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Université de Mons

Belgium

Emmanuel Filiot
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When reasoning about the strategic capabilities of an agent, it is important to consider the nature of
its adversaries. In the particular context of controller synthesis for quantitative specifications, the
usual problem is to devise a strategy for a reactive system which yields some desired performance,
taking into account the possible impact of the environment of the system. There are at least two
ways to look at this environment. In the classical analysis of two-player quantitative games, the
environment is purely antagonistic and the problem is to provide strict performance guarantees. In
Markov decision processes, the environment is seen as purely stochastic: the aim is then to optimize
the expected payoff, with no guarantee on individual outcomes.

In this expository work, we report on recent results [10, 9] introducing the beyond worst-case
synthesis problem, which is to construct strategies that guarantee some quantitative requirement in
the worst-case while providing an higher expected value against a particular stochastic model of the
environment given as input. This problem is relevant to produce system controllers that provide nice
expected performance in the everyday situation while ensuring a strict (but relaxed) performance
threshold even in the event of very bad (while unlikely) circumstances. It has been studied for both
the mean-payoff and the shortest path quantitative measures.

1 Introduction

Classical models. Two-player zero-sum quantitative games [17, 31, 8] and Markov decision processes
(MDPs) [27, 11] are two popular formalisms for modeling decision making in adversarial and uncertain
environments respectively. In the former, two players compete with opposite goals (zero-sum), and we
want strategies for player 1 (the system) that ensure a given minimal performance against all possible
strategies of player 2 (its environment). In the latter, the system plays against a stochastic model of
its environment, and we want strategies that ensure a good expected overall performance. Those two
models are well studied and simple optimal memoryless strategies exist for classical objectives such as
mean-payoff [25, 17, 18] or shortest path [4, 2]. But both models have clear weaknesses: strategies that
are good for the worst-case may exhibit suboptimal behaviors in probable situations while strategies that
are good for the expectation may be terrible in some unlikely but possible situations.

What if we want both? In practice, we want strategies that both ensure (a) some worst-case threshold no
matter how the adversary behaves (i.e., against any arbitrary strategy) and (b) a good expectation against
the expected behavior of the adversary (given as a stochastic model). We study how to construct such
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2 Expectations or Guarantees? I Want It All!

finite-memory strategies. We consider finite memory for player 1 as it can be implemented in practice
(as opposed to infinite memory). Player 2 is not restricted in his choice of strategies, but we show that
simple strategies suffice. Our problem, the beyond worst-case synthesis problem, makes sense for any
quantitative measure. We focus on two classical ones: the mean-payoff, and the shortest path. Our results
are summarized in Table 1.

worst-case expected value BWC

mean-payoff
complexity NP∩ coNP P NP∩ coNP

memory memoryless pseudo-poly.

shortest path
complexity P pseudo-poly. / NP-hard

memory memoryless pseudo-poly.

Table 1: Overview of decision problem complexities and memory requirements for winning strategies of
the first player in games (worst-case), MDPs (expected value) and the BWC setting (combination).
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Figure 1: Player 1 wants to minimize its ex-
pected time to reach “work”, but while ensuring
it is less than an hour in all cases.

Example. Consider the weighted game in Fig. 1 to
illustrate the shortest path context. Circle states be-
long to player 1, square states to player 2, integer la-
bels are durations in minutes, and fractions are prob-
abilities that model the expected behavior of player 2.
Player 1 wants a strategy to go from “home” to “work”
such that “work” is guaranteed to be reached within
60 minutes (to avoid missing an important meeting),
and player 1 would also like to minimize the expected
time to reach “work”.

The strategy that minimizes the expectation is to
take the car (expectation is 33 minutes) but it is ex-
cluded as there is a possibility to arrive after 60 min-
utes (in case of heavy traffic). Bicycle is safe but the
expectation of this solution is 45 minutes. We can do
better with the following strategy: try to take the train,
if the train is delayed three time consecutively, then go
back home and take the bicycle. This strategy is safe
as it always reaches “work” within 59 minutes and its expectation is ≈ 37,56 minutes (so better than
taking directly the bicycle). Observe that this simple example already shows that, unlike the situation for
classical games and MDPs, strategies using memory are strictly more powerful than memoryless ones.
Our algorithms are able to decide the existence of (and synthesize) such finite-memory strategies.

Related work. This paper gives an expository presentation of results appeared in [10] (an extended
version of the paper can be found in [9]).

Our problems generalize the corresponding problems for two-player zero-sum games and MDPs. In
mean-payoff games, optimal memoryless worst-case strategies exist and the best known algorithm is in
NP∩ coNP [17, 31, 8]. For shortest path games, where we consider game graphs with strictly positive
weights and try to minimize the cost to target, it can be shown that memoryless strategies also suffice, and
the problem is in P. In MDPs, optimal expectation strategies are studied in [27, 18] for both measures:
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memoryless strategies suffice and they can be computed in P.
Our strategies are strongly risk averse: they avoid at all cost outcomes below a given threshold (no

matter their probability), and inside the set of those safe strategies, we maximize expectation. To the best
of our knowledge, we are the first to consider such strategies.

Other notions of risk have been studied for MDPs: e.g., in [30], the authors want to find policies
minimizing the probability (risk) that the total discounted rewards do not exceed a specified value; in [19],
the authors want to achieve a specified value of the long-run limiting average reward at a given probability
level (percentile). While those strategies limit risk, they only ensure low probability for bad behaviors
but not their absence, furthermore, they do not ensure good expectation either.

Another body of related work is the study of strategies in MDPs that achieve a trade-off between the
expectation and the variance over the outcomes (e.g., [6] for the mean-payoff, [26] for the cumulative
reward), giving a statistical measure of the stability of the performance. In our setting, we strengthen this
requirement by asking for strict guarantees on individual outcomes, while maintaining an appropriate
expected payoff.

2 Beyond Worst-Case Synthesis

Preliminaries. We consider the classical models of games and MDPs. Both are based on underlying
directed graphs with integer weights on edges.

In games, the set of vertices, called states, is partitioned between states of the first player, denoted
by P1, and states of its adversary, denoted by P2. When the game is in a state belonging to Pi, i ∈ {1,2},
then Pi chooses a successor state according to his strategy, which may in general use memory (i.e.,
depend on the history) and be randomized (i.e., prescribe a probability distribution over successor states).
This process gives rise to a play, an infinite sequence of states corresponding to a path through the game
graph. We assign real values to plays according to a value function.

In MDPs, the set of states is partitioned between states of P1 and stochastic states, where the succes-
sor state is chosen according to a given probability distribution. Basically, an MDP is a game where the
strategy of P2 is fixed.

When we fix the strategy of P1 in an MDP, or the strategies of P1 and P2 in a game, we obtain a
Markov chain (MC), a graph where all successor states are chosen according to a stochastic transition
function. Given an MC, it is well-known that measurable sets of plays have uniquely defined proba-
bilities [29], and if we have a measurable value function, we can also compute the expected value or
expectation of this function when executing the MC from a given initial state.

Classical problems. In games, the worst-case threshold problem asks if P1 has a strategy such that
any possible outcome, against any possible strategy of P2, gives a play with a value higher than a given
threshold. In MDPs, the expected value threshold problem asks if P1 has a strategy such that the resulting
MC yields an expectation higher than a given threshold.

Our model. The beyond worst-case (BWC) problem asks if P1 has a finite-memory strategy ensuring,
simultaneously, a value greater than a threshold µ in the worst-case (i.e., against any strategy of the
adversary), and an expected value greater than a threshold ν against a given finite-memory stochastic
model of the adversary (e.g., representing commonly observed behavior of the environment). The BWC
synthesis problem asks to synthesize such a strategy if one exists.
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3 Mean-Payoff

What was known. Given a play, its mean-payoff is defined as the (inf or sup) limit of the mean encoun-
tered weights along its finite prefixes: essentially, it is the long-run average weight over the infinite play.
For the worst-case threshold problem, pure memoryless optimal strategies exist for both players [25, 17]
and deciding the winner is in NP∩ coNP [31, 24, 21]. Whether the problem is in P is a long-standing
open problem [8, 13]. Optimal expected values in MDPs can be achieved by memoryless strategies, and
the corresponding decision problem can be solved in polynomial time through linear programming [18].

Our results. We prove that surprisingly, the BWC problem matches the decision complexity of the
simpler worst-case problem, even collapsing to P if the latter were proved to be in P. Hence, we enrich
the modeling and reasoning power over strategies without negative impact on the complexity class.

Theorem 1. The beyond worst-case problem for the mean-payoff value function is in NP∩ coNP and at
least as hard as mean-payoff games.

Furthermore, we establish that in contrast to the worst-case and expectation problems, some memory
is now needed to win in general. Nevertheless, we show that elegantly implementable strategies suffice,
constructed using clever alternation between memoryless strategies based on intuitive counters.

Theorem 2. Memory of pseudo-polynomial size may be necessary and is always sufficient to satisfy the
BWC problem for the mean-payoff: polynomial in the size of the game and the stochastic model, and
polynomial in the weight and threshold values.

Some key ideas. Our solving algorithm is too complex to be presented fully in this work. Nonetheless,
we here give a few hints of its cornerstones, highlighting crucial aspects of the problem.

End-components. An important part of the algorithm relies on the analysis of end-components (ECs)
in the MDP, i.e., strongly connected subgraphs in which P1 can ensure to stay when playing against the
stochastic adversary. This is motivated by two facts. First, under any arbitrary strategy, the set of states
that are seen infinitely often along an outcome corresponds with probability one to an EC [15, 1]. Second,
the mean-payoff function is prefix-independent, therefore the value of any outcome only depends on the
states that are seen infinitely often. Hence, the expected mean-payoff that P1 can achieve on the MDP
depends uniquely on the value obtained in the ECs. Inside an EC, we can compute the maximal expected
value that can be achieved by P1, and this value is the same in all states of the EC [18].

Classification of ECs. To be efficient w.r.t. the expectated value criterion, an acceptable strategy has to
favor reaching ECs with a sufficient expectation, but under the constraint that it also guarantees satisfac-
tion of the worst-case requirement: some ECs with high expected values may still need to be avoided
because they do not permit to ensure this constraint. We establish a classification of ECs based on that
observation, partitioning them between winning ECs (WECs) and losing ECs (LECs). Since the total
number of ECs may be exponential, providing a representative subclass of polynomial size and comput-
ing it efficiently is a crucial point to maintain the overall NP∩ coNP membership.

Within a WEC. We give a particularly interesting family of strategies for P1 that both guarantee safe
outcomes for the worst-case, and prove to be efficient w.r.t. the expected value. Actually, we establish
that the worst-case can be guaranteed almost for free in the sense that we can achieve expectations
arbitrarily close (but not exactly equal) to what P1 could obtain without considering the worst-case
requirement at all (i.e., in a classical MDP).

To obtain this result we use a finite-memory combined strategy. For two well-chosen parameters
K,L ∈ N, it is informally defined as follows: in phase (a), play a memoryless expected value optimal
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strategy for K steps and memorize Sum ∈ Z, the sum of weights along these steps; in phase (b), if
Sum> 0, go to (a), otherwise play a memoryless worst-case optimal strategy for L steps, then go to (a).
In phases (a), P1 tries to increase its expectation and approach its optimal one, while in phase (b), he
compensates, if needed, losses that occurred in phase (a).

The crux of the proof is to establish that adequate values of the parameters K and L exist. Essentially,
K needs to be big enough so that the overall expectation is close to the optimal, but then L also needs to
grow to be able to compensate sufficiently for the worst-case, hence lowering to some extent the overall
expectation. Using results related to Chernoff bounds and Hoeffding’s inequality in MCs [28, 22], we
are able to show that the probability of having to compensate decreases exponentially when K increases,
while L only needs to be polynomial in K. Overall, this implies the desired result that the parameters can
be taken large enough for the strategy to be ε-optimal w.r.t. the expectation while worst-case safe.

4 Shortest Path

What was known. In this context, we consider game graphs where all weights are strictly positive, and
a target set of states that P1 wants to reach while giving an upper bound on the cost to reach it. Hence
the inequalities of the BWC problem are reversed. Given a play, the value function for the shortest path
computes the sum of weights up to the first encounter of a state belonging to the target set, or assigning
infinity if the play never reaches such a state. The worst-case threshold problem takes polynomial time,
as a winning strategy of P1 should avoid all cycles (because they yield strictly positive costs), hence
usage of attractors and comparison of the worst possible sum of costs with the threshold suffices. For the
expected value threshold problem, memoryless strategies suffice and the problem is in P [4, 2].

Our results. In contrast to the mean-payoff case where we could maintain the complexity of the worst-
case problem, we here provide an algorithm which operates in pseudo-polynomial time instead of truly-
polynomial time. Nevertheless, we prove that the problem is actually NP-hard (reduction from the Kth

largest subset problem [20]), hence establishing that a truly-polynomial-time algorithm is highly unlikely.

Theorem 3. The beyond worst-case problem for the shortest path can be solved in pseudo-polynomial
time: polynomial in the size of the underlying game graph, the stochastic model of the adversary and the
encoding of the expected value threshold, and polynomial in the value of the worst-case threshold. The
beyond worst-case problem for the shortest path is NP-hard.

Once again, we show that pseudo-polynomial memory is both necessary and sufficient. Recall that
the example of Fig. 1 already required memory to achieve some thresholds pair for the BWC problem.

Theorem 4. Memory of pseudo-polynomial size may be necessary and is always sufficient to satisfy the
BWC problem for the shortest path: polynomial in the size of the game and the stochastic model, and
polynomial in the worst-case threshold value.

Some key ideas. The shortest path setting has a useful property: the set of all winning strategies of P1
for the worst-case threshold problem can be represented through a finite game. Indeed, we construct,
from the original game G and the worst-case threshold µ , a new game Gµ such that there is a bijection
between the strategies of P1 in Gµ and the strategies of P1 in the original game G that are winning for the
worst-case requirement: we unfold the original graph, tracking the current value of the sum of weights
up to the threshold µ , and integrating this value in the states of an expanded graph. In the corresponding
game G′, we compute the set of states R from which P1 can reach the target set with cost lower than µ

and we define the subgame Gµ = G′ � R such that any path in Gµ satisfies the worst-case requirement.
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Assuming that Gµ is not empty, we can now combine it with the stochastic model of the adversary
to construct an MDP in which we search for a P1 strategy that ensures reachability of the target set with
an expected cost lower than the expectation threshold. If it exists, it is guaranteed that it will also satisfy
the worst-case requirement against any strategy of P2 thanks to the bijection evoked earlier.

Hence, in the case of the shortest path, our approach is sequential, first solving the worst-case, then
optimizing the expected value among the worst-case winning strategies. This sequential algorithm is
depicted through Example 5. Observe that such an approach is not applicable to the mean-payoff, as in
that case there exists no obvious finite representation of the worst-case winning strategies.
Example 5. Consider the game G depicted in Fig. 2. We want to synthesize a BWC strategy of P1 that
minimizes the expected cost up to the target set {s3} under the (strict) worst-case threshold µ = 8.

s1 s2

s3

1
2

1
2

1

15

1

Figure 2: Simple BWC shortest path game with target set {s3} and worst-case threshold µ = 8.

First, we unfold this game G up to the worst-case threshold (excluded), and obtain the game G′

represented in Fig. 3. Observe that as soon as the worst-case threshold is reached, we stop the unfolding
and associate symbol >: the worst-case requirement is lost if such states are reached. This guarantees a
finite (and at most pseudo-polynomial size) unfolding.

s1,0 s2,1 s1,2 s2,3 s1,4 s2,5 s1,6 s2,7 s1,>

s3,2 s3,4 s3,> s3,6s3,5 s3,7
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Figure 3: Unfolding of the game of Fig. 2: worst-case winning requires to reach a double state. Thick
edges represent the strategy that minimizes the expected cost while ensuring this worst-case.

Therefore, it is clear that a BWC strategy of P1 must ensure reachability of states of G′ that represent
reaching the target state with a total cost strictly less than the worst-case threshold. Those states are
depicted by double circles in the figure. Hence, P1 must stay within the attractor of those double states.
It implies that state (s2,3) of the unfolding and subsequent states are off-limits.

Knowing that, it now suffices to minimize the expected value within the safe region, which is
achieved by the memoryless (with regard to G′) strategy that chooses to go in (s2,1) from (s1,0) and
to (s3,7) from (s1,2). This strategy is depicted by the thick edges on the figure. Observe that this
strategy is memoryless in G′, hence requires at most pseudo-polynomial memory in G. C
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5 Future Work

We believe that the beyond worst-case framework is a powerful one, well-suited for specifications com-
bining the quest of high expected performance with the need for strong worst-case guarantees. We want
to build on the results presented here and consider several extensions of the initial setting.

The first line of work is applying the problem to other well-known quantitative measures and to more
general classes of games (for example decidable classes of games with imperfect information [16, 23]).

A second interesting question is the extension of our results for mean-payoff and shortest path to
multi-dimension games. It is already known that multi-dimension games are more complex than one-
dimension ones for the worst-case threshold problem alone [12, 14]. Hence, a leap in complexity is also
to be expected for the beyond worst-case problem.

Given the relevance of the framework for practical applications, it would certainly be worthwhile
to develop tool suites supporting it. We could for example build on symblicit implementations recently
developed for monotonic Markov decision processes by Bohy et al. [5].

Links outside computer science are also of interest. Economics is interested in strategies (i.e., in-
vestor profiles) that ensure both sufficient risk-avoidance and profitable expected return. Mathematical
models powerful enough to tackle the previously discussed problems could be an advantage. A related
approach to such questions is the concept of solvency games introduced by Berger et al. [3], and extended
by Brázdil et al. [7]. Solvency games provide a framework for the analysis of risk-averse investors trying
to avoid bankruptcy.

References

[1] L. de Alfaro (1997): Formal verification of probabilistic systems. Ph.D. thesis, Stanford University.

[2] L. de Alfaro (1999): Computing Minimum and Maximum Reachability Times in Probabilistic Systems. In:
Proc. of CONCUR, LNCS 1664, Springer, pp. 66–81, doi:10.1007/3-540-48320-9 7.

[3] N. Berger, N. Kapur, L.J. Schulman & V.V. Vazirani (2008): Solvency Games. In: Proc. of FSTTCS, LIPIcs 2,
Schloss Dagstuhl - LZI, pp. 61–72, doi:10.4230/LIPIcs.FSTTCS.2008.1741.

[4] D.P. Bertsekas & J.N. Tsitsiklis (1991): An analysis of stochastic shortest path problems. Mathematics of
Operations Research 16, pp. 580–595, doi:10.1287/moor.16.3.580.

[5] A. Bohy, V. Bruyère & J.-F. Raskin (2014): Symblicit algorithms for mean-payoff and shortest path in
monotonic Markov decision processes. CoRR abs/1402.1076. Available at http://arxiv.org/abs/1402.
1076.

[6] T. Brázdil, K. Chatterjee, V. Forejt & A. Kucera (2013): Trading Performance for Stability in Markov Deci-
sion Processes. In: Proc. of LICS, IEEE Computer Society, pp. 331–340, doi:10.1109/LICS.2013.39.
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