle Applications

[20] Jarrod McClean, Christopher Stull, Charles Farrar & David Mascareñas (2013): A preliminary cyber-physical
security assessment of the robot operating system (ROS). In: Unmanned Systems Technology XV, 8741,
International Society for Optics and Photonics, p. 874110, doi:10.1117/12.2016189.

[21] Kennon McKeever, Yegeta Zeleke, Matt Bunting & Jonathan Sprinkle (2015): Experience Report:
Constraint-based Modeling of Autonomous Vehicle Trajectories. In: Proceedings of the Workshop on
Domain-Specific Modeling, ACM, ACM, New York, NY, USA, p. 17–22, doi:10.1145/2846696.2846706.

[22] Torger Miller, Cody Ross, Matheus Marques Barbosa, Mohammed Hirzallah, Haris Volos & Jonathan Sprin-
kle (2015): Adaptive Multifactor Routing with Constrained Data Sets. In: Wireless Innovation Forum Con-
ference on Wireless Communication Technologies and Software Defined Radio (WInnComm), San Diego,
CA.

[23] William F Milliken, Douglas L Milliken et al. (1995): Race car vehicle dynamics. 400, Society of Automotive
Engineers Warrendale.

[24] Patrick Morley, Alex Warren, Ethan Rabb, Sean Whitsitt, Matt Bunting & Jonathan Sprinkle (2013): Gener-
ating a ROS/JAUS bridge for an autonomous ground vehicle. In: Proceedings of the 2013 ACM workshop
on Domain-specific modeling, ACM, pp. 13–18, doi:10.1145/2541928.2541931.

[25] Elizabeth A. Olson, Nathalie Risso, Adam M. Johnson & Jonathan Sprinkle (2017): Fuzzy Control of an
Autonomous Car using a Smart Phone. In: Proceedings of the 2017 IEEE International Conference on
Automatica (ICA-ACCA), IEEE, IEEE, p. 1–5, doi:10.1109/CHILECON.2017.8229692.

[26] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler & An-
drew Y Ng (2009): ROS: an open-source Robot Operating System. In: ICRA workshop on open source
software, 3.2, Kobe, p. 5.

[27] B Reimer, B Mehler & JF Coughlin (2014): Assessing the demands of todays voice based in-vehicle interfaces
(Phase II Year I)–MIT AgeLab Annual Report. Technical Report, MIT AgeLab Technical Report.

[28] Matthew Rimmer (2017): Intellectual property and self-driving cars: Waymo vs Uber: Supplementary sub-
mission to the House of Representatives Standing Committee on Industry, Innovation, Science and Resources’
inquiry into the social issues relating to land-based driverless vehicles in Australia.

[29] Guna Seetharaman, Arun Lakhotia & Erik Philip Blasch (2006): Unmanned vehicles come of age: The darpa
grand challenge. Computer 39(12), doi:10.1109/MC.2006.447.

[30] Raphael E Stern, Shumo Cui, Maria Laura Delle Monache, Rahul Bhadani, Matt Bunting, Miles Churchill,
Nathaniel Hamilton, Hannah Pohlmann, Fangyu Wu, Benedetto Piccoli et al. (2018): Dissipation of stop-and-
go waves via control of autonomous vehicles: Field experiments. Transportation Research Part C: Emerging
Technologies 89, pp. 205–221, doi:10.1016/j.trc.2018.02.005.

[31] Yuki Sugiyama, Minoru Fukui, Macoto Kikuchi, Katsuya Hasebe, Akihiro Nakayama, Katsuhiro Nishinari,
Shin-ichi Tadaki & Satoshi Yukawa (2008): Traffic jams without bottlenecks-experimental evidence for the
physical mechanism of the formation of a jam. New journal of physics 10(3), p. 033001, doi:10.1088/1367-
2630/10/3/033001.

[32] Aravind Sundaresan & Leonard Gerard (2017): Secure ROS: Imposing secure communication in a ROS
system. In: ROSCon 2017, Menlo Park, CA 94025.

[33] Dale Thompson (2007): Ackerman? anti-ackerman? or parallel steering. On the WWW, August. URL
www. racingcar-technology. com. au/Steering% 20Ackerman4. doc.

[34] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron, James Diebel, Philip
Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann et al. (2006): Stanley: The robot that won the DARPA
Grand Challenge. Journal of field Robotics 23(9), pp. 661–692, doi:10.1002/rob.20147.

[35] Hakan Tunc, Addisu Taddese, Peter Volgyesi, Janos Sallai, Pietro Valdastri & Akos Ledeczi (2016): Web-
based integrated development environment for event-driven applications. In: SoutheastCon, 2016, IEEE, pp.
1–8, doi:10.1109/SECON.2016.7506646.

http://dx.doi.org/10.1117/12.2016189
http://dx.doi.org/10.1145/2846696.2846706
http://dx.doi.org/10.1145/2541928.2541931
http://dx.doi.org/10.1109/CHILECON.2017.8229692
http://dx.doi.org/10.1109/MC.2006.447
http://dx.doi.org/10.1016/j.trc.2018.02.005
http://dx.doi.org/10.1088/1367-2630/10/3/033001
http://dx.doi.org/10.1088/1367-2630/10/3/033001
http://dx.doi.org/10.1002/rob.20147
http://dx.doi.org/10.1109/SECON.2016.7506646


R. Bhadani, J. Sprinkle & M. Bunting 47

[36] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner, MN Clark, John Dolan,
Dave Duggins, Tugrul Galatali, Chris Geyer et al. (2008): Autonomous driving in urban environments: Boss
and the urban challenge. Journal of Field Robotics 25(8), pp. 425–466, doi:10.1002/rob.20255.

[37] R Wade (2006): Joint architecture for unmanned systems. In: Proc. of 44th Annual Targets, UAVs & Range
Operations Symposium & Exhibition.

http://dx.doi.org/10.1002/rob.20255

	1 Introduction
	1.1 Contributions
	1.2 Related Works

	2 Overview of Testbed Architecture
	3 Virtual Environment
	3.1 Vehicle Model
	3.2 Simulated World
	3.3 Simulated sensors

	4 Physical Platform
	4.1 The Autonomous Vehicle in the Simulation Loop
	4.2 Perception Unit

	5 Modeling and Implementation
	5.1 Data
	5.2 Visualization
	5.3 System Safety

	6 Enabled Research and Applications
	6.1 Dissipation of stop-and-go traffic waves
	6.2 Domain Specific Modeling Language for non-experts
	6.3 CAT Vehicle Challenge
	6.4 CAT Vehicle REU Program

	7 Conclusion and Outlook
	8 Acknowledgments

