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We consider the problem of proving that each point in a given set of states (“target set”) can indeed be

reached by a given nondeterministic continuous-time dynamical system from some initial state. We

consider this problem for abstract continuous-time models that can be concretized as various kinds

of continuous and hybrid dynamical systems.

The approach to this problem proposed in this paper is based on finding a suitable superset S of

the target set which has the property that each partial trajectory of the system which lies entirely in S

either is defined as the initial time moment, or can be locally extended backward in time, or can be

locally modified in such a way that the resulting trajectory can be locally extended back in time.

This reformulation of the problem has a relatively simple logical expression and is convenient

for applying various local existence theorems and local dynamics analysis methods to proving reach-

ability which makes it suitable for reasoning about the behavior of continuous and hybrid dynamical

systems in proof assistants such as Mizar, Isabelle, etc.

1 Introduction

Real-time embedded and cyber-physical systems (CPS) [4, 13] are important types of artificial systems

that combine software and hardware and interact closely with external devices and the physical envi-

ronment. One of the important aspect of such systems is their dynamical behavior which depends on

the behavior of the physical environment with which they interact. Normally, the latter behavior of the

environment can be represented using the modeling notion of a global continuous (real) time, so on a cer-

tain level of abstraction it makes sense to model the dynamical behavior of an embedded/cyber-physical

system also in terms of a global continuous time. On other levels, more close to the software, one may

wish to focus on the discrete-continuous nature of this behavior and consider alternative time models that

are convenient in this case, like hybrid time (used in hybrid automata) [6], superdense time [13], non-

global time models, etc. Still continuous-time models play an important role in the definitions of various

classes of discrete-continuous (hybrid) models [6] and special kinds of hybrid models admit reformu-

lation in the form of certain kinds of well-known continuous-time models [6], one of the most general

among which are differential inclusions [2]. To illustrate this generality, ordinary differential equations

(x′(t) = f (x(t), t)), differential equations with discontinuous right-hand side (x′(t) = f (x(t), t), where

f is discontinuous, under various notions of solution like Carathéodory solution [5], Filippov solution

[5], etc.), implicit differential equations ( f (t,x(t),x′(t)) = 0), differential inequalities (x′(t)≥ f (x(t), t)),
certain hybrid dynamical systems [6], switched systems [14], etc. can be reformulated [15, p. 312] in

the form of a differential inclusion [2] x′(t) ∈ F(x(t), t), where F is a function from a subset of Rn+1

to 2R
n

. (Note, however, that a differential inclusion admits different notions of solution, e.g. ordinary

solution [3, 5], classical solution [3], g-solution [3], etc., and in the case of the mentioned reformulation,

different notions of solutions for an initial model correspond to different kinds of solutions of the result-

ing inclusion). Despite their generality, differential inclusions cannot be a common mathematical ground
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suitable for describing all dynamical aspects of embedded systems/CPS. One of the reasons is that they

are concrete models that cannot encompass abstractions of various elements of a system in a convenient

way. E.g., they require a specific structure of the state space in which their solutions/trajectories take

values (Rn or more general topological vector spaces). If one uses a differential inclusion to model the

behavior of a whole CPS, one is forced to assume that the state space of the CPS is e.g. Rn, encode the

states of various (software, hardware) layers from which a CPS consists in real vectors, and encode the

description of the behavior of software in derivative constraints. Such an encoding may be used, if it is

necessary for automatic analysis/verification of a system, but it is arguably unsuitable for the purpose of

specifying system behavior and reasoning about or refining system behavior specification.

For such purposes abstract continuous-time dynamical models are desirable (that do not impose

restrictions on the state space), that admit refinement to concrete dynamical models (e.g. those that can

be described by state transition systems, differential equations, switched systems, etc.) and have certain

general analysis principles and property proof principles that can be concretized after refinement. Such

abstract dynamical models can be found, e.g. in various variants of the mathematical systems theory (a

list of references can be found in [11]).

An abstract dynamical system model usually describes a set of abstract trajectories which are map-

pings from a time scale to an abstract state space. The behavior of a system is defined by the set of its

possible trajectories. In some cases, a class of abstract models can be described by stating axiomatically

the assumed properties of trajectories of its systems.

Following this approach, in [9, 11] we defined a class of abstract dynamical system models which

we called Nondeterministic Complete Markovian Systems (NCMS) which can be seen as a subclass of

O. Hájek solution systems [7, 8].

A NCMS is a triple (T,Q,Tr), where T is a time scale (which is assumed to be the real interval

[0,+∞)), Q is a nonempty set (state space), and Tr ⊆ (T→̃Q) is a set of partial functions from T to

Q which are called trajectories. To be a NCMS, by the definition the set Tr must satisfy 3 rather non-

restrictive properties (be closed under proper restrictions, be Markovian, and be complete in the sense

that each nonempty chain of trajectories in the sense of the subtrajectory relation must have a supremum

in Tr, see [12] for the details). The mentioned Markovian property in this case is not formally related to

the Markov processes in the probability theory, but has a rather similar idea: informally, it states that at

any time moment, the possible future evolution of the state of the system depends on its current state, but

not on the way by which the system reached it.

One can also view NCMS as a generalization of state transition systems to continuous time, since the

properties of Tr stated in the definition of NCMS are satisfied for transition systems, when interpreted

in terms of discrete time and transition system runs. By themselves NCMS describe evolutions of the

state of a system (trajectories). If necessary, it is also possible to associate “observable traces” with

trajectories (which are quantities that evolve with trajectories or are simply pointwise projections of

trajectories). After this association one gets an analog of a labeled transition system (LTS) in continuous

time. We call this analog a labeled NCMS. This notion is defined in [12].

Many concrete dynamical models are instances of NCMS [11, 9] (which are also examples of

O. Hájek’s solution systems), including models the behavior of which is described by classical and

Carátheodory solutions of ordinary differential equations, ordinary solutions of differential inequalities

and inclusions, switched systems, various hybrid dynamical systems.

The main feature of NCMS (not available for general O. Hájek’s solution systems) is that they admit

reduction of certain forms of analysis of their global-in-time behavior to analysis of their local-in-time

behavior (which can be done using methods depending on the means used to specify this behavior –

differential equations, inclusions, etc.; in all such cases the set of well-known local-in-time analysis
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methods is quite large, including solution approximation methods with guaranteed error bounds, etc.).

One example of this reduction is the method of proving the existence of global (i.e. defined on T )

trajectories which is based on proving the existence of some trajectories defined in a neighborhood of

each time moment described in [9].

Like in the case of other types of dynamical systems, one can study the behavior of a NCMS by

analyzing its reach set. A t-reach set is defined as the set of states which can be reached by a NCMS at

the time moments in [0, t] by following trajectories that start at the time moment 0. Reach sets can have

complex structure, so for system behavior analysis it is usually more useful to consider their under- and

over-approximations by well-behaved sets. One can consider this as a computational problem (compute

under- and over-approximations of the t-reach set), or as a decision problem (check if a given candidate

set is an under- or over-approximation of the t-reach set).

In this paper we focus on the latter case, and, moreover, focus on methods of proving that its answer

is affirmative. This view is useful when one considers applying interactive proof assistants such as Mizar

system, Isabelle, Coq, etc. to the verification of cyber-physical systems.

In this context, an obvious approach to proving that a given set A is an overapproximation of a t-reach

set is to show that it contains an invariant set (i.e. a set of states I such that each trajectory that starts in I

remains forever in I) which includes the set of initial states of a NCMS.

Consider the problem of proving that a given set A is an underapproximation of a t-reach set of

a NCMS. Below we propose an approach to this problem based on finding a suitable superset S of A

which has the property which, informally, means that that each partial trajectory of the system which

lies entirely in S either is defined as the initial time moment, or can be locally extended backward in

time, or can be locally modified in such a way that the resulting trajectory can be locally extended back

in time. This condition has a relatively simple logical expression and is convenient for applying a wide

range of local existence theorems and local dynamics analysis methods such as linearization of system’s

dynamics, various series expansions, approximations, singularity analysis to proving reachability. This

is important in the case of using proof assistants for verifying bounds of t-reach sets of continuous- or

discrete-continuous models. For an example of formalization of NCMS and related results in the proof

assistant Isabelle, we refer to [1].

2 Preliminaries

We will use the following notation: N = {1,2,3, ...} is the set of natural numbers; R is the set of real

numbers, R+ is the set of nonnegative real numbers, f : A → B is a total function from a set A to B;

f : A→̃B is a partial function from A to B, 2A is the power set of a set A, f |A is the restriction of a function

f to a set A. For a function f : A→̃B we will use the notation f (x) ↓ ( f (x) ↑) to denote that f (x) is

defined, or, respectively, is undefined on the argument x.

We will not distinguish the notions of a function and a functional binary relation. When we write

that a function f : A→̃B is total or surjective, we mean that f is total on the set A specifically ( f (x) is

defined for all x ∈ A), or, respectively, is onto B (for each y ∈ B there exists x ∈ A such that y = f (x)).

For any f : A→̃B denote dom( f ) = {x | f (x) ↓}, range( f ) = {y |∃x ∈ dom( f ) y = f (x)}. For any

partial functions f ,g the notation f (x) ∼= g(x) will mean the strong equality: f (x) ↓ if and only if g(x) ↓,

and f (x) ↓ implies f (x) = g(x). We will denote by f ◦g the functional composition: ( f ◦g)(x)∼= f (g(x))
and by f |A the restriction of a function f to a set A, i.e. a function defined on dom( f )∩A such that the

graph of f |A is a subset of the graph of f .

Denote by T the non-negative real time scale [0,+∞). We will assume that T is equipped with a
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topology induced by the standard topology on R.

The symbols ¬, ∨, ∧, ⇒, ⇔ will denote the logical operations of negation, disjunction, conjunction,

implication, and equivalence respectively.

Let us denote by T the set of all intervals in T (connected subsets) which have the cardinality greater

than one. Let Q be a set (a state space) and Tr be some set of functions of the form s : A → Q, where

A ∈ T. We will call the elements of Tr (partial) trajectories.

Definition 1 ([9, 10]) A set of trajectories Tr is closed under proper restrictions (CPR), if s|A ∈ Tr for

each s ∈ Tr and A ∈ T such that A ⊆ dom(s).

Let us introduce the following notation: if f ,g are partial functions, f ⊑ g means that the graph of f

is a subset of the graph of g, and f ⊏ g means that the graph of f is a proper subset of g.

Definition 2 Let s1,s2 ∈ Tr be trajectories. Then s1 is called a subtrajectory of s2, if s1 ⊑ s2.

The pair (Tr,⊑) is a possibly empty partially ordered set.

Definition 3 ([9, 10]) A CPR set of trajectories Tr is

(1) Markovian, if for each s1,s2 ∈ Tr and t0 ∈ T such that t0 = sup dom(s1) = infdom(s2), s1(t0) ↓,

s2(t0) ↓, and s1(t0) = s2(t0), the following function s belongs to Tr: s(t) = s1(t), if t ∈ dom(s1) and

s(t) = s2(t), if t ∈ dom(s2).

(2) complete, if each non-empty chain in (Tr,⊑) has a supremum.

Definition 4 ([9, 10]) A nondeterministic complete Markovian system (NCMS) is a triple (T,Q,Tr),
where Q is a set (called the state space) and Tr (called the set of trajectories) is a set of functions

s : T→̃Q such that dom(s) ∈ T, which is CPR, complete, and Markovian.

Examples of representation of sets of trajectories of well-known continuous and discrete-continuous

dynamical models such as ordinary differential equations, differential inclusions, switched systems, etc.

as can be found in [12, 9, 7, 8].

3 Main Result

Definition 5 Let I1, I2 ∈ T and s1 : I1 → Q, s2 : I2 → Q. Then s2 is called a backward extension of s1, if

s1 ⊏ s2 and t2 ≤ t1 for each (t1, t2) ∈ dom(s1)×dom(s2).

Definition 6 Let s1 : I1 → Q where I1 ∈ T.

Then a τ-backward escape from s1 at time d, where d is a non-maximal element of dom(s1), is a

function s2 : [c,d]→ Q for some c ∈ T , c < d such that τ = d − c and s2(d) = s1(d).

Definition 7 A trajectory s ∈ Tr of a NCMS (T,Q,Tr) is called

• initial, if s(0) ↓ (i.e. s is defined at the initial time moment 0);

• S-valued, where S is a set, if range(s) ⊆ S.

Definition 8 Let Σ = (T,Q,Tr) be a NCMS and t0 ∈ (0,+∞).

• The t0-reach set of Σ is the set

{q ∈ Q | ∃s ∈ Tr0 ∃t ∈ dom(s)∩ [0, t0] q = s(t)},

where Tr0 is the set of all initial trajectories of Σ (i.e. the set of states that are attained at some

time in [0, t0] by some initial trajectory).
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• An underapproximation of a t0-reach set of Σ is a subset of the t0-reach set of Σ.

• The t0-right range set of Σ is the set

{q ∈ Q | ∃s ∈ Tr : dom(s)⊆ [0, t0]∧maxdom(s) ↓ ∧q = s(maxdom(s))}

(i.e. the set of states that are attainted at the right end of some trajectory defined within [0, t0], but

not necessarily an initial trajectory).

• Σ is f -backward extensible, where f : R+ →R+ is a function of class K (i.e. a continuous, strictly

increasing function such that f (0) = 0), if for each s ∈ Tr at least one of the following holds:

a) s is an initial trajectory;

b) there exists s′ ∈ Tr such that s′ is a backward extension of s;

c) dom(s) has no minimum element and there exists s′ ∈ Tr, t ∈ T – a non-maximal element of

dom(s), and τ ≥ f (t − infdom(s)) such that s′ is a τ-backward escape from s at time t.

• A sub-NCMS of Σ is a NCMS Σ = (T,Q′,Tr′) such that Q ⊆ Q′, Tr ⊆ Tr′.

Theorem 1 Let f : R+ → R+ be a function of class K, Σ be a NCMS, t0 ∈ (0,+∞), A ⊆ Q.

Then A is an underapproximation of the t0-reach set of Σ

if and only if A is a subset of the t0-right range set of some f -backward extensible sub-NCMS of Σ.

Proof. We will use the terminology of [9, 12, 11].

“If” The idea is to apply the method of proving the existence of infinite-in-time trajectories of NCMS

described in [9], but in reversed time and to show that locally defined trajectories that end in A

can be continued backward all the way until the initial time moment using left (time revered)

extensibility measures [12]. Let A be a subset of the t0-right range set of Σ
′ = (T,Q′,Tr′), where

Σ
′ is a f -backward extensible sub-NCMS of Σ. Let f−(a,b) = a− f (a−b). From the conditions

of the f -backward extensible NCMS it follows that Σ
′ satisfies the local backward extensibility

property and each left dead-end path in Σ
′ is f−-escapable. Then by the theorem about the left-

dead end path (a time reversal of the theorem about the right-dead end path as formulated in [12]),

each left dead-end path in Σ
′ is strongly escapable.

Let q ∈ A. Then q = s(maxdom(s)) for some s ∈ Tr′ such that dom(s) ⊆ [0, t0]. Denote b =
maxdom(s). Then s ∈ Tr. If s is an initial trajectory or is a subtrajectory of an initial trajectory of

Σ
′, then q is attained by an initial trajectory of Σ at a time in [0, t0], so q is in the t0-reach set of Σ.

Assume the contrary, i.e. s is not a subtrajectory of an initial trajectory of Σ
′. Suppose that there

exists a trajectory of Σ
′ which is a backward extension of s. Then the completeness property of

NCMS implies that Tr′ contains a maximal (in the sense of the subtrajectory relation ⊑) backward

extension of s (among backward extensions of s in Tr′). Denote it as s′. Then s′ cannot be an initial

trajectory, since otherwise s would be a subtrajectory of an initial trajectory of Σ
′. Also, s′ has no

backward extension in Tr′. Since Σ
′ is f -backward extensible, dom(s′) does not have a minimal

element. Then dom(s′) = (a,b] for some a ∈ T such that a < b. Then s′ is a left dead-end path

and it is strongly escapable. Moreover, q = s′(b) and b ≤ t0. This implies that q is attained by an

initial trajectory of Σ at some time in [0, t0], so q belongs to the t0-reach set of Σ.

Suppose that there is no trajectory of Σ
′ which is a backward extension of s. Also s is not an initial

trajectory. Since Σ
′ is f -backward extensible, dom(s) does not have a minimal element. Then s is

a left dead-end path in Σ
′ and it is strongly escapable. Moreover, q = s(b) and b ≤ t0. This implies

that q is attained by an initial trajectory of Σ at some time in [0, t0], so q is in the t0-reach set of Σ.
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“Only if” Let A be a subset of the t0-reach set of Σ. Let Tr0 be the set of initial trajectories of Σ,

Tr′ = {s′ : I → Q | I ∈ T∧∃s ∈ Tr0 s′ = s|I}, and Σ
′ = (T,Q,Tr′). It is easy to see that Tr′

is CPR, Markovian, and complete (in the sense of Definition 3), so Σ
′ is a NCMS. Moreover, it

is a sub-NCMS of Σ, and is f -backward extensible, since each non-initial trajectory of Σ
′ has a

backward extension in Tr′. Moreover, for each initial trajectory s of Σ, s|[0,t0 ] is a trajectory with

the domain in [0, t0] and by the CPR property of the NCMS, its range is attainted at the right ends

of trajectories of Σ
′ defined within [0, t0], so A is a subset of the t0-right range set of Σ

′. Thus A is

a subset of the t0-right range set of Σ
′, a f -backward extensible sub-NCMS of Σ.

An obvious way of obtaining a sub-NCMS of a NCMS Σ is restricting the state space of Σ. More

specifically, it is easy to check that if S ⊆ Q and TrS is the set of all S-valued trajectories of Σ, then

ΣS = (T,S,TrS) is a sub-NCMS of Σ. This implies the above-mentioned approach to proving that a given

set A is an underapproximation of a t0-reach set of a NCMS: to prove this it is sufficient to choose a

function f of class K and find/guess a superset S of A which has the property that A is a subset of the

t0-right range set of ΣS and ΣS is f -backward extensible.

References

[1] https://code.google.com/archive/p/isabelle-behavioral-approach/downloads.

[2] Jean-Pierre Aubin (2009): Viability Theory. Springer Nature, doi:10.1007/978-0-8176-4910-4.

[3] A. Bacciotti (2005): Generalized solutions of differential inclusions and stability. Ital. J. Pure Appl. Math,

pp. 183–192.

[4] R. Baheti & H. Gill (2011): Cyber-physical systems. The Impact of Control Technology, pp. 161–166.

[5] A. F. Filippov (1988): Differential Equations with Discontinuous Righthand Sides. Springer Netherlands,

doi:10.1007/978-94-015-7793-9.

[6] R. Goebel, R. G. Sanfelice & A. Teel (2009): Hybrid dynamical systems. Control Systems, IEEE 29(2), pp.

28–93, doi:10.1109/MCS.2008.931718.
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