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We propose a validity preserving translation from a subset of epistemic Alternating-time Temporal
Logic (ATL) to epistemic Computation Tree Logic (CTL). The considered subset of epistemicATL is
known to have the finite model property and decidable model-checking. This entails the decidability
of validity but the implied algorithm is unfeasible. Reducing the validity problem to that in a corre-
sponding system ofCTL makes the techniques for automated deduction for that logicavailable for
the handling of the apparently more complex system ofATL.

Introduction

The strategic cooperation modalities ofalternating time temporal logic(ATL, [AHK97, AHK02]) gen-
eralize the path quantifier∀ of computation tree logic(CTL). Combinations ofATL with modal logics
of knowledge [vdHW03, JvdH04] extend temporal logics of knowledge (cf. e.g [FHMV95]) in the way
ATL extendsCTL. Automated deduction forCTL and linear time epistemic temporal logics has been
studied extensively [FDP01, BDF99, GS09a, GS09b]. There ismuch less work on the topic forATL, and
hardly any for its epistemic extensions. The decidability of validity in ATL with complete information
was established in [GvD06] as a consequence of thefinite model property, where the completeness of a
Hilbert-style proof system was given too. Hilbert-style proof systems are known to be unsuitable for au-
tomating proof search. The situation was remedied by a tableau-based decision procedure developed in
[GS09c]. Along with that, the same authors developed tableau systems for branching epistemic temporal
logics in [GS09b]. Temporal resolution (cf. e.g. [FDP01]),which is well understood for linear time
logics and their epistemic extensions, was considered forATL in [Zha10], but only for the〈〈.〉〉◦-subset,
which is similar tocoalition logic [Pau02] and enables only reasoning about a fixed number of steps. To
our knowledge, no similar work has been done for systems epistemicATL.

In this paper we continue the study [GDE11] of a system ofATL with the operator of distributed
knowledge under the perfect recall assumption. In [GDE11] we established the finite model property for
a subset, and a model-checking algorithm for the whole system. That algorithm assumed that coalition
members can use the distributed knowledge of their coalitions to guide their actions. Dropping that
assumption is known to render model-checking undecidable [DT11]. As expected, the validity-checking
algorithm which these results imply is unfeasible.

In this paper we propose a validity preserving translation from another subset of that logic into epis-
temicCTL, with distributed knowledge and perfect recall again. As itbecomes clear below, the need to
consider a subset appears to be due to the lack of connectivesin epistemicCTL to capture some interac-
tions between knowledge and the progress of time. The translation makes no assumption on coordination
within coalitions and there is no dependence on the availability of the past temporal modalities which
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82 Reducing Validity in Epistemic ATL

are featured in the axiomatization from [GDE11]. A semanticassumption that we keep isfinite branch-
ing: only finitely many states should be reachable in one step from any state and models should have
only finitely many initial states. Dropping that assumptionwould disable the fixpoint characterization of
(.U.)-objectives that we exploit, because of the requirement on strategies to be uniform. The translation
enables the use of the known techniques for mechanized proofin the apparently simpler logicCTL and
its epistemic extensions [BF99, GS09b]. Building on our previous work [GDE11], we work with the
semantics ofATLon interpreted systemsin their form adopted in [LR06].

1 Preliminaries

1.1 Propositional epistemicATL with perfect recall (ATLD
iR)

The syntax ofATLD
iR formulas can be given by the BNF

ϕ ,ψ ::= ⊥ | p | (ϕ ⇒ ψ) | DΓϕ | 〈〈Γ〉〉 ◦ϕ | 〈〈Γ〉〉(ϕUψ) | [[Γ]](ϕUψ)

Here Γ ranges over finite sets of agents, andp ranges over propositional variables. In this paper we
exclude the past temporal operators as their presence does not affect the working of our translation.

An interpreted systemis defined with respect to some given finite setΣ = {1, . . . ,N} of agents, and a
set ofpropositional variables(atomic propositions) AP. There is also anenvironment e6∈ Σ; in the sequel
we writeΣe for Σ∪{e}.

Definition 1 (interpreted systems) An interpreted systemfor Σ andAP is a tuple of the form

〈〈Li : i ∈ Σe〉, I ,〈Acti : i ∈ Σe〉, t,V〉 (1)

where:
Li, i ∈ Σe, are nonempty sets oflocal states; LΓ stands for∏

i∈Γ
Li, Γ ⊆ Σe;

elements ofLΣe are calledglobal states;
I ⊆ LΣe is a nonempty set ofinitial global states;
Acti , i ∈ Σe, are nonempty sets ofactions; ActΓ stands for∏

i∈Γ
Acti;

t : LΣe ×ActΣe → LΣe is a transition function;
V ⊆ LΣe ×AP is a valuation of the atomic propositions.

For everyi ∈ Σe andl ′, l ′′ ∈ LΣe such thatl ′i = l ′′i andl ′e = l ′′e the functiont satisfies(t(l ′,a))i = (t(l ′′,a))i .

In the literature an interpreted system also includes aprotocol to specify the actions which are permit-
ted at every particular state. Protocols are not essential to our study here as the effect of a prohibited
action can be set to that of some fixed permitted action (whichis always supposed to exist) to produce
an equivalent system in which all actions are always permitted. Our variant of interpreted systems is
borrowed from [LR06] and has a technically convenient feature which is not present in other works
[FHMV95, LQR]: every agent’s next local state can be directlty affected by the local state of the envi-
ronment through the transition function. Here follow the technical notions that are relevant to satisfaction
of ATL formulas on interpreted systems.

Definition 2 (global runs and local runs) Given ann≤ ω , a run of length nis a sequence

r = l0a0l10a1 . . . ∈ LΣe(ActΣeLΣe)
n

such thatl0 ∈ I andl j+1 = t(l j ,a j) for all j < n. A run is infinite, if n= ω ; otherwise it isfinite. In either
case we write|r| for the length nof r. (Note that a run of lengthn< ω is indeed a sequence of 2n+1
states and actions.)
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Givenr as above andΓ ⊆ Σ, we writerΓ for the correspondinglocal run

l0
Γa0

Γ . . .a
n−1
Γ ln

Γ ∈ LΓ(ActΓLΓ)
n

of Γ in which l j
Γ = 〈l j

i : i ∈ Γ〉 anda j
Γ = 〈a j

i : i ∈ Γ〉.
We denote the set of all runs of some fixed lengthn≤ ω , the set of all finite runs, and the set of all

runs inIS by Rn(IS), Rfin(IS) andR(IS), respectively.
Given i, j < ω and anr as above such thati ≤ j ≤ |r|, we writer[i.. j] for l iai . . .a j−1l j .

Definition 3 (indiscernibility) Given r ′, r ′′ ∈ R(IS) and i ≤ |r ′|, |r ′′|, we write r ′ ∼Γ,i r ′′ if r ′[0..i]Γ =
r ′′[0..i]Γ. We writer ′ ∼Γ r ′′ for the conjunction ofr ′ ∼Γ,|r ′| r ′′ and|r ′|= |r ′′|.

Sequences of the formr /0 consist of〈〉s, and, consequently,[r] /0 is the class of all the runs of length|r|.
Obviously∼Γ,n and∼Γ are equivalence relations onR(IS).

Definition 4 We denote{r ′ ∈ R(IS) : r ′ ∼Γ r} by [r]Γ.

Definition 5 (coalition strategies) A strategyfor Γ ⊆ Σ is a vectors= 〈si : i ∈ Γ〉 of functionssi of
type{r i : r ∈ Rfin(IS)} → Acti. We writeS(Γ, IS) for the set of all the strategies forΓ in the considered
interpreted systemIS. Givens∈ S(Γ, IS) andr ∈ Rfin(IS), we write out(r,s) for the set

{r ′ = l0a0 . . .an−1ln . . . ∈ Rω(IS) : r ′[0..|r|] = r,a j
i = si(r[0.. j]Γ) for all i ∈ Γ and j ≥ |r|}.

of theoutcomesof r whenΓ sticks tos from step|r| on. Given anX ⊆ Rfin(IS), out(X,s) is
⋃

r∈X
out(r,s).

Strategies, as defined above, are determined by the local views of the considered coalition members and
are thereforeuniform.

Definition 6 (modelling relation of ATLD
iR) The relationIS, r |= ϕ is defined forr ∈ Rfin(IS) and formu-

lasϕ by the clauses:
IS, r 6|=⊥;
IS, l0a0 . . .an−1ln |= p iff V(ln, p) for atomic propositionsp;
IS, r |= ϕ ⇒ ψ iff either IS, r 6|= ϕ or IS, r |= ψ ;
IS, r |= DΓϕ iff IS, r ′ |= ϕ for all r ′ ∈ [r]Γ;
IS, r |= 〈〈Γ〉〉 ◦ϕ iff there exists ans∈ S(Γ, IS) such that

IS, r ′[0..|r|+1] |= ϕ for all r ′ ∈ out([r]Γ,s);
IS, r |= 〈〈Γ〉〉(ϕUψ) iff there exists ans∈ S(Γ, IS) s. t. for everyr ′ ∈ out([r]Γ,s) there exists

a k< ω s. t. IS, r ′[0..|r|+ i] |= ϕ for all i < k andIS, r ′[0..|r|+k] |= ψ ;
IS, r |= [[Γ]](ϕUψ) iff for every s∈ S(Γ, IS) there exist anr ′ ∈ out([r]Γ,s) and ak< ω s. t.

IS, r ′[0..|r|+ i] |= ϕ for all i < k andIS, r ′[0..|r|+k] |= ψ .
Validity of formulas in entire interpreted systems and on the class of all interpreted systems, that is, in
the logicATLD

iR, is defined as satisfaction at all 0-length runs in the considered interpreted system, and at
all the 0-length runs in all the systems in the considered class, respectively.

In this paper we assume that each coalition member uses only its own observation power in following a
coalition strategy. Allowing coalition members to share their observations gives rise to a more general
form of strategy, which are functions of type{rΓ : r ∈ Rfin(IS)} → ActΓ, and which was assumed by the
model-checkig algorithm proposed in [GDE11].
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Abbreviations

⊤, ¬, ∨, ∧ and⇔ have their usual meanings. To keep the use of( and) down, we assume that unary
connectives bind the strongest, the binary modalities〈〈Γ〉〉(.U.) and[[Γ]](.U.), and the derived ones below,
bind the weakest, and their parentheses are never omitted, and the binary boolean connectives come in
the middle, in decreasing order of their binding power as follows: ∧, ∨, ⇒ and⇔. We enumerate
coalitions without the{ and}. E.g., the shortest way to write〈〈{1}〉〉(((p⇒ q)∧P{1}r)UD{2,3}(r ∨q)))
is 〈〈1〉〉((p⇒ q)∧P1rUD2,3(r ∨q)). We writeP for the dual ofD:

PΓϕ ⇋ ¬DΓ¬ϕ .

The rest of the combinations of the cooperation modality andfuture temporal connectives are defined by
the clauses

〈〈Γ〉〉✸ϕ ⇋ 〈〈Γ〉〉(⊤Uϕ) 〈〈Γ〉〉✷ϕ ⇋ ¬[[Γ]]✸¬ϕ 〈〈Γ〉〉(ϕWψ)⇋ ¬[[Γ]](¬ψU¬ψ ∧¬ϕ)
[[Γ]]✸ϕ ⇋ [[Γ]](⊤Uϕ) [[Γ]]✷ϕ ⇋ ¬〈〈Γ〉〉✸¬ϕ [[Γ]](ϕWψ)⇋ ¬〈〈Γ〉〉(¬ψU¬ψ ∧¬ϕ)

1.2 ATLD
iR with epistemic objectives only

In [GDE11] we axiomatized a subset ofATLD
iR with past in which〈〈.〉〉(.U.) was allowed only in the

derived construct〈〈Γ〉〉✸DΓϕ , and[[.]](.U.) was allowed only in the derived construct〈〈Γ〉〉✷ϕ . Because
of the validity of the equivalences

〈〈Γ〉〉 ◦ϕ ⇔ 〈〈Γ〉〉 ◦DΓϕ and〈〈Γ〉〉✷ϕ ⇔ 〈〈Γ〉〉✷DΓϕ ,

that entailed that all the objectives allowed in that subsetwere epistemic. We argued that, under some
assumptions, any〈〈.〉〉(.U.) formula could be transformed into an equivalent one of the form 〈〈Γ〉〉✸DΓϕ
thus asserting the significance of the considered subset. Both the axiomatization and the reduction to
epistemic goals relied on the presence of the past operators. In this paper we consider another subset of
ATLD

iR. Its formulas have the syntax

ϕ ,ψ ::= ⊥ | p | (ϕ ⇒ ψ) | DΓϕ | 〈〈Γ〉〉 ◦ϕ | 〈〈Γ〉〉(DΓϕUDΓψ) (2)

Unlike the subset from [GDE11], here we allow formulas of theform 〈〈Γ〉〉(DΓϕUDΓψ). However, we
exclude even the special case〈〈Γ〉〉✷ϕ of the use of[[Γ]](PΓϕUPΓψ). The reasons are discussed in the
end of Section 2.

1.3 CTL with distributed knowledge

This is the target logic of our translation. Its formulas have the syntax

ϕ ,ψ ::= ⊥ | p | (ϕ ⇒ ψ) | DΓϕ | ∃ ◦ϕ | ∃(ϕUψ) | ∀(ϕUψ)

whereΓ ranges over finite sets of agents as above. The clauses for thesemantics of the connectives in
common withATLD

iR are as inATLD
iR; the clauses about formulas built using∃ and∀ are as follows:

IS, r |= ∃◦ϕ iff there exists anr ′ ∈ R|r |+1(IS) such thatr = r ′[0..|r|] andIS, r ′ |= ϕ ;
IS, r |= ∃(ϕUψ) iff there exists anr ′ ∈ Rω(IS) such thatr = r ′[0..|r|] and ak< ω

such thatIS, r ′[0..|r|+ i] |= ϕ for all i < k andIS, r ′[0..|r|+k] |= ψ ;
IS, r |= ∀(ϕUψ) iff for every r ′ ∈ Rω(IS) such thatr = r ′[0..|r|] there exists ak< ω such that

IS, r ′[0..|r|+ i] |= ϕ for all i < k andIS, r ′[0..|r|+k] |= ψ .
Note that the the occurrences ofD /0 is vital for the validity of the equivalences

P /0∃◦ϕ ⇔ [[ /0]]◦ϕ , P /0∃(ϕUψ)⇔ [[ /0]](ϕUψ) andD /0∀(ϕUψ)⇔ 〈〈 /0〉〉(ϕUψ).
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in the combined language ofATLD
iR andCTLbecause of the requirement on strategies to be uniform; e.g.,

〈〈 /0〉〉(ϕUψ) means that(ϕUψ) holds along all the extensions of all the runswhich are indiscernible from
the reference run to the empty coalition.Therefore here〈〈 /0〉〉 does not subsume∀ in the straightforward
way known about the caseATLof complete information.

The combination∀◦ and the combinations of∃ and∀ with the derived temporal connectives(.W.),
✸ and✷ are defined in the usual way.

2 A validity preserving translation into CTL+D with perfect recall

Our translation captures the subset ofATLwhich is given by the BNF

ϕ ,ψ ::= ⊥ | p | (ϕ ⇒ ψ) | ⊖ϕ | (ϕSψ) | DΓϕ | 〈〈Γ〉〉 ◦ϕ | 〈〈Γ〉〉(DΓϕUDΓψ)

We explain how to eliminate occurrences of〈〈.〉〉 in formulas of the form〈〈Γ〉〉(DΓϕUDΓψ) first. In the
sequel we write[α/p]β for the substitution of the occurrences of atomic proposition p in β by α .

Proposition 7 Assuming that p and q are fresh atomic propositions, the satisfiability of
[〈〈Γ〉〉(DΓϕUDΓψ)/p]χ (at a0-length run) is equivalent to the satisfiability of

χ ∧ D /0∀✷(p∨q⇒ DΓψ ∨ (DΓϕ ∧〈〈Γ〉〉 ◦q))
∧ D /0∀✷(p⇔ DΓψ ∨ (DΓϕ ∧〈〈Γ〉〉 ◦ p))
∧ D /0∀✷(p⇒ DΓψ ∨ (DΓϕ ∧∀◦∀(q⇒ DΓϕUq⇒ DΓψ))).

(3)

Next we explain how to eliminate occurrences of the ”basic”ATLconstruct〈〈Γ〉〉◦ϕ . Let ISstand for
some arbitrary interpreted system (1) with finite branching, with Σ = {1, . . . ,N} as its set of agents,AP
as its vocabulary. We adapt the following simple observation, which works in caseActi, i ∈ Σ are fixed.
Readers who are familiar with the original semantics ofATL on alternating transition systems(ATS)
from [AHK97] will recognize the similarity of our techniquewith the transformation ofconcurrent
game structuresinto equivalentATSfrom [GJ04]. Assuming thatActi , i ∈ Σe, are pairwise disjoint, and
disjoint withAP, we consider the vocabularyAPAct = AP∪

⋃

i∈Σe

Acti .

Definition 8 GivenIS and∗ 6∈
⋃

i∈Σe

Acti , we define the interpreted system

ISAct = 〈〈LAct
i : i ∈ Σe〉, I

Act,〈Acti : i ∈ Σe〉, t
Act,VAct〉

by putting:

LAct
i = Li × (Acti ∪{∗}), i ∈ Σe;

IAct = {〈〈l i ,∗〉 : i ∈ Σe〉 : l ∈ I};
tAct(〈〈l i ,ai〉 : i ∈ Σe〉,b) = 〈〈(t(l ,b))i ,bi〉 : i ∈ Σe〉;
VAct(〈〈l i ,ai〉 : i ∈ Σe〉, p) ↔ V(〈l i , : i ∈ Σe〉, p) for p∈ AP;
VAct(〈〈l i ,ai〉 : i ∈ Σe〉,b) ↔ b= a j for b∈ Actj , j ∈ Σe.

In short, anISAct state is anIS state augmented with a record of the actions which lead to it,the dummy
symbol∗ being used in initial states. LetR⊆ LAct

Σe
×LAct

Σe
andR(〈〈l i ,ai〉 : i ∈ Σe〉,〈〈vi ,bi〉 : i ∈ Σe〉) iff v=

tAct(l ,b). ThenISAct, r |= ∃ ◦ϕ iff ISAct, ra l ′ |= ϕ for somel ′ ∈ R(l) and the onlya ∈ ActΣe such that
ra l ′ ∈ Rfin(ISAct). The key observation in our approach is that

IS, r |= 〈〈i1, . . . , ik〉〉 ◦ϕ iff ISAct, rAct |=
∨

ai1∈Acti1

. . .
∨

aik∈Actik

D{i1,...,ik}∀◦

(

k
∧

j=1

ai j ⇒ ϕ

)

(4)
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For this observation to work without refering to the actionsin the particular interpreted system, given
an arbitraryIS, we enrich it with dedicated actions which are linked to the objectives occurring in the
considered formula. We define the transition function on these actions so that if a particular◦ϕ-objective
can be achieved at finite runr at all, then it can be achieved by taking the corresponding dedicated actions
at the last state ofr. This can be achieved in forest-like systems where runs can be determined from their
final states. Similarly, we introduce express actions for the environment that enable it to foil objectives at
states at which they objectives cannot be achieved by the respective coalitions using any strategy based
on the original actions. (Giving the environment such powers does not affect the satisfaction of formulas
as it never participates in coalitions.) The setsActi , i ∈ Σe of atomic propositions by which we model
actions satisfy the formula

A(Act1, . . . ,ActN,Acte)⇋
∧

a1∈Act1

. . .
∧

aN∈ActN

∧

ae∈Acte

∃◦
∧

i∈Σe

ai ,

which states that any vector of actions fromActΣe produces a transition. Consider anATLD
iR formula of

the form below with no occurrences of(.U.)-objectives:

χ ∧D /0∀✷A(Act1, . . . ,ActN,Acte) (5)

Here Act1, . . . ,ActN,Acte consist of the atomic propositions which have been introduced to eliminate
〈〈Γ〉〉 ◦ϕ-subformulas so far. For the originalχ we assumeActi = {nopi}, i ∈ Σe, wherenopi have no
specified effect. We remove the occurrences of〈〈Γ〉〉◦ϕ-subformulas inχ working bottom-up as follows.

Proposition 9 LetaΓ,i,ϕ , i ∈ Γ∪{e}, be fresh atomic propositions, Act′
i = Acti ∪{aΓ,i,ϕ} for i ∈ Γ∪{e}

and Act′i = Acti for i ∈ Σ\Γ. Then the satisfiability of

[〈〈Γ〉〉 ◦ϕ/p]χ ∧D /0∀✷A(Act1, . . . ,ActN,Acte) (6)

entails the satisfiability of the formula
[

DΓ∀◦

(

∧

i∈Γ
aΓ,i,ϕ ⇒ ϕ

)

/p

]

χ∧

D /0∀✷

(

DΓ∀◦

(

∧

i∈Γ
aΓ,i,ϕ ⇒ ϕ

)

∨PΓ∀◦ (aΓ,e,ϕ ⇒¬ϕ)

)

∧

D /0∀✷A(Act′1, . . . ,Act′N,Act′e).

(7)

The above proposition shows how to eliminate one by one all the occurrences of the cooperation modal-
ities in an any givenATLD

iR formulaχ with the cooperation modalities appearing only in subformulas of
the form〈〈Γ〉〉 ◦ϕ and obtain aCTL+D formulaχ ′ such that ifχ is satisfiable, then so isχ ′. Now con-
sider a purely-CTL+D formula of the form (5). The satisfaction of (5) requires just a transition relation
for the passage of time to define as it contains no〈〈Γ〉〉s and hence no reference to actions. That is, we
assume a satisfying model of the form

IS− = 〈〈Li : i ∈ Σe〉, I ,−,V〉 (8)

whereLi , i ∈ Σe, I andV are as in interpreted systems, and− is a serial binary relation on the set of
the global statesLΣe that represents the passage of time. We define the remaining interpreted system
components as follows. We choose the set of actions of each agent i, including the environment, to be
the corresponding set of atomic propositionsActi from (5). For anya∈ ActΣe and anyl ∈ LΣe we choose
t(l ,a) to be an arbitrary member of−(l)∩

⋂

i∈Σe

{l ′ ∈ LΣe : V(l ′,ai)}. The nonemptiness of the latter set is

guaranteed by the validity ofA(Act1, . . . ,ActN,Acte) in IS−, which states that every state has a successor
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satisfying the conjunction
∧

i∈Σe

ai for any given vector of actionsa∈ ActΣe. Let IS stand for the system

obtained by this definition ofActi , i ∈ Σe, andt. It remains to show that

IS, r |=DΓ∀◦

(

∧

i∈Γ
aΓ,i,ϕ ⇒ ϕ

)

(9)

is equivalent toIS, r |= 〈〈Γ〉〉 ◦ϕ for any subformula〈〈Γ〉〉 ◦ϕ eliminated in the process of obtaining (5).
For the forward direction, establishing that the actionsaΓ,i,ϕ , i ∈ Γ providesΓ with a strategy to achieveϕ
in one step is easily done by a direct check. For the converse direction, if (9) is false, then the validity of
the second conjunctive member of (7) entails thatΓ cannot rule out the possibility that the environment
can enforce¬ϕ in one step by choosing its corresponding actionaΓ,e,ϕ .

Formulas of the form [[Γ]](PΓϕUPΓψ)

We first note that no restriction on formulas of the respective more general form[[Γ]](ϕUψ) is necessary
in the case of complete information.

Proposition 10 (eliminating [[Γ]](ϕUψ) in ATLwith complete information) Let p and q be some fresh
atomic propositions. The satisfiability of

[[[Γ]](ϕUψ)/p]χ

in ATL with complete information is equivalent to the satisfiability of

χ ∧ ∀✷(p∨q⇒ ψ ∨ (ϕ ∧ [[Γ]]◦q))
∧ ∀✷(p⇔ ψ ∨ (ϕ ∧ [[Γ]]◦ p))
∧ ∀✷(p⇒ ψ ∨ (ϕ ∧∀◦∀(q⇒ ϕUq⇒ ψ))).

(10)

In the incomplete information case our approach suggests replacing[[[Γ]](PΓϕUPΓψ)/p]χ by

χ ∧ D /0∀✷(p∨q⇒ PΓψ ∨ (PΓϕ ∧ [[Γ]]◦q))
∧ D /0∀✷(p⇔ PΓψ ∨ (PΓϕ ∧ [[Γ]]◦ p))
∧ D /0∀✷(p⇒ PΓψ ∨ (PΓϕ ∧ . . .)).

where, in a forest-like systemIS, q is supposed to mark states which are reached from runsr in which Γ
cannot achieve(PΓϕUPΓψ) whenΓ’s actionsa are complemented on behalf of the non-members ofΓ
by some actionsba1,r1 that foil the objective, and. . . is supposed to express that any sequence of vectors
of actionsa1,a2, . . . ∈ ActΓ when complemented by the correspondingba1,r1, ba2,r2, . . . can generate a
sequencer1, r2, . . . of finite runs, starting with the reference one, each of them being Γ-indiscernible
from the extension of the previous one, by the outcome of the respectiveak ·bak,rk, such that there exists a
k< ω with IS, r j |= q∧DΓϕ , j = 1, . . . ,k−1, andIS, rk |= ¬q∨DΓψ . The fixpoint construct that would
best serve expressing this condition can be written asµX.α ∨ (β ∧PΓ∀◦X) in the modalµ-calculus (cf.
e.g. [BS06]). Finding a substitute for it inCTL+D appears problematic.

Concluding remarks

Our approach is inspired by temporal resolution [FDP01], which has been extended to epistemicLTL
[DFW98] and to (non-epistemic)CTL andCTL∗ [BF99, BDF99], the latter system being the closest to
our target systemCTL+D. Following the example of these works, a resolution system for CTL+D

could be proved complete by showing how to reproduce in it anyproof in some complete, e.g., Hilbert
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style proof system. A complete axiomatization for epistemic CTL∗ with perfect recall can be found in
[vdMK03], but the completeness was demonstrated with respect to the so-calledbundlesemantics, where
a model may consist of some set of runs that need not be all the runs generated by a transition system.
and the form of collective knowledge considered in [vdMK03]is common knowledge, whereas we have
distributed knowledge. The setting for the complexity results from [HV86] is similar. The tableau-based
decision procedure for epistemicCTLwith both common and distributed knowledge from [GS09b] does
not cover the case of perfect recall. To the best of our knowledge no decision procedure of feasible
complexity such as the resolution- and tableau-based ones that are available for so many closely related
systems from the above works has been developed yet for validity in CTL+D with perfect recall.
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