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A Publicly Verifiable Secret Sharing (PVSS) scheme allows anyone to verify the validity of the
shares computed and distributed by a dealer. The idea of PVSS was introduced by Stadler in [18]
where he presented a PVSS scheme based on Discrete Logarithm. Later, several PVSS schemes were
proposed. In [2], Behnad and Eghlidos present an interesting PVSS scheme with explicit membership
and disputation processes. In this paper, we present a new PVSS having the advantage of being
simpler while offering the same features.

1 Introduction

A secret sharing scheme is a cryptographic method allowing splitting a secret between a set of par-
ticipants such that only some predefined subsets of participants can recover the shared secret. These
qualified subsets are called access structures. A secret sharing scheme proceeds in two phases: a dealing
phase in which a dealer computes shares and gives to every participant his own share and a reconstruction
phase that consists in trying to reconstruct the shared secret by pooling the elements of a qualified subset
of shares.

Secret sharing schemes were introduced firstly and independently by Shamir [16] and Blakley [3].
The first scheme is based on polynomial interpolation while the latter is based on hyperplane geometry.
Most of the proposed secret sharing schemes [1, 11] are based on Shamir’s secret sharing scheme. Al-
though its efficiency, Shamir’s scheme still presents some problems. In fact, there is an absolute trust
in the dealer. This latter, can distribute some inconsistent shares leading the participants to recover a
secret which differs from the initial one. Verifiable Secret Sharing (VSS) schemes [5, 6, 13] were pro-
posed to allow participants to verify the validity of the shares they received from the dealer. However,
a malicious shareholder can receive a valid share but submit an invalid one in the reconstruction phase.
Publicly Verifiable Secret Sharing (PVSS) schemes [2, 4], [8-10], [14, 15], [17-21 ] were proposed to
solve this problem. In fact, PVSS schemes were proposed to prevent cheating by the dealer or/and the
shareholders. In a PVSS scheme, the validity of the distributed shares can be verified by anyone.

In [2], Behnad and Eghlidos present an interesting PVSS scheme where participants can prove their
membership and the validity of their shares to prevent unauthorized parties from participating in the
reconstruction process. Moreover, their scheme offers an explicit disputation process aiming to prove to
a third party in conflict situations between the dealer and a participant who among them is lying.
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12 A New PVSS Scheme with a Simple Encryption Function

In this paper, we present a new PVSS scheme providing a disputation and a membership proof
processes. We show that our PVSS scheme is simpler than the PVSS scheme presented in [2] while still
being as secure as the mentioned scheme.

This paper is organized as follows: First, PVSS schemes are presented. After that, our new PVSS
scheme is introduced. Then, the security of our PVSS scheme is studied and a comparison between it
and the previous PVSS schemes is done. Finally, we provide some concluding remarks.

2 PVSS Schemes

PVSS schemes as introduced by Stadler in [18] aim to allow anyone, not only participants, to verify that
shares were correctly distributed by the dealer. This property has been defined by Stadler in [18] and has
been denoted public verifiability.

Stadler proposed in this paper, two PVSS schemes that can be used with general access structures.
The first one is used for sharing a discrete logarithm. It requires a non standard assumption called
DDLP “Double Discrete Logarithm Assumption”. In fact, Stadler dealt with expressions of the form
y = g(h

x) (with g a generator of a group of order p, and h a fixed element of high order in Z∗p) such that
given y, it is hard to find x. Under this assumption, his scheme is as secure as the Decisional-Diffie-
Hellman problem. The second one is based on the RSA root problem. It is used for sharing the n-th
root and depends on the RSA assumption. Encryptions are based on a variant of the Diffie-Hellman key-
exchange protocol. But we should notice here that the security of this scheme was not formally studied.
Moreover, the verification in these two schemes requires information exchanges between the verifier and
the shareholder. We say that it is an interactive verification.

In [8], Fujisaki and Okamoto defined the non-interactivity for a PVSS scheme as the fact that the
verification of a share can be done without communicating with the dealer or with any other participant.
The scheme they proposed in [8] depends on the “modified RSA assumption” assuming that inverting
the RSA function is still hard. This modified RSA assumption allows partial recovery.

Notice that the schemes of [8, 18] depend on some non standard assumptions. However, Schoen-
makers provided in [15] a stronger PVSS scheme by adding the fact that when submitting his share, the
shareholder must provide its correctness proof. His PVSS scheme is simpler than the previous schemes.
It uses techniques working in any group for which the Discrete Logarithm Problem is hard. This scheme
is as hard to break as the Decisional Diffie-Hellman problem.

In [20], Young and Yung proposed an improvement of Schoenmakers’s PVSS scheme. The scheme
they proposed to share discrete logarithm is as hard as the Discrete Logarithm Problem itself. They
proved in [21] that their scheme is computational zero-knowledge. In addition, in PVSS schemes, secure
encryption assumptions are employed. But in their scheme, Young and Yung can use any probabilistic
encryption function.

In [4], Boudot and Traoré proposed new PVSS schemes allowing shareholders to recover their shares
quickly (fast recovery) or after a predetermined amount of computations (delayed recovery). In fact, they
provide a PVSS scheme for sharing discrete logarithm with fast recovery and a PVSS scheme for sharing
factorization with fast recovery. They also present a PVSS scheme for sharing discrete logarithm with
delayed recovery and a PVSS scheme for sharing factorization with delayed recovery.

In most of the existing PVSS schemes, the verification phase is interactive. This is due to the use of
Fiat-Shamir zero knowledge protocol [7]. In [14], Ruiz and Villar proposed a PVSS scheme with non
interactive verification. It is the first efficient PVSS that does not use the Fiat-Shamir technique. It is
based on the homomorphic properties of Paillier’s encryption scheme [12]. It is the first known PVSS
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scheme based on the DCRA1 (Decisional Composite Residuosity Assumption). The verification process
in this scheme is simpler than in the other known schemes.

In [9] , Heidarvand and Villar proposed a new PVSS scheme based on pairing. They took back the
scheme of Shoenmakers using the pairing. The security of this scheme is based on the DBSDH 2 problem
(Decisional Bilinear Square Diffie-Hellman problem). In [10], Jhanwar proposed a new non-interactive
PVSS scheme based on pairing. In this scheme, the dealer has not to compute and to distribute the shares
of a given secret; he provides a set of private keys for participants. Then, every participant uses his
private key, joined to another public value to compute his share.

Recently, other PVSS schemes have been proposed. In [21], Yu and all proposed a publicly verifiable
secret sharing scheme with the possibility of enrollment. In [19], Wu and all proposed a pairing based
PVSS scheme reducing the computation cost while keeping the same security level of the existing public
key systems.

Behnad and Eghlidos provided, in [2], a PVSS scheme with non interactive verification and having
two peculiarities. First, after distributing the shares and in case of any complaint from any participant, a
third party can run a disputation process to identify who is lying. This third party can then vote against
the dealer or against the participant. Second, Behnad and Eghlidos added a membership proof process in
the beginning of the reconstruction phase. In this phase a shareholder has to prove his membership and
the validity of his share at the same time. In [17], Ben Shil, Blibech and Robbana proposed another PVSS
scheme with a disputation and a membership proof processes. In this scheme, rather than publishing the
encrypted coefficients of the polynomial used to compute the shares, the encrypted shares are published.
Thus, the set of shares is public and any insertion or deletion will be detected by all the old participants.
This scheme is, then, recommended for applications where the number of participants is limited while the
access structure is dynamic and where it is worthy to keep a track of any change in the set of participants.

In this paper we introduce a new PVSS scheme providing a non-interactive verification process and
presenting explicit disputation and membership processes. We show that our PVSS scheme is simpler
than the schemes proposed in [2] and [17] while keeping the same level of security.

3 A new PVSS scheme

In our scheme, given two large prime numbers p and q such that q|p− 13, the following notations are
used:

- Gq is a subgroup of prime order q in Z∗p, such that computing discrete logarithm in this group is
infeasible and g ∈ Gq is a generator of the group.

In our PVSS scheme, we perform all the computations in Zq.

1The Decisional Composite Residuosity Assumption, used in the proof of the Paillier cryptosystem, says that given an
integer z and a composite n, it is hard to decide whether z is a n-residue modulo n2 or not.

2Let e : G1 ∗ G1→ G2 a bilinear application such that G1 and G2 are two multiplicative group with the same order p. Let
g be a generator of G1 and a, b and z elements of Z∗p. The Decisional Bilinear Square Diffie-Hellman (DBSDH) problem says

that ga, gb and e(g,g)z is hard to decide whether e(g,g)a2b = e(g,g)z.
3q divides p-1.
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3.1 Dealing phase

3.1.1 Distribution process

In the distribution process, the dealer sets F(x) = F0 +F1x+ ...+Fk−1xk−1, where F1, . . . , Fk−1 ∈R
4Zq

and F0 is the secret to share. Moreover:

1. Every participant chooses a private key ai where ai ∈R Zq and publishes gai as his public key, for
1≤ i≤ n where n is the number of participants.

2. The dealer D computes the shares si = F(i), for 0≤ i≤ n.

3. He publishes C j = gFj , for 0≤ j ≤ k−1 and gsi , for 0≤ i≤ n.

4. He sends an encrypted share Ei = si⊕ (gai)si to the participant Pri, for 1≤ i≤ n (Notice that s0 is
the secret and thus there is no associated encrypted share to be sent to anyone).

3.1.2 Verification process

Every shareholder Pri, computes si =Ei⊕[(gsi)ai ], then, verifies the following equality5: gsi =∏
k−1
j=0(C j)

i j
.

Otherwise, the shareholder complains against the dealer.

3.1.3 Disputation process

In the case of any complaint, both the dealer D and the shareholder Pri try to prove their honesty to a
third party R. For doing that, D has to publish an encrypted value leading Pri to extract gsi and to verify
the validity of the associated share si. If D sends an invalid share, Pri has to prove this fact to R. This
process is done using the following protocol:

1. Pri chooses his private key ai and publishes his public key gai .

2. Pri and D publish independently g[(g
ai )si ]−1

. Then, R verifies that D and Pri published the same
value. Else, Pri sends ai to R. R computes gai and g[(g

ai )si ]−1
in order to discover who is lying.

Notice that R can compute gsi from the published values gsi = ∏
k−1
j=0(C j)

i
j
.

3. D computes and publishes λ = si⊕ (gai)si .

4. Pri computes α = λ⊕(gai)si . If gα = ∏
k−1
j=0(C j)

i
j
, he sends a commitment to R and the disputation

process is stopped. Else, he sends α to R.

5. R computes gα and verifies that gα 6= ∏
k−1
j=0(C j)

i
j
. Then, he verifies that g1/(λ⊕α) = g[(g

ai )si ]−1
. If it

holds, D lied else Pri lied.

3.2 Reconstruction phase

3.2.1 Membership only proof

If a verifier wants to verify that Pri is an authorized participant, this latter has to prove his membership
to the verifier without revealing his share. Our membership proof is the following:

4Randomly chosen.
5Given C j = gFj , we compute:

∏
k−1
j=0(C j)

i j
= ∏

k−1
j=0(g

Fj )i j
= ∏

k−1
j=0 gFj ∗ i j = g ∑

k−1
j=0 Fj∗i j

= gF(i) = gsi ,(since si = F(i)).
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1. The verifier chooses a ∈R Zq and sends ga to the prover.

2. The prover sends RP = g[(g
a)si ]−1

to the verifier.

3. The verifier computes RV = g[(g
si )a]−1

(gsi = ∏
k−1
j=0(C j)

i
j
).

4. If RV = RP, the prover is the shareholder who possesses the share si.

3.2.2 Pooling the shares

The secret is reconstructed from the submitted shares, as follows: s=∑
k
i=1 wisi where wi =∑i 6= j i/( j−1).

Notice that the shares can be submitted using the same encryption function of the distribution process
(Ei = si⊕ (gsi)a) where a is the private key of the party concerned by the reconstruction of the secret and
ga is its public key.

Notice also that this party does not need to run the membership process before the pooling phase
since using this encryption function allows the verification of a share and its extraction at the same time.

4 Security

In this section, we prove the security properties of our PVSS scheme. First of all, we provide our
definition of a secure PVSS scheme:

Definition A PVSS scheme is secure if and only if:
- During the dealing phase, neither the dealer D can cheat by sending an invalid share to a given

participant Pri, nor the participant Pri can claim that he received a non valid share while it was.
- During the reconstruction phase, an unauthorized party cannot pretend to be a shareholder.
- During all the stages of the scheme, the secrecy property is verified.

Let’s prove at first that, in our scheme, the dealer D cannot cheat by sending an invalid share to the
participant Pri. We show here that Pri can prove this fact to the third party R in the disputation phase.
Thus, we prove the following lemma:

Lemma 4.1 “The dealer D cannot cheat by sending an invalid share to the participant Pri”.

Proof In the disputation phase, a honest dealer has to compute λ = si⊕ (gai)si . But a malicious dealer
can have another behavior. In fact, he can compute λ using an invalid share s′i or an incorrect value ga′i

rather than the public key gai of the participant Pri.
So, there are seven values of λ that D can use: λ = s′i⊕ (gai)si or λ = si⊕ (gai)s′i or λ = s′i⊕ (gai)s′i

or λ = si⊕ (ga′i)si or λ = s′i⊕ (ga′i)si or λ = si⊕ (ga′i)s′i or λ = s′i⊕ (ga′i)s′i .
In each of these cases, Pri will compute α = λ ⊕(gsi)ai at step 3 of the disputation process, and since

λ 6= si⊕ (gai)si , he will find α 6= si and he will send this value to R.
R will verify that gα 6= ∏

k−1
j=0(C j)

i
j

and that g1/(λ⊕α) = g1/(λ⊕λ⊕(gsi )ai ) = g[(g
ai )

si ]−1
. So R will con-

clude that D lied.

We prove also that, in our scheme, a malicious behavior of a participant Pri, who received a valid
share from the dealer D, but claims that his share is invalid, will be detected. We show here that, in
the disputation phase, the dealer D can prove to a third party R that Pri cheated. Thus, we prove the
following lemma:

Lemma 4.2 “The participant Pri, cannot claim that he received a non valid share while it was”.
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Proof In the disputation phase, if a participant Pri received a correct share si but claims that he received
an invalid one, he has to send a fake value α ′ to R. In fact, Pri computes α = λ ⊕ (gsi)ai but sends α ′

6= α to R. So, R computes, gα ′ and verifies that it is not a public value. Then, R verifies, at step 5 of the
disputation process, that g1/(λ⊕α ′) 6= g [(gai )si ]−1

. Since it does hold, R concludes that Pri lied.

In addition, we prove the following lemma:

Lemma 4.3 “Under the Computational Diffie-Hellman assumption, it is infeasible to break the encryp-
tion of the shares”.

Proof Breaking the encryption of the shares is equivalent to computing si from the encrypted share
Ei = si⊕ (gai)si .

To be able to do that, we have to compute si = Ei⊕ (gai)si from the inputs Ei, gai , gsi . This implies
computing gai∗si given gai and gsi .

Recall that the Computational Diffie-Hellman assumption states that it is infeasible to compute gai∗si

given gai and gsi . Therefore the unauthorized party is not able to compute the share si.
Furthermore, to break the encryption of a share si, the adversary should be able to compute si from

gsi . This implies solving the Discrete Logarithm Problem.
Given that computing the discrete log in Gq is infeasible, the unauthorized party is not able to com-

pute si from gsi .

Then, we prove the following lemma:

Lemma 4.4 “Under the Computational Diffie-Hellman assumption, an unauthorized party cannot ex-
tract the share si from gai , gsi and the published masked value λ in the disputation process”.

Proof To extract the share si, the adversary has to compute si from the public masked value λ = si⊕
gai∗si . This implies that he needs to compute si = λ⊕ gai∗si given λ , gai and gsi .

For doing that, the adversary should be able to compute gai∗si from the inputs gai and gsi . However,
the adversary is not able to compute si due to the Computational Diffie-Hellman assumption.

We prove also that:

Lemma 4.5 “Under the Computational Diffie-Hellman assumption, an unauthorized party cannot re-
trieve the share si from gai , gsiand g[(g

si )ai ]−1
in the two first steps of the disputation process”.

Proof Under the assumption that computing Discrete Logarithm in Gq is hard, an unauthorized party
cannot extract gai∗si from g[(g

si )ai ]−1
and under the Computational Diffie-Hellman assumption, it is not

possible to retrieve si from gsiand gai .

Moreover, we prove that:

Lemma 4.6 “Under the Computational Diffie-Hellman assumption, an unauthorized party cannot pre-
tend to be a shareholder”.

Proof This feature is fulfilled within the membership process. In this process, to pretend to be the
shareholder possessing si, the unauthorized party should be able to compute (gai)si from the values gai

and gsi in the membership process. However, under the Computational Diffie-Hellman assumption, this
is infeasible.

Finally, we prove that:
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Lemma 4.7 “Under the Computational Diffie-Hellman assumption, it is infeasible to break the encryp-
tion of the shares submitted in the reconstruction phase”.

Proof In the reconstruction phase, only the party possessing the private key a can extract the share si

from the encrypted value Ei = si⊕ (ga)si . This party has just to compute si = Ei⊕ [(gsi)a].
For a dishonest party knowing only Ei, ga and gsi , breaking the encryption of the shares means com-

puting (ga)si from the public value gsi and the public key ga which is infeasible under the Computational
Diffie-Hellman assumption.

In this section, we proved that neither the dealer can cheat by distributing invalid shares nor a dishon-
est participant can cheat by claiming that the share he received is not valid while it was. Moreover, we
proved that under the Computational Diffie-Hellman assumption, no one can break the encryption of the
shares neither in the distribution process, nor in the disputation process or in the reconstruction phase.
We proved also that, under the Computational Diffie-Hellman assumption, an unauthorized party cannot
pretend to be a shareholder possessing a valid share.

In the following section, we compare our new PVSS scheme to the PVSS schemes presented in
section 2.

5 Comparison with previous PVSS schemes

In this section, in order to compare our PVSS scheme to the existent PVSS schemes, we first present the
different security properties of the most known schemes. We point that the schemes proposed in [12]
and [18] do not appear in this section because we consider that these schemes have a specific context6.
However, we include the scheme of Feldman [6] in this comparison since we consider that it is the
first PVSS scheme, although public verifiability was not defined yet when this scheme was proposed.
So, for each studied PVSS scheme, we identify the cryptographic techniques it uses in every process
(distribution, verification. . . ) and we verify if they satisfy our definition of security. Since most of the
used cryptographic techniques are based on some hard problems, we classify these hard problems into
four classes:

• Discrete Logarithms: Hard problems based on the Discrete Logarithm Problem.

• Factoring : Hard problems based on the Factorization Problem.

• Paillier’s cryptosystem: Hard problems based on the Paillier’s cryptosystem proof.

• Pairings: Hard problems based on the Bilinear Pairings.

As we said before, a comparison is done for every process of PVSS schemes. For the distribution
process, we study the security assumptions (DLP7, CDH8, ...) of the encryption functions used to encrypt
the shares before distributing them among the set of participants. Then, we evaluate the problem on
which the security of the process is based. The evaluation is based on the following reduction: ELGamal
≤P CDH ≤P DLP.

However, for the scheme of Feldman and the scheme of Young and Yung, this evaluation is infeasible,
because the cryptographic techniques used in these schemes are not specified. For more details, see
table1.

6process fast or delayed, and the scheme proposed in [21] focused on how to make a new member join the scheme without
exposing the secret and the old shares.

7Discrete Logarithm Problem.
8Computational Diffie-Hellman Problem.
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Encryption and distribution of shares
Category PVSS Scheme Problem Evaluation

Discrete Log

Stadler (1996) ELGamal cryp-
tosystem

Hard

Schoenmakers (1999) DLP Very hard
Behnad & Eghlidos
(2008)

CDH Hard

Heidarvand &Villar
(2009)

DLP Very hard

Jhanwar (2010) DLP Very hard
Ben Shil, Blibech & Rob-
bana (2011)

CDH Hard

Our PVSS (2012) CDH Hard
Factoring Okamoto & Fujisaki

(1998)
Modified RSA
assumption

Non Proved

Paillier cryptosys-
tem

Ruiz & Villar (2005) Paillier proba-
bilistic encryp-
tion scheme

Hard

Pairings Wu & Tseng (2011) BDH Hard
Non specified
problem

Feldman (1987) No encryption
function

-

Young & Yung (2001) Public key
encryption
algorithm

-

Table 1: Evaluation of the distribution process

For the verification process, we explicit also the problem on which the security of the verification
process is based. This evaluation is based on the following reductions:

• ELGamal ≤P CDH ≤P DLP.

• RSA ≤PFactoring.

We also classify the verification process into two classes: interactive verification and non-interactive
verification. The verification is interactive if the verifier has to communicate with other participants
and/or with the dealer to verify the validity of a share. It is non-interactive if the verifier can verify the
validity of a share without any communication with other participants or with the dealer. Obviously,
non-interactivity is preferred in order to reduce communications. For more details, see table 4.

After the verification process, a participant can initiate a disputation process to complain about the
validity of the share he received. The disputation process aims to verify if the dealer is honest. We say
that this process is explicit if it leads the dealer to send the share to the participant who complains in the
presence of a third party. This latter has to identify who among the dealer and the participant is lying.
Otherwise, the disputation process is supposed to be implicit (the dealer is considered as dishonest if
the number of participants complaining about the validity of their shares is greater than a given param-
eter). Notice that only the three schemes of table 2 offer an explicit disputation process. The security
assumptions of this process for these schemes are studied in table 3.
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Verification of shares
Category PVSS scheme Problem Evaluation Proof Evaluation

Discrete Log

Feldman (1987) DLP Very hard Non-
interactive

Standard
Model

Stadler (1996) DDLP Non proved
Interactive Zero-

Knowledge
Non-
interactive

Random
Oracle
Model

Schoenmakers
(1999)

DDH Hard
Interactive Zero-

Knowledge
Non-
interactive

Random
Oracle
Model

Young & Yung
(2001)

DLP Very hard
Interactive Zero-

Knowledge
Non-
interactive

Random
Oracle
Model

Behnad & Eghlidos
(2008)

DLP Very hard Non-
interactive

Standard
Model

Wu & Tseng
(2011)

CDH Hard Non-
interactive

Random
Oracle
Model

Ben Shil, Blibech
& Robbana (2011)

DLP Very hard Non-
interactive

Standard
Model

Our PVSS (2012) DLP Very hard Non-
interactive

Standard
Model

Factoring
Okamoto &
Fujisaki (1998)

Factoring Very hard Interactive Zero-
Knowledge

RSA Hard Interactive Zero-
Knowledge

Paillier cryp-
tosystem

Ruiz & Villar
(2005)

DCRA Hard Non-
interactive

Random
Oracle
Model

Pairings
Heidarvand & Vil-
lar (2009)

DBSDH Hard Non-
interactive

Standard
Model

Jhanwar (2010) MSEDH Hard Non-
interactive

Standard
Model

Table 2: Evaluation of the verification process
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Disputation
Category PVSS scheme Problem Evaluation Proof
Discrete Log Behnad & Eghlidos

(2008)
CDH Hard Interactive

Ben Shil, Blibech
& Robbana (2011)

CDH Hard Interactive

Our PVSS (2012) CDH Hard Interactive

Table 3: Evaluation of the disputation process

Membership proof
Category PVSS scheme Problem Evaluation Proof Evaluation

Discrete Log
Schoenmakers (1999) DDH Hard

Interactive Zero-
Knowledge

Non-
interactive

Random
Oracle
Model

Behnad & Eghlidos
(2008)

CDH Hard Interactive Zero-
Knowledge

Ben Shil, Blibech &
Robbana (2011)

CDH Hard Interactive Zero-
Knowledge

Our PVSS (2012) CDH Hard Interactive Zero-
Knowledge

Pairings Heidarvand &Villar
(2009)

DBSDH Hard Non-
interactive

Standard
Model

Table 4: Evaluation of the membership proof

The membership proof can be implicit (a participant has to give his part, in the reconstruction process,
to prove that he is an authorized participant) or explicit (a participant can prove to a verifier that he is
an authorized participant possessing a valid share without revealing this share). When this process is
explicit, it can be interactive or non-interactive. In table 3, we focus on PVSS schemes with explicit
membership proof process and study the interactivity of each process and its security assumptions.

To summarize, we provide in this paper a new PVSS scheme having the following properties:
First, during the distribution process, our scheme uses a simple encryption function to encrypt the

shares before distributing them. The encryption of the shares is secure under the CDH assumption.
When he receives a share of the secret, a participant can extract and verify the validity of his share

without any communication with any party, even the dealer. We say that our verification process is
non-interactive.

In case of any complaint against the dealer, the concerned participant, the dealer and a third party
R can run a disputation process in order to establish who is cheating. The disputation process is secure
under the CDH assumption.

Later, an explicit Zero-Knowledge membership process can be run to allow every participant to prove
interactively his membership to a verifier who asked for that. This process is secure under the CDH
assumption. Notice here that only three schemes offer an explicit membership proof and an explicit
disputation process at the same time: the present scheme, the scheme of Behnad and Eghlidos [2] and
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the scheme of Ben Shil, Blibech and Robbana [17].
Moreover, notice that in our scheme, when submitting an encrypted share to the party concerned by

computing the secret, an implicit membership proof is given and it is not necessary to run the explicit
membership only proof.

Finally, we point that the use of the XOR operator in our scheme makes it less timeconsuming than
the schemes presented in [2] and [17].

6 Conclusion

The new PVSS scheme proposed in this paper is very simple while being secure. In fact, thanks to the use
of a simple encryption function, we reduce computations in all the processes of the scheme. In addition,
like in the scheme proposed in [2] we added two new processes: a disputation process and a membership
proof process. Thanks to these processes, no one can cheat.
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