
F. Cassez, R. Huuck, G. Klein and B. Schlich (eds.):
Systems Software Verification Conference 2012 (SSV 2012)
EPTCS 102, 2012, pp. 73–87, doi:10.4204/EPTCS.102.8

This work is licensed under the Creative Commons
Attribution-No Derivative Works License.

On the Use of Underspecified Data-Type Semantics
for Type Safety in Low-Level Code∗

Hendrik Tews Marcus Völp
Technische Universität Dresden, Germany

{tews,voelp}@os.inf.tu-dresden.de

Tjark Weber
Uppsala University, Department of IT, Sweden

tjark.weber@it.uu.se

In recent projects on operating-system verification, C and C++ data types are often formalized using
a semantics that does not fully specify the precise byte encoding of objects. It is well-known that
such an underspecified data-type semantics can be used to detect certain kinds of type errors. In
general, however, underspecified data-type semantics are unsound: they assign well-defined meaning
to programs that have undefined behavior according to the C and C++ language standards. A precise
characterization of the type-correctness properties that can be enforced with underspecified data-type
semantics is still missing. In this paper, we identify strengths and weaknesses of underspecified data-
type semantics for ensuring type safety of low-level systems code. We prove sufficient conditions
to detect certain classes of type errors and, finally, identify a trade-off between the complexity of
underspecified data-type semantics and their type-checking capabilities.

1 Introduction

The formalization of C with abstract-state machines by Gurevich and Huggins [5], Norrish’s C++ se-
mantics in HOL4 [12] and the operating-system verification projects VFiasco [7], l4.verified [10] and
Robin [16] all use a semantics of C or C++ data types that employs (untyped) byte sequences to encode
typed values for storing them in memory. An underspecified, partial function converts byte sequences
back into typed values.

We use the term underspecified data-type semantics to refer to such a semantics of data types that con-
verts between typed values and untyped byte sequences while leaving the precise conversion functions
underspecified. With an underspecified data-type semantics, it is unknown during program verification
which specific bytes are written to memory.

The main ingredients of underspecified data-type semantics are two functions — to byte and
from byte — that convert between typed values and byte sequences. The function from byte is in general
partial, because not every byte sequence encodes a typed value. For instance, consider a representation
of integers that uses a parity bit: from byteint would be undefined for byte sequences with invalid parity.

Underspecified data-type semantics are relevant for the verification of low-level systems code. This
includes code that needs to maintain hardware-controlled data structures, e.g., page directories, or that
contains its own memory allocator. Type and memory safety of such low-level code depend on its
functional correctness and are undecidable in general. For this reason, type safety for such code can only
be established by logical reasoning and not by a conventional type system. As a consequence, this paper
focuses on data-type semantics instead of improving the type system for, e.g., C++.

Having to establish type correctness by verification is not as bad as it first sounds. With suitable
lemmas, type correctness can be proved automatically for those parts of the code that are statically type

∗This work was in part funded by the European Commission through PASR grant 104600, by the Deutsche Forschungsge-
meinschaft through the QuaOS project, and by the Swedish Research Council.

http://dx.doi.org/10.4204/EPTCS.102.8
http://creativecommons.org
http://creativecommons.org/licenses/by-nd/3.0/


74 On the Use of Underspecified Data-Type Semantics

correct [17]. Thereby, the type-correctness property can be precisely tailored to the needs of the specific
verification goals, for instance, by taking assumptions about hardware-specific data types into account.

It has long been known that underspecified data-type semantics can detect certain type errors during
verification, and thus imply certain type-correctness properties [6]. Because the encoding functions
to byte for different types T and U are a priori unrelated, programs are prevented from reading a T -
encoded byte sequence with type U . Any attempt to do so will cause the semantics to become stuck, and
program verification will fail.

However, additional assumptions, which are often necessary to verify machine-dependent code, eas-
ily void this property. For instance, if one assumes that the type unsigned int can represent all integer
values from 0 to 2n−1 on n-bit architectures, from byteunsigned int becomes total for cardinality reasons.
Consequently, any sequence of n bits becomes a valid encoding of a value of this type.

Despite the widespread use of underspecified data-type semantics for the verification of systems
code, a precise characterization of the type-correctness properties that these semantics can enforce is still
missing.

In this paper, we investigate different kinds of type errors and different variants of underspecified
data-type semantics. We provide sufficient conditions for the fact that a certain semantics can prove the
absence of certain type errors and describe the trade-off between the complexity of the semantics and the
type errors it can detect. One key insight is that the simple underspecified data-type semantics that we
advocated before [6, 15] is only sound for trivially copyable data [9, §3.9] under strong preconditions,
which are typically violated in low-level systems code. Type correctness for non-trivially copyable data
in the sense of C++ requires a rather complicated semantics that exploits protected bits, see Sect. 4.3.

The remainder of this paper is structured as follows: in the next section, we recollect the formaliza-
tion of underspecified data-type semantics. Sect. 3 describes our classes of type errors. In Sect. 4, we
formally define type sensitivity as a new type-correctness property that rules out these errors, and discuss
the type sensitivity of three different variants of underspecified data-type semantics. Sect. 5 formally
proves sufficient conditions for type sensitivity and Sect. 6 discusses related work. For space reasons, a
small case study that exemplifies our approach has been moved to App. A. Part of our results have been
formalized in the theorem prover PVS [13]. The corresponding sources are publicly available.1

2 The Power of Underspecified Data Types

Type checking with underspecified data-type semantics is rooted in the observation that many program-
ming languages do not fully specify the encoding of typed values in memory. For instance, the pro-
gramming languages Java [3] and Go [2] leave language implementations (compilers and interpreters)
complete freedom in how much memory they allocate, and how values are encoded in the bytes that com-
prise an object in memory. The standards of the programming languages C [8] and C++ [9] also leave
encoding and object layout (including endianness and padding) mostly unspecified, with few restrictions:
e.g., object representations must have a fixed (positive) size.

The data-type semantics associates a semantic structure sT (defined below) with each primitive lan-
guage type T . Semantic structures provide conversion functions between typed values and their memory
representation: sT .to byte translates values of type T into untyped byte lists, and sT .from byte translates
byte lists back into typed values. The data-type semantics thereby provides an abstract interface that
connects the high-level semantics of the language’s statements and expressions to a byte-wise organized

1At http://os.inf.tu-dresden.de/~voelp/sources/type_sensitive.tar.gz

http://os.inf.tu-dresden.de/~voelp/sources/type_sensitive.tar.gz


H. Tews, M. Völp, T. Weber 75

s.to_byte

s.from_byte

memory model

statement and expression semantics

byte lists (e.g., [0xde, 0xad, 0xbe, 0xef])

int
typed values (e.g., −559038737 )

data−type semantics

(a) Semantics stack

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

semantic structures

type safety
required for

ST

non−checking

encoding used by targeted compiler

language conform

(b) Approach

Figure 1: Type checking with underspecified data-type semantics.

memory model (Fig. 1(a)). As a beneficial side effect, this abstraction allows us to omit from this pa-
per both the details of the statement/expression semantics and the details of the memory model (which
includes virtual-to-physical memory mappings and memory-mapped devices [15]).

The key idea behind ensuring type safety with underspecified data-type semantics is taken from [6],
and illustrated in Fig. 1(b). The conversion functions sT .to byte and sT .from byte are typically under-
specified.2 The precise requirements on these functions depend on the type T (and possibly on additional
factors such as the targeted compiler and hardware architecture). For instance, C requires that the type
unsigned char uses a “pure binary” encoding [8, §6.2.6.1]. Let ST denote the set of all semantic
structures that meet these requirements.

Program verification is carried out against an arbitrary (but fixed) structure sT ∈ ST , for each primitive
type T . Therefore, verification succeeds only if it would succeed for every possible choice of structures
sT ∈ ST for every primitive type T .

One can think of each structure sT as a specific way a compiler implements objects of type T . The
set ST should contain semantic structures that correspond to realistic compilers. These structures typi-
cally perform little or no runtime type checking, but their inclusion guarantees that verification results
apply to code that is compiled and run on existing hardware.

Provided that the encoding of T is sufficiently underspecified, ST also contains more obscure seman-
tic structures that may not correspond to realistic compilers, but that can detect certain type errors. Since
sT .from byte is partial, it may be undefined for byte lists that are not of the form sT .to byte(v) for some
value v. In this case, the semantics would get stuck when a program attempts to read an invalid repre-
sentation with type T , and program verification would fail. A single sT ∈ ST whose from byte function
is undefined for the invalid representation suffices to render normal program termination unprovable.

As an example, consider the type bool of Booleans. A semantic structure for this type is easily
obtained by imitating the encoding of values of a particular language implementation. For instance,
sboolgcc is a semantic structure for bool if we define sboolgcc .to byte to map false to the byte value [0x00],
and true to [0x01]. The GCC C compiler decodes Booleans by mapping [0x00] to false, and all other
values to true. The corresponding sboolgcc .from byte function is total, and as such incapable of detecting

2A function is underspecified if its precise mapping on values is not known. For an underspecified partial function the
precise domain may also be unknown. Formally, one achieves this effect by using an arbitrarily chosen but fixed element of a
suitable set of functions.



76 On the Use of Underspecified Data-Type Semantics

type errors: all byte values are valid representations for bool.
As a second example, consider the semantic structure sbool0,1 that agrees with sboolgcc , except

that sbool0,1 .from byte is undefined for byte lists other than [0x00] and [0x01]. This structure is able
to detect as type error all modifications of Boolean variables b that store a value other than 0x00 or 0x01
at the address of b. When a program attempts to read b with type bool, sbool0,1 .from byte is undefined for
the modified value, and the semantics will get stuck.

Now suppose that Sbool = {sboolgcc ,sbool0,1 ,sbool2,3 , . . .} additionally contains a structure sbool2,3 that per-
forms the analogous mapping for the object representations [0x02] (true) and [0x03] (false). Because
program verification is carried out against an arbitrary (but fixed) structure sbool ∈ Sbool, programs can
be verified only if they are correct wrt. every structure in Sbool. No fixed (constant) byte value is in
the domain of all sbool.from byte functions, hence any modification that stores such a fixed value at the
address of b will be detected as a type error. In contrast, reading a byte list of the form sbool.to byte(v)
(for v ∈ {true, false}) at the address of b will never cause an error.

For practical purposes one chooses ST as indicated by the thick black line in Fig. 1(b): It should
contain the set of those semantic structures that are needed to ensure type safety as well as those structures
that represent the encoding of the used compiler. The latter requirement ensures that the verification
results apply directly to the generated code (assuming that the compiler is correct).

Additional assumptions typically constrain the set ST of admissible semantic structures. They are
often necessary to prove correctness of machine-dependent code. For instance, assuming that some
pointer type T has the same size as type int makes the set ST smaller, but may be required for the
verification of a custom memory allocator that casts integers into type T internally. The questions of
interest are therefore:

1. Which kinds of type errors can be detected with an underspecified data-type semantics, and

2. when do additional assumptions constrain ST to a point where type safety is no longer guaranteed?
Giving partial answers to these questions is the central contribution of this paper. We now define semantic
structures more formally.

2.1 Semantic Structures

In Sect. 4, we present three variants of semantic structures with increasing type-checking capabilities.
To prepare for the two more advanced variants, the definition below contains “· · ·” as a placeholder for
further parameters. For now, we assume no further parameters.
Definition 1 (Semantic structure). Let T be a type. A semantic structure s=(V,A,size, to byte, from byte)
for T consists of a non-empty set of values V , a set of addresses A ⊆ N (specifying alignment require-
ments for objects of type T ), a positive integer size (specifying the size of object encodings), and two
conversion functions:

to byte : V ×·· · → list[byte]×·· ·
from byte : list[byte]×·· · ⇀ V

where list[byte] denotes the type of byte lists, and from byte is a partial function. Every semantic structure
must satisfy the following properties for all v ∈V :

length(to byte(v, . . .)) = size (1)

from byte(to byte(v, . . .), . . .) = v (2)

where length : list[byte]→N denotes the length of a byte list.



H. Tews, M. Völp, T. Weber 77

Equation (2) requires s.from byte to be defined on byte lists that form a valid object representation
for T . Otherwise, s.from byte may be undefined. To ensure type safety, we will exploit this fact by
constructing sufficiently many semantic structures whose from byte function is partial: at least one for
every byte list that may have been modified by a type error. Note that eq. (2) ensures that one can always
read a value that has been written with the same semantic structure. Therefore, the data-type semantics
allows to verify well-typed code as expected.

The set of values that a type can hold may depend on the hardware architecture and compiler. For
instance, the C++ type unsigned int can typically represent values from 0 to 2n−1 on n-bit architec-
tures. This set is therefore specified by each semantic structure, just like size, alignment, and encoding.
For the verification of concrete programs, we generally assume a minimal set of values that can be rep-
resented by all semantic structures in ST .

We use bytes in the definition of semantics structures, because we assume a byte-wise organized
memory model that resembles real hardware. This is sufficient to support the bit fields of C++, because
the C++ standard specifies that the byte is the smallest unit of memory modifications [9, §1.7(3)–(5)].
By using lists of bits and bit-granular addresses instead, one could support more general architectures
with more general bit fields.

3 Type Errors

Type errors are undesirable behaviors of a program that result from attempts to perform operations on
values that are not of the appropriate data type. The causes for these errors are diverse. Buffer overflows,
dangling or wild pointers, (de-)allocation failures, and errors in the virtual-to-physical address translation
can all lead to type errors in low-level code.

Formally, we say that memory m is modified relative to memory m′ at address a if it cannot be proven
that m and m′ are identical at a. A memory modification (at address a) is a state transition starting with
memory m and yielding memory m′ such that m′ is modified relative to m (at address a). A read-access
to an object in memory at address a with type T is type correct, if the content at a is provably the
result of a write-access to a with type T . A program is type correct if all its memory-read accesses are
type correct. It turns out that the strength of underspecified data-type semantics to detect an incorrectly
typed read access depends on the kind of memory modification that happened before the read access
in the relevant memory region. Therefore, we define type error as a memory modification that causes
an incorrectly typed read access. To be able to view all missing variable initialization as type error, we
assume a memory initialization that overwrites the complete memory with arbitrary values.

Our notion of type correctness has specific properties that are needed for the verification of systems
code. Firstly, it permits to arbitrarily overwrite memory whose original contents will not be accessed any
more. Secondly, it depends on the presence and strength of additional assumptions. If one assumes, for
instance, that the range of to bytevoid* is contained in the domain of f rom byteunsigned, then reading the
value of a void pointer into an unsigned variable is type correct.

For the analysis in the following sections, we define the following classes of type errors (which are
formally sets of memory modifications). These classes are only used with respect to a specific read
access at some address a with some semantic structure sT (for some type T ). The memory modifications
contained in some class may therefore depend on sT and a. Note that the memory modifications in these
classes may be caused not just by writing variables in memory, but also by hardware effects, such as
changes of memory mapped registers or DMA access by external devices.



78 On the Use of Underspecified Data-Type Semantics

1. Unspecified memory contents: memory may contain arbitrary values; for instance, when the
program reads a location that has not been initialized before. Formally, this class contains all
memory modifications such that the modified value is indeterminate.

2. Constant byte values: memory locations may contain specific (constant) byte values; for instance,
newly allocated memory may, in some cases, be initialized to 0x00 by the operating system or
runtime environment. This class contains all memory modifications where the modified value is a
constant.

3. Object representation of a different type: a T -typed read operation may find an object represen-
tation for a value of a different type U in memory. Typed reads of differently typed values result in
implicit casts. Such an implicit cast happens, for instance, when the program attempts to read an
inactive member of a union type, or when a pointer of type T* is dereferenced that actually points
to an object of type U.
For a given structure sT (for some type T ) and an address a, this class contains all memory mod-
ifications that write a complete object representation of some structure sU (for a type U 6= T with
sU .size = sT .size) at a.

4. Parts of valid object representation(s): a special form of implicit cast occurs when the read
operation accesses part of a valid object representation. For instance, *(char*)p reads the first
character of the object pointed to by p. A single read of a larger object may also span several valid
object representations (or parts thereof) simultaneously.
Although this error class shows many similarities to Class 3, it illustrates the need for type-safety
theorems capable of ruling out undesired modifications at the minimal access granularity of mem-
ory (typically one byte on modern hardware architectures).
For a given structure sT (for some type T ) and an address a, this class contains all memory modi-
fications that overwrite the memory range [a,a+ sT .size) with (some slice of) consecutive object
representations of structures sU1 , sU2 , . . . (for arbitrary types Ui). For i = 1, this reduces to Class 3,
and we require U1 6= T —otherwise there is no type error.

5. Bitwise copy of valid object representations: objects may perform operations on construction
and destruction; for instance, they might register themselves in some global data structure. A
bitwise copy of such an object does not preserve the semantics associated with the object. Con-
sequently, any attempt to access the bitwise copy with the object’s type may lead to functional
incorrectness. We consider this a type error.
For a given structure sT (for some type T ), this class contains all memory modifications that write
at least one bit of an object representation of sT ′ (for an arbitrary type T ′).

We have presented these error classes in order of increasing detection difficulty. Class 5 is particularly
challenging, because the invalid copy is bitwise indistinguishable from a valid object representation.
The classes were developed during our investigation for a sound data-type semantics for non-trivially
copyable types. We make no claim about their completeness. In the next section, we discuss how the
different error classes may be detected with suitable variants of underspecified data-type semantics.

4 Type Sensitivity with Semantic Structures

In this section, we introduce the notion of type sensitivity to capture the requirement that no type errors
occur as a result of memory modifications.



H. Tews, M. Völp, T. Weber 79

Definition 2 (Type Sensitivity). A data-type semantics for a type T is type sensitive with respect to a
class C of memory modifications if normal program termination implies that memory read with type T
was not changed by modifications in C .

Applied to our approach, type sensitivity means that for every memory modification in some class C ,
and for every subsequent read of a modified object with type T , there must be a suitable semantic struc-
ture s ∈ ST that can detect the modification as an error. More precisely, s is suitable if s.from byte is
undefined for the modified object representation.

In the remainder of this section, we introduce three different variants of underspecified data-type
semantics: plain object encodings, address-dependent object encodings, and external-state dependent
object encodings. These variants are type sensitive with respect to increasingly large classes of modifi-
cations.

4.1 Plain Object Encodings

Plain object encodings for semantic structures are inspired by trivially copyable C++ data types. An
object of trivially copyable type T can be bitwise copied into a sufficiently large (≥ sT .size) char ar-
ray and back, and to any other address holding a T -typed object, without affecting its value [9, §3.9(2)].
Examples of plain encodings for integers include two’s complement and sign magnitude, but also numer-
ation systems augmented with, e.g., cyclic redundancy codes. The semantic structures for plain object
encodings are as described in Def. 1, i.e., with no additional parameters.

Plain object encodings can detect reads from uninitialized memory (Class 1) and reads of constant
data (Class 2), as exemplified in Sect. 2. Plain object encodings can also detect implicit casts of a
differently typed object (Class 3) or parts of it (Class 4), provided ST is sufficiently rich, i.e., type-
sensitive with respect to the relevant class. We shall return to this condition in Sect. 5.

Plain object encodings cannot detect errors from Class 5.

4.2 Address-Dependent Object Encodings

To prevent errors of Class 5, copies by wrong means must be detected on non-trivially copyable data
types [9, §3.9(2)]. Plain object encodings cannot detect these copies, because eq. (2) in Def. 1 requires
s.from byte to be defined for all byte lists that are equal to a valid object representation.

Address-dependent object encodings are able to recognize most (but not all) object copies obtained
by bitwise memory copy operations. For address-dependent object encodings we augment the two con-
version functions with an additional address parameter a, and adjust the left-inverse requirement of eq. (2)
accordingly:

∀a ∈ A. from byte(to byte(v,a),a) = v (3)

Address-dependent encodings generalize plain object encodings by allowing a different encoding for
each address. They can therefore detect all errors from Classes 1–4. Errors from Class 5 can be detected
as long as the bitwise copy is located at an address that is different from the address of the original object.
This includes type errors caused by aliasing between different virtual addresses. However, eq. (3) pre-
vents address-dependent object encodings from detecting those errors of Class 5 that overwrite memory
with a bitwise copy of an object previously stored at the same address.



80 On the Use of Underspecified Data-Type Semantics

4.3 External-State Dependent Object Encodings

External-state dependent object encodings are the most complex data-type semantics that we consider in
this paper. They can detect type errors from all classes discussed in Sect. 3, but require further additions
to the definition of semantic structures.

4.3.1 Exploiting Protected Bits.

In general, error detection is easy if a part of the object representation is protected and cannot be over-
written by erroneous operations. One only has to make sure that the set ST contains semantic structures
that store some kind of hash in the object representation. Then, when the unprotected part of the object
representation is changed, the hash is wrong and from byte will fail. External-state dependent object
encodings develop this observation to the extreme. We will first see that it is sufficient to protect one bit
only. After that, we will enrich the definition of semantic structures to make sure that there is always one
protected bit.

Consider a type T and a set of semantic structures {sa
v | a ∈ A,v ∈ V} that all have the same set of

values V and addresses A and that all use the same object encodings, except for the first bit. The first bit
of sa

v .to byte(v′,a′) is 1 if a = a′ and v = v′ and 0 otherwise. The function sa
v .from byte fails if the first

bit is different from what was specified for to byte. That is, every sa
v protects just the value v at address

a by setting the first bit of the object representation and leaves all other value/address combinations
unprotected.

Consider now a memory copy operation that copies the object representation of v from address a to a
different address a′ but leaves the first bit at address a′ intact. If this bit is 0 then from byte(a′, . . .) from
structure sa′

v will fail. If the first bit at a′ was 1, sa′
v will succeed, but all other structures will fail. In case

a and a′ are the same address, the memory remains (provably) unchanged, so there is no error to detect.
However, if the value v at a′ is overwritten with the object representation of a value v′ that was previously
stored there, either sa′

v′ or sa′
v will detect the error in case the first bit at a′ remains unchanged.

We can conclude that a sufficiently large set ST can detect all type errors from all classes, provided
there is at least one protected bit that no erroneous memory modification can change.

4.3.2 Protecting Bits in External State.

We will now enrich semantic structures such that every object representation can potentially contain one
additional bit. With a clever use of underspecification this will require only one additional bit of memory
per program. In a last step we will protect this one bit by making its location unknown.

We first enrich semantic structures with a partial function protected bit:

protected bit : A ⇀ B

to byte : V ×A→ list[byte]×bit

from byte : list[byte]×A×bit ⇀V

Here, B is the set of bit-granular addresses of the underlying memory and bit is the type of bits. The idea
is as follows: If s.protected bit(a) = b then the structure s uses an additional bit of object representation
at address b for values stored at address a. In this case to byte returns this additional bit and from byte
expects it as third argument. If protected bit(a) is undefined, no additional bit is used and to byte returns
a dummy bit. The consistency requirement of semantic structures (eq. (2) in Def. 1) is changed in the



H. Tews, M. Völp, T. Weber 81

obvious way. In the verification environment (Fig. 1(a)) the memory model must of course be adapted to
handle the additional bit appropriately.

There are of course problems if the address returned by protected bit is already in use. We solve
this in several steps. We first require that protected bit is defined for at most one address for every
structure s. This restriction does not hurt because ST can still contain one structure for every address a
such that protected bit(a) is defined. Next, recall from Sect. 2 that for each primitive type T a fixed but
arbitrarily chosen sT is used. We refine this choice such that there is at most one primitive type T for
which sT .protected bit is defined for one address. Again, this latter restriction does not limit the checking
powers, because for each type every address still can potentially use an additional bit.

As a last step consider the set AF of free, unused bit granular addresses.3 The memory model is
enriched with a constant r ∈ AF that is used precisely when the only additional bit that is used by the
current choice of semantic structures is outside of AF. In this case, the memory model silently swaps the
contents of r and the additional bit.

The changes for using protected bits are rather complex. However, if AF is not empty and if the sets
ST are sufficiently large, then there is for each type T and each address a a choice of semantic structures
such that values of type T at address a use an additional bit in the object representation. If, for every
accessible bit address b, every ST contains a structure that uses b as additional bit, then the location of
the additional bit is de facto unknown. Under these circumstances protected bits can detect all type errors
from all classes of Sect. 3 as long as it is not the case that the complete memory is overwritten.

There are two points to note about external-state dependent object encodings. Firstly, the protected
bit in these encodings is not write protected in a general sense. Type-correct operations that use the
chosen semantic structure do in fact change the protected bit. Secondly, we used single bits and bit-
granular addresses here only because we assume a memory model that resembles real hardware. The
same idea can be applied to more abstract memory models.

5 Towards a Type-Sensitivity Theorem

In Sect. 4, we carved out type sensitivity as the key property that ensures there are sufficiently diverse
semantic structures to identify all type errors. We now take a closer look at the delicate interplay between
compiler intelligence, additional assumptions, and type sensitivity. We give sufficient conditions for type
sensitivity for the error classes discussed in Sect. 3. These entail construction guidelines for sufficiently
rich sets ST .

The relationship between semantic structures and type errors that are ruled out by verification turns
out to be intricate. Intuitively, one might expect type sensitivity to be monotone: more semantic structures
can detect more type errors. Unfortunately, more semantic structures also give rise to more program
executions, and can therefore cause undetected type errors.

For instance, consider a memory-mapped device that overwrites memory at an address a. A program
that performs a read access of type T will be unaffected by this modification if alignment requirements
ensure that objects of type T are never located at a. Relaxing these alignment requirements, however,
might lead to a type error in certain program executions: namely in those that read at a. To remain
type sensitive, the data-type semantics would then need to admit a semantic structure that can detect the
modification and allows alignment at a.

To be able to detect a memory modification as a type error (without resorting to external state), we
have to assume some degree of independence between the modification and the semantic structures fixed

3For practical purposes one can use a safe approximation of AF.



82 On the Use of Underspecified Data-Type Semantics

��������������
��������������
��������������
��������������

s

s’

a’+s.size

...memory

a

s’’

a’

Figure 2: Visibility of addresses to semantic structures: a is visible to s and s′ but not to s′′.

for program verification. The classification in Sect. 3 describes different degrees of data independence.
In this section, we additionally assume that modifications occur at fixed addresses, independent of the
choice of semantic structure for T .

We say that an address a is visible to a semantic structure s if there exists a′ ∈ s.A such that a′ ≤ a <
a′+ s.size; see Figure 2 for illustration. In other words, a is visible to s if s might read memory at a. We
say that a is visible if there is a semantic structure s ∈ ST such that a is visible to s.

Lemma 3 (Unspecified Memory). Assume that for every visible address a, there is a semantic structure
s ∈ ST and an address a′ ∈ s.A (with a′ ≤ a < a′+ s.size) such that for every sequence of bytes (bi)

∞
i=0,

there is a byte value b such that s.from byte is undefined for the byte list [b′a′ , . . . ,b
′
a′+s.size−1] given by

b′a := b, b′i := bi for i 6= a. Then ST is type sensitive wrt. unspecified memory contents (Class 1).

Proof. Assume that an unspecified byte value at address a is read with type T . Because a is visible,
there is a semantic structure s ∈ ST as postulated in the lemma. This structure might read at address a′.
Let (bi)

∞
i=0 be the memory contents at the time of the read. Since ba is unspecified, it might be equal

to b. Hence s.from byte might read the byte list [b′a′ , . . . ,b
′
a′+s.size−1], for which it is undefined. Therefore,

normal program termination is no longer provable.

For instance, Sbool := {sbool0,1 } (with sbool0,1 as defined on page 75) is type sensitive wrt. unspecified
memory contents, because sbool0,1 .from byte is undefined for some (in fact, for all but two) byte lists of
length one.

The following lemmas have similarly straightforward proofs, which we omit for space reasons. For
constant byte values (Class 2), the only difference to Lemma 3 is that any byte value b must now be
detected as an error. In particular, any semantics that is type sensitive wrt. constant byte values is also
type sensitive wrt. unspecified memory contents.

Lemma 4 (Constant Bytes). Assume that for every visible address a, and for every byte value b, there
is a semantic structure s ∈ ST and an address a′ ∈ s.A (with a′ ≤ a < a′+ s.size) such that for every
sequence of bytes (bi)

∞
i=0, s.from byte is undefined for the byte list [b′a′ , . . . ,b

′
a′+s.size−1] given by b′a := b,

b′i := bi for i 6= a. Then ST is type sensitive wrt. constant byte values (Class 2).

Sect. 2 exemplifies how a sufficiently rich set ST can be obtained by inclusion of sufficiently many
semantic structures such that no byte list is in the domain of all from byte functions.

For Class 3, we restrict ourselves to those semantic structures sT ∈ ST that read exactly one object
representation produced by a semantic structure sU ∈ SU for some type U . Partial overlaps between
object representations are covered by Class 4. We assume that the object representation for U does not
depend on the choice of semantic structure for T .



H. Tews, M. Völp, T. Weber 83

Lemma 5 (Implicit Casts). Assume that for every semantic structure sT ∈ ST , every address a ∈ sT .A,
and every byte list [ua, . . . ,ua+sT .size−1] that is the result of sU .to byte(v, . . .) for some sU ∈ SU , v ∈ sU .V ,
there is a semantic structure s ∈ ST and an address a′ ∈ s.A such that for every sequence of bytes (bi)

∞
i=0,

s.from byte is undefined for the byte list [b′a′ , . . . ,b
′
a′+s.size−1] given by b′i := ui for a ≤ i < a+ sT .size,

b′i := bi otherwise. Then ST is type sensitive wrt. implicit casts from type U (Class 3).

To construct a set ST that fulfills the assumptions of the preceding lemma, one can include a set S of
non-total semantic structures that are closed wrt. permutation of undefined object representations. Given
a non-total semantic structure s where s.from byte(bl, . . .) is undefined, we can construct such a set S if
we include for all byte lists bl′ the semantic structure s′ that is identical to s except that s′.from byte =
Πbl,bl′ ◦ s.from byte and s′.to byte = s.to byte◦Πbl,bl′ . Here, Πbl,bl′ is the permutation function that just
exchanges bl with bl′.

It is straightforward to generalize Lemma 5 to parts of valid object representations (Class 4) by
allowing [ua, . . . ,ua+sT .size−1] to be (an arbitrary slice of) a concatenation of object representations for
other types Ui. We omit the formal statement of this lemma.

To detect Class 5 errors, we have to further relax our independence requirements between type errors
and semantic structures by considering also copies of object representations for T at visible addresses a.
We say that two semantic structures s1 and s2 are equivalent, s1∼ s2, if they differ at most in their to byte,
from byte functions. Equivalent semantic structures produce and interpret object representations of the
same size and at the same set of addresses.

Lemma 6 (Bitwise Copy). Assume that for every semantic structure s ∈ ST and every a ∈ s.A there
exists an equivalent semantic structure s′ ∈ ST such that for any byte list bl := [ba, . . . ,ba+s.size−1] where
bi, i ∈ [a,a+ s.size) may be comprised of copies of bit value of an object representation s.to byte(v, . . .)
for some value v ∈ s.V , the result of s′.from byte(bl, . . .) is undefined if we replace the copied bits with
the respective value of s′.to byte(v, . . .). Then ST is type-sensitive wrt. bitwise copies of a non-trivially
copyable object (Class 5).

Clearly, if the copy is exact in the sense that bl = s′.to byte(v, . . .) for some value v ∈ s.V , eq. (2)
rules out the existence of a semantic structure s′ for which s′.from byte(v, . . .) is undefined. For the same
reason, there can be no semantic structure with an address dependent encoding that detects Class 5 errors
if bl is a valid object representation for the read address a.

In Sect. 4.3, we described external-state dependent encodings that are able to fulfill the assumptions
of Lemma 6. The proof that external-state dependent encodings are type-sensitive wrt. all error classes
is lengthy but not difficult. It builds on the fact that for every address a there exists a choice of semantic
structures such that values at address a are protected with one additional bit of object representation, see
Sect. 4.3.

6 Related Work

In spirit, the work presented here is very similar to runtime type checking, as it is present in dynamically
typed programming languages such as Lisp and Perl. The runtime system of such languages attaches type
tags to all values, and uses them for type checking at runtime. There are also tools that perform extended
static or dynamic type checking for C and C++ programs by source or object code instrumentation [1,
11]. One can view each element of ST as a runtime system that performs a particular type check. While
runtime type checking can practically only be done for a limited number of program runs, this paper
analyzes verification techniques that apply to all possible program runs.



84 On the Use of Underspecified Data-Type Semantics

There are several proposals to enhance the type safety of C. Cyclone [4] introduces additional data
types such as safe pointers. BitC [14] augments a type-safe dialect of C with explicit placement and
layout controls to reduce the number of situations where low-level code has to break the type system. A
strength of underspecified data-type semantics is the ability to re-establish type safety when such a break
is inevitable.

As mentioned in Sect. 1, several similar data-type semantics for C or C++ have been discussed
in the literature. The formalization of C with abstract state machines by Gurevich and Huggins [5] and
Norrish’s C++ semantics in HOL4 [12] both rely on partial functions to convert byte lists to typed values.

The idea to reflect the underspecification of the C++ standard in the data-type semantics, and to ex-
ploit this underspecification for type checking, was first proposed in the context of the VFiasco project [7]
by Hohmuth and Tews [6]. This idea has then been independently further developed in the operating-
system verification projects l4.verified [10] and Robin [16].

For l4.verified, Tuch et al. built a typed memory on top of untyped memory [17]. This typed view on
memory can be used to automatically discharge type-correctness conditions for type-safe code fragments.

7 Conclusions

In this paper, we explored the ability of underspecified data-type semantics to enforce type-correctness
properties in verification settings that rely on untyped byte-wise organized memory. We have identified
five different classes of type errors, and proved sufficient conditions for recognizing all type errors from
each class. This required increasingly complex data-type semantics. Notably, simple underspecified data-
type semantics are unsound for non-trivially copyable types. Bitwise copies of such types can only be
detected with external-state dependent object encodings. The trade-off between using such complex data-
type semantics or dealing with errors from class 5 by other means must be decided for each verification
individually.

Although our analysis is inspired by C and C++, our results are largely programming-language inde-
pendent. They apply to all programs that cannot be statically type-checked. To demonstrate the practical
relevance of our analysis, we verified the type safety of a small code fragment from an operating-system
kernel in PVS (see App. A). Our PVS files are publicly available (see footnote 1 on page 74).

Giving a fully accurate, sound data-type semantics for the verification of C and C++ code remains a
challenge. The language standards make few guarantees in order to permit efficient implementations on
a wide range of hardware architectures. Yet the type systems are complex, there are subtle constraints
on memory representations and type domains, and the typed and untyped views on memory interact in
intricate ways.

References

[1] Michael Burrows, Stephen N. Freund & Janet L. Wiener (2003): Run-Time Type Checking for Binary Pro-
grams. In Görel Hedin, editor: 12th International Conference on Compiler Construction, LNCS 2622,
Springer, pp. 90–105, doi:10.1007/3-540-36579-6 7.

[2] (2012): The Go Programming Language Specification. Available at http://golang.org/doc/go_spec.
html. Retrieved June 15, 2012.

[3] James Gosling, Bill Joy, Guy L. Steele Jr. & Gilad Bracha (2005): The Java Language Specification (3rd
ed.). Addison-Wesley.

http://dx.doi.org/10.1007/3-540-36579-6_7
http://golang.org/doc/go_spec.html
http://golang.org/doc/go_spec.html


H. Tews, M. Völp, T. Weber 85

[4] D. Grossman, M. Hicks, T. Jim & G. Morrisett (2005): Cyclone: A Type-Safe Dialect of C. C/C++ User’s
Journal 23(1).

[5] Yuri Gurevich & James K. Huggins (1992): The Semantics of the C Programming Language. In Egon
Börger, Gerhard Jäger, Hans Kleine Büning, Simone Martini & Michael M. Richter, editors: Computer
Science Logic, CSL ’92, LNCS 702, Springer, pp. 274–308, doi:10.1007/3-540-56992-8 17.

[6] M. Hohmuth & H. Tews (2003): The Semantics of C++ Data Types: Towards Verifying low-level System
Components. In David Basin & Burkhart Wolff, editors: Theorem Proving in Higher Order Logics, 16th
International Conference, TPHOLs 2003. Emerging Trends Proceedings, Universität Freiburg, pp. 127–144.

[7] M. Hohmuth & H. Tews (2005): The VFiasco approach for a verified operating system. In Andreas Gal
& Christian W. Probst, editors: Proc. 2nd ECOOP Workshop on Programming Languages and Operating
Systems (ECOOP-PLOS 2005).

[8] ISO/IEC JTC1/SC22/WG14 C Standards Committee (2011): Programming Languages—C. ISO/IEC
9899:2011.

[9] ISO/IEC JTC1/SC22/WG21 C++ Standards Committee (2011): Programming Languages—C++. ISO/IEC
14882:2011.

[10] Gerwin Klein et al. (2010): seL4: formal verification of an operating-system kernel. Commun. ACM 53(6),
pp. 107–115, doi:10.1145/1743546.1743574.

[11] Alexey Loginov, Suan Hsi Yong, Susan Horwitz & Thomas W. Reps (2001): Debugging via Run-Time Type
Checking. In Heinrich Hußmann, editor: Fundamental Approaches to Software Engineering, FASE 2001,
LNCS 2029, Springer, pp. 217–232, doi:10.1007/3-540-45314-8 16.

[12] Michael Norrish (2008): A Formal Semantics for C++. Technical Report, NICTA. Avail-
able from http://nicta.com.au/people/norrishm/attachments/bibliographies_and_papers/

C-TR.pdf. Retrieved June 15, 2012.

[13] Sam Owre & Natarajan Shankar (2008): A Brief Overview of PVS. In Otmane Aı̈t Mohamed, César Muñoz
& Sofiène Tahar, editors: Theorem Proving in Higher Order Logics, 21st International Conference, TPHOLs
2008, LNCS 5170, Springer, pp. 22–27, doi:10.1007/978-3-540-71067-7 5.

[14] Jonathan Shapiro (2006): Programming language challenges in systems codes: why systems programmers
still use C, and what to do about it. In Christian W. Probst, editor: Proc. 3rd Workshop on Programming
Languages and Operating Systems (PLOS 2006), ACM, p. 9.

[15] Hendrik Tews, Marcus Völp & Tjark Weber (2009): Formal Memory Models for the Verification of Low-Level
Operating-System Code. Journal of Automated Reasoning: Special Issue on Operating Systems Verification
42(2–4), pp. 189–227.

[16] Hendrik Tews, Tjark Weber, Marcus Völp, Erik Poll, Marko van Eekelen & Peter van Rossum (2008): Nova
Micro–Hypervisor Verification. Technical Report ICIS–R08012, Radboud University Nijmegen.

[17] Harvey Tuch, Gerwin Klein & Michael Norrish (2007): Types, Bytes, and Separation Logic. In Martin
Hofmann & Matthias Felleisen, editors: Proc. 34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2007, ACM, pp. 97–108, doi:10.1145/1190216.1190234.

A Verifying Safe and not so Safe Kernel Code

To demonstrate our approach, we have verified termination and hence type safety of a small piece of
microkernel code (Fig. 3). The code in lines 21 to 24 is part of the scheduler. Upon preemption, it
inserts the thread control block (TCB) of the currently running thread at the back of the doubly-linked
priority list. Also shown but not verified is a simplified version of the copy routine of the inter-process
communication path. To demonstrate the error checking capabilities, we modified the call to memcpy in
line 16 to copy the first cnt bytes from the sender TCB rather than from its message buffer mr.

http://dx.doi.org/10.1007/3-540-56992-8_17
http://dx.doi.org/10.1145/1743546.1743574
http://dx.doi.org/10.1007/3-540-45314-8_16
http://nicta.com.au/people/norrishm/attachments/bibliographies_and_papers/C-TR.pdf
http://nicta.com.au/people/norrishm/attachments/bibliographies_and_papers/C-TR.pdf
http://dx.doi.org/10.1007/978-3-540-71067-7_5
http://dx.doi.org/10.1145/1190216.1190234


86 On the Use of Underspecified Data-Type Semantics

1 class TCB : public list<TCB> {
2 public:
3 unsigned char priority;
4 Msg_Buffer mr;
5 ...
6 static inline TCB * current(){
7 unsigned long dummy;
8 asm volatile ("mov %%esp, %0 \n\t" : "+m" (dummy) ::);
9 return reinterpret_cast<TCB*> (dummy & ~(1 << L2_TCB_SIZE));

10 }
11 };
12 list<TCB> prio_list[Max_Prio];
13 void
14 copy(TCB * dest, unsigned long cnt){
15 TCB * src = TCB::current();
16 memcpy(src, dest, cnt);
17 }
18
19 ...
20 // preempt current thread
21 TCB * current = TCB::current();
22 unsigned char p = current→priority;
23
24 prio_list[p].push_back(current);
25 ...

Figure 3: Excerpt of a simple IPC send operation and the kernel code that is executed when the current
thread is preempted.

The verification is based on an excerpt of the Robin statement and expression semantics for C++ [16]
extended with the C++ instance of our data-type semantics. We will first focus on lines 21 to 24,
as they demonstrate the normal use of our data-type semantics. After that, we dive into the function
TCB::current(), which extracts the TCB pointer of the current thread from the processor’s kernel
stack pointer, and look at the interplay between list<TCB>::push_back and the erroneous call to
memcpy.

A.1 Preempt Current Thread

For our example, we use sets ST that are rich enough to fulfill the respective preconditions of Lemmas 3
to 6, for all used types T . We assume that the compiler inlines the call to push_back in line 24, which
therefore expands to the usual update of the prev and next pointers of double-linked list inserts. By
inheriting from list<TCB>, class TCB-typed objects include these pointers in their representation. In
the course of updating these pointers, the value of current must be read to obtain the addresses of
these members. This value can only be obtained by reading the byte list at the address of current and
interpreting it using sTCB∗.from byte. The assignment to p in line 22 or hardware side effects (e.g., when
reading current→priority) may modify this byte list in which case our data-type semantics prevents
any verification. We therefore make the (sensible) assumption that the objects at current and p are
allocated at disjoint address regions, which are not changed by any side effect.4 Then our rewrite engine

4 These two assumptions are only made to simplify the case study. In a real verification, the disjointness would be implied
by the functional correctness of the memory allocator. A suitable type-safety invariant would imply that side effects occur only
in other address regions.



H. Tews, M. Völp, T. Weber 87

simplifies the typed read of the current pointer to

sTCB∗.from byte(sTCB∗.to byte(v,current),current)

which eq. (2) collapses to v where v is the result of TCB::current().
When compared to other approaches, the qualitative difference is that our approach demands

either a proof of disjointness, or additional assumptions that connect the object representations of
unsigned char and TCB*. For the same reason, Lemma 6 demands for a fix of the call to memcpy

because only then the list invariant can be maintained that running threads are never in the priority list.
An erroneous memcpy of the characters of not trivially-copyable type list<TCB> prevents the proof of
such an invariant.

A.2 TCB::current()

The verification of TCB::current() (lines 6 to 9) demonstrates the inclusion of additional assumptions
without restricting ST to a point where type sensitivity is no longer given.

Co-locating the kernel stack next to sufficiently aligned objects is a common programming pattern
in microkernels to quickly retrieve pointers to these objects. TCB::current() reads the stack pointer
value in esp as an unsigned long (line 8), rounds it to the object alignment (line 9) and casts it into
the respective pointer type (line 9). When verifying the first operation, it is tempting to fix the encoding
of esp as the four-byte little endian representation of machine words and to require that the word values
of stack addresses are valid object representations for unsigned long. Under these assumptions, un-
derspecified data-type semantics can detect modifications that cause the esp value to point to non-stack
addresses. However, modifications that cause the esp to point to other (possibly unallocated) stacks re-
main undetected. An elegant way to circumvent these problems is to introduce a semantic structure also
for the esp register. The verification is then performed against a whole family of processors that differ
in their choice of semantics structure for register esp.


	1 Introduction
	2 The Power of Underspecified Data Types
	2.1 Semantic Structures

	3 Type Errors
	4 Type Sensitivity with Semantic Structures
	4.1 Plain Object Encodings
	4.2 Address-Dependent Object Encodings
	4.3 External-State Dependent Object Encodings

	5 Towards a Type-Sensitivity Theorem
	6 Related Work
	7 Conclusions
	A Verifying Safe and not so Safe Kernel Code
	A.1 Preempt Current Thread
	A.2 TCB::current()


