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We present a new unit test generator for C code, CTGEN. It generates test data for C1 structural
coverage and functional coverage based on pre-/post-condition specifications or internal assertions.
The generator supports automated stub generation, and data to be returned by the stub to the unit
under test (UUT) may be specified by means of constraints. The typical application field for CTGEN
is embedded systems testing; therefore the tool can cope with the typical aliasing problems present
in low-level C, including pointer arithmetics, structures and unions. CTGEN creates complete test
procedures which are ready to be compiled and run against the UUT. In this paper we describe
the main features of CTGEN, their technical realisation, and we elaborate on its performance in
comparison to a list of competing test generation tools. Since 2011, CTGEN is used in industrial
scale test campaigns for embedded systems code in the automotive domain.

1 Introduction

Unit testing is a well-known method, widely used in practice, by which a single program function or
method (hereafter referred to as module or the unit under test (UUT)) is tested separately with respect to
its functional correctness1. The test data for performing a module test specifies initial values for input
parameters, global variables, and for the data to be set and returned by sub-functions called by the UUT.
The test results are typically checked by means of pre-/post-conditions, that is, logical conditions relating
the program pre-state to its post state after the module’s execution. More complex correctness conditions,
such as the number of sub-function calls performed by the UUT may also be specified by means of pre-
/post-conditions, if auxiliary variables are introduced, such as counters for the number of sub-function
calls performed. The manual elaboration of test data and the development of test procedures exercising
these data on the UUT is time consuming and expensive.

Symbolic execution [17, 10] is a well-known technique that addresses the problem of automatic gen-
eration of test inputs. Symbolic execution is similar to a normal execution process, the difference being
that the values of program inputs are symbolic variables, not concrete values. When a variable is updated
to a new value it is possible, that this new value is an expression over such symbolic variables. When the
program flow comes to a branch, where the condition depends on a symbolic variable, this condition can
be evaluated both to true or false, depending on the value of a symbolic variable. Through the symbolic
execution of a path, it becomes a path condition, which is a conjunction of all branch conditions occur-
ring on the path. To reason about path conditions and hence about feasibility of paths a constraint solver
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is used. When the solver determines a path condition as feasible, it calculates concrete values which can
then be used as concrete inputs to explore the corresponding path.

In this paper we present CTGEN, an automatic test generation tool, based on symbolic execution.
The objective of CTGEN is to cover every branch in the program, which is an undecidable problem, so
in practice CTGEN tries to generate a test that produces as high a coverage for the module under tests as
possible. For each unit under test CTGEN performs symbolic analysis and generates a test in RT-Tester
syntax [13], which can be directly compiled and executed. For the definition of expected behaviour of
the UUT CTGEN provides an annotation language, which also offers support for referencing functional
requirements for the purpose of traceability from tests to requirements. Apart from atomic integral data
types, CTGEN supports floating point variables, pointer arithmetics, structures and arrays and can cope
with the typical aliasing problems in C, caused by array and pointer utilisation. Recursive functions,
dynamic memory, complex dynamic data structures with pointers (lists, stacks etc.) and concurrent
program threads are not supported. CTGEN does not check the module under test for run-time errors,
but rather delegates this task to an abstract interpreter which is developed in our research group [21].

CTGEN does not rely on knowledge about all parts of the program (such as undefined or library
functions). Where several other unit test automation tools [25, 8, 14] fall back to the invocation of
the original sub-function code with concrete inputs if an external function occurs on the explored path,
CTGEN automatically generates a mock object replacing the external function by a test stub with the
same signature. Furthermore it calculates values for the stub’s return data, output parameters and global
variables which can be modified by the stubbed function in order to fulfil a path condition. In this way
CTGEN can also simulate exceptional behaviour of external functions. It is possible but not required
to customise stub behaviour by using pre- and post-conditions described in Section 3. If no restrictions
were made, however, the stub’s actions can deviate from the real behaviour of the external function.

Main contributions. CTGEN is distinguished from other unit test automation tools by the following
capabilities: (1) handling of external function calls by means of mock objects, (2) symbolic pointer and
offset handling, and (3) requirement tracing. As pointed out in [24], pointers and external function calls
are the most important challenges for test data generation tools. CTGEN handles both as described in
this paper. Furthermore we provide heuristics for the selection of paths through the UUT in such a way,
that the coverage may be achieved with as few test cases as possible.

Overview. This paper is organised as follows. Section 2 presents an overview of the CTGEN architec-
ture. Section 3 introduces an annotation language developed to define expected behaviour of the UUT
and to support requirements tracing. In Section 4 we discuss test case generation strategies used by CT-
GEN. Section 5 describes the algorithm for handling pointer comparisons and pointer arithmetics. We
show experimental results and compare CTGEN to other test data generation tools in Section 6, discuss
related work in Section 7 and present a conclusion in Section 8.

2 Architecture

CTGEN is structured into two main components (see Fig. 1):
The preprocessor operates on the UUT code. It consists of (1) the CTGEN preprocessor transforming

code annotations as described in Section 3, (2) a GCC plugin based on [19], compiling the prepared
source code into a textual specification consisting of Control Flow Graphs (CFGs) in 3-address code
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Figure 1: CTGEN overview.

and symbol table information like function signatures, types and variables, and (3) parsers, transforming
CFGs and symbol table information into the Intermediate Model Representation (IMR).

The analyser operates on the IMR, its building blocks and their interactions are described below.
The Symbolic Test Case Generator is responsible for lazy expansion of the CFGs related to the function
under test and its sub-functions. Moreover, it handles the selection of paths, each beginning with the
start node of the CFG, and containing yet uncovered transitions (for more details see Section 4). If such
path can be found, it is passed to the Symbolic Interpreter, which traverses the path and symbolically
calculates the effect of its statements in the memory model. As soon as the next node on the path is
guarded by a non-trivial condition, the Constraint Generator [20] is called and resolves all pointers and
array references occurring in this condition. It also passes the resulting constraint to the Solver. CTGEN
uses a SMT solver, SONOLAR, which has been developed in our research group [21] and supports
integral and floating point datatypes, arrays and bit vectors. If the solver can find a solution for the
constraint, the solution is passed back to the Symbolic Interpreter, which continues to follow the path
under investigation. Otherwise, if the constraint is infeasible or the path is completed, the solver passes
the result to the Symbolic Test Case Generator. It learns from infeasibility and tries to produce another
path containing still uncovered transitions, or tries to continue the completed path. When no such paths
can be found, a unit test is generated based on the collected solutions (if any) and is stored in the file
system.

3 Annotation Language

Annotations in CTGEN allow users to specify the expected behaviour of functions. For the definition of
annotations we have chosen the approach used in sixgill [16]: they are specified as GCC macros which
are understood by CTGEN. Thus the annotations can be turned on and off as needed. The arguments
of the annotations follow standard C syntax, so that no additional expertise is required for the user. All
annotations are optional – if there are none, CTGEN will try to cover all branches and detect unreachable
code, using arbitrary type-compatible input data.

Pre- and post-conditions are defined as follows:
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r t t p r e c o n d i t i o n (PRE) ;
r t t p o s t c o n d i t i o n (POST) ;

A precondition indicates, that the expected behaviour of the specified function is only guaranteed if
the condition PRE is true. A post-condition specifies, that after the execution of a function the condition
POST must hold. Pre- and post-conditions have to be defined directly at the beginning of a function body.
PRE and POST are boolean C expressions, including function calls. All variables occurring in these con-
ditions must be global, input or output parameters, or refer to the return value of the specified function.
To specify conditions involving the return value of the UUT the CTGEN variable __rtt_return may
be used. Annotation __rtt_initial(VARNAME) can be used within other annotation expressions – in
particular, in post-conditions – for referring to the initial value of the variable VARNAME, valid before the
function was executed.

To reason over local variables, auxiliary variables are used. Auxiliary variables can never occur in
assignments to non-auxiliary variables or in control flow conditions [3, 20]. They can be defined as
follows:

r t t a u x (TYPE , VARNAME) ;

In this way an auxiliary variable of type TYPE with the name VARNAME will be declared and can be used
in the following CTGEN annotations in the same way as regular variables.

For a more detailed specification of the expected behaviour of the function, test cases can be used:

r t t t e s t c a s e ( PRE , POST , REQ)

The argument PRE defines a pre-condition and the argument POST a post-condition of the current testcase.
The argument REQ is a string tag defining a functional requirement that corresponds to the pre- and post-
condition of this test case. If there is more than one requirement, they can be listed in a comma-separated
list.

Users can specify global variables which are allowed for modification in the current function by
means of annotation:

r t t m o d i f i e s (VARNAME)

CTGEN traces violations, even in cases where a prohibited variable is modified by means of pointer
dereferencing. For each breach of a modification rule an assertion is generated, which records the line
number where the illegal modification occurred, e. g.

/ / v i o l a t e d var VARNAME i n l i n e ( s ) 1212 , 1284
@rttAssert (FALSE) ;

The __rtt_assign(ASSIGNMENT) annotation is intended for assignments to auxiliary variables. In
the following example an auxiliary variable a_aux is first declared using __rtt_aux(); it may then be
used in a post-condition’s expression. To define its value, __rtt_assign() is used in the function body.

r t t a u x ( i n t , a au x ) ;
r t t p o s t c o n d i t i o n ( a au x == 0) ;

. . .
i n t b ;
. . .

r t t a s s i g n ( a au x = b ) ;

__rtt_assert(COND) can be used in different places of the function to ensure a specific property.
If condition COND is seen to fail during test generation an assertion recording the line number where the
violation occurs is inserted into the generated test.
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An example of a specification of the expected behaviour of a function is illustrated in Fig. 2. The
function alloc() returns a pointer allocp to n successive characters if there is still enough room in
the buffer allocbuf and zero if this is not the case. First, by using __rtt_modifies we state that
alloc() can only modify allocp, and modification of allocbuf is consequently prohibited. Anno-
tation __rtt_precondition specifies that the expected behaviour of alloc() is guaranteed only if
the parameter n is greater or equal zero and allocp is not a NULL-pointer. Furthermore the condition
__rtt_postcondition states that after the execution of the function under test allocp must still be
within the bounds of the array allocbuf. Finally, test cases are defined for the situations where (a)
memory can still be allocated and (b) not enough memory is available.

1 char a l l o c b u f [ ALLOCSIZE ] ;
2 char ∗ a l l o c p = a l l o c b u f ;
3

4 char ∗ a l l o c ( i n t n ) {
5 r t t m o d i f i e s ( a l l o c p ) ;
6 r t t p r e c o n d i t i o n ( n >= 0 && a l l o c p != 0) ;
7 r t t p o s t c o n d i t i o n ( a l l o c p != 0 && a l l o c p <= a l l o c b u f + ALLOCSIZE ) ;
8 r t t t e s t c a s e ( a l l o c b u f + ALLOCSIZE − r t t i n i t i a l ( a l l o c p ) < n ,
9 r t t r e t u r n == 0 ,

10 ”CTGEN 001” ) ;
11 r t t t e s t c a s e ( a l l o c b u f + ALLOCSIZE − r t t i n i t i a l ( a l l o c p ) >= n ,
12 r t t r e t u r n == r t t i n i t i a l ( a l l o c p ) ,
13 ”CTGEN 002” ) ;
14

15 char ∗ r e t v a l = 0 ;
16 i f ( a l l o c b u f + ALLOCSIZE − a l l o c p >= n ) {
17 a l l o c p += n ;
18 r e t v a l = a l l o c p − n ;
19 }
20

21 re turn r e t v a l ;
22 }

Figure 2: Example: Specification of expected behaviour.

4 Symbolic Test Case Generation

As described in Section 2, the symbolic test case generator is responsible for the selection of test cases,
which the symbolic interpreter then tries to cover. As a criteria to reason about completeness of testing
we use code coverage. CTGEN supports the following two coverage criteria: (1) statement coverage
(C0), which requires, that each statement in the program is executed at least once, and (2) decision
coverage (C1), which requires that additionally to statement coverage each decision in the program was
evaluated at least once to true and at least once to false.

A central data structure in the symbolic test case generator is a Symbolic Test Case Tree (STCT),
which stores bounded paths through the control flow graph of the UUT. To build a STCT the CFG is
expanded node by node. During expansion of CFG node n, each outgoing edge of n is analysed and each
of its target nodes becomes a new corresponding STCT leaf, even if this target node already has been
expanded. The nodes are labeled with a number k, so that (n,k) is a unique identifier of a STCT node,
while n may occur several times in the STCT if it lies on a cyclic CFG path. The STCT root corresponds
to the CFG start node (see [5] for further details).

When it is required to select a new test case, the symbolic test case generator takes an edge in the
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if(a && b){
  c = true;
} else {
  c = false;
}
if(a1 && b1){
  c1 = true;
} else {
  c1 = false;
}

c = false;

c = true;

a !а

b !b

c1 = false;

c1 = true;

a1 !а1

!b1

c = false;

c1 = false;

b1
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Figure 3: Expansion/Selection Example.

CFG, which is still uncovered. Subsequently it finds a corresponding STCT edge (since nodes n,n′ may
occur several times in the STCT, edges n→ n′ may occur several times as well) and traces it bottom-up
to the start node. This trace is then returned to the test data generator by the symbolic test case generator
for further investigation.

The depth-first search used by several test generating tools [6, 25, 14, 8] allows to reuse the infor-
mation of the shared part of the execution trace, but on the other hand can cause the generator to get
“stuck” analysing a small part of the program and generating a lot of new test cases but no (or little)
new coverage. Pex [26] avoids using depth-first and backtracking techniques by storing the information
of all previously executed paths. CTGEN behaves similarly: during the symbolic execution of a trace
it stores information already gained in the form of computation histories and path constraints associated
with each branch point of the trace under consideration.

Our expansion and selection strategies are motivated as follows: (a) The larger the explored range of
the variable values participating in the guard conditions closest to the start node, the higher the probability
to cover more branches depending on these variables further down the CFG. So we prioritise edges
after their proximity to the start node. This allows achieving more coverage when it is not possible to
explore the function completely due to its size. Furthermore this approach minimises the number of
paths that must be explored to achieve 100 % C1 coverage, which in turn reduces the overall time for test
generation. (b) A path is interesting for the test case generation for C1 coverage only if it contains still
uncovered edges with non-trivial guard conditions, since otherwise no new coverage can be achieved
by interpreting this path. So we expand until the STCT contains a new uncovered edge whose guard
condition is not always true, or until no expansion can find any additional uncovered edges. At the same
time we try to minimise the size of a STCT, so we stop the expansion process as soon as an uncovered
edge with non-trivial guard condition occurs. We call this approach incremental expansion. (c) To further
minimise the size of a STCT we incrementally expand only the end node of the path under consideration
(initially the root node), select the continuation for it and hand it over to the solver. We continue this
step by step until the path is complete. After that and according to prioritisation of edges, a new path
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C code path constraint solver solution generated test case

void t e s t ( char ∗p1 ,
char ∗p2 ){

i f ( p1 < p2 ){
ERROR;
}
}

p1@baseAddress == p2@baseAddress &&
p1@off se t < p2@off se t &&
0 <= p1@off se t < 10 &&
0 <= p2@off se t < 10

p1@baseAddress = 2147483648
p2@baseAddress = 2147483648
p1@off se t = 0
p2@off se t = 7

char∗ p1 , p2 ;
char p 1 a u t o g e n a r r a y [ 1 0 ] ;
unsigned i n t p 1 a u t o g e n o f f s e t ;
unsigned i n t p 2 a u t o g e n o f f s e t ;

p1 = p 1 a u t o g e n a r r a y ;
p2 = p 1 a u t o g e n a r r a y ;

p 1 a u t o g e n o f f s e t = 0 ;
p1 += p 1 a u t o g e n o f f s e t ;
p 2 a u t o g e n o f f s e t = 7 ;
p2 += p 2 a u t o g e n o f f s e t ;

@rttCal l ( t e s t ( p1 , p2 ) ) ;

Table 1: Pointer handling example.

is selected. If the selected path is infeasible, the responsible branch is deleted from the STCT, and the
selection/expansion process is continued with the alternative branch.

The loop constructs are unwound according to our expansion strategy: the loop body is incrementally
expanded until the exit condition is reached. If the exit condition can be evaluated to true, the loop is
exited. Otherwise it is further expanded. This process is bounded by a configurable command line
parameter, that defines the maximal possible depth of the STCT.

A simple example of our expansion/selection strategy is illustrated in Fig. 3. Fig. 3(a) shows a
program, its corresponding CFG is presented in Fig. 3(b). After the initial expansion (Fig. 3(c)) a trace
consisting of edge < a > is selected (nodes and edges, that belong to the trace are drawn black, those
that do not belong are drawn grey). After the trace is interpreted and evaluated as feasible, its last node
is expanded (Fig. 3(d)) and a new trace (the continuation of the last one) consisting of egdes < a > and
< b> is selected. After this trace is interpreted as well, its last node (c= true;) is expanded until the new
edge whose guard condition is not always true appears (Fig. 3(e)). Afterwards a new trace (continuation
of the previous one) is selected. This process continues until the path is complete (Fig. 3(f)). Finally
a new trace, corresponding to the prioritisation of edges, will be selected (here <!a >) and the whole
process will be repeated.

5 Symbolic Execution

Due to aliasing in C/C++ the value of a variable can be changed not only by a direct reference to its
name, but also by assignments to de-referenced pointers pointing to this specific variable. In the case
of arrays different index expressions may reference the same array element. This makes it difficult to
identify variable changes along program paths involving pointer and array expressions. To solve this
problem, a memory model consisting of a history of memory items was introduced in [20, 19]. Each
memory item is defined by its base address, offset, length, value expression and time interval (measured
in computation steps) where it is valid. Computations are defined as memory modifications which are
stored in corresponding memory items. Furthermore, the stored values are not resolved to concrete or
abstract valuations, but are specified symbolically. This approach allows not only to find the actual
memory area where a new value is written to, but also enables us to handle pointer comparisons and
pointer arithmetics as described below.

Pointer Handling We handle all memory areas pointed to by pointers as arrays with configurable size.
By abstracting pointers to integers we achieve that constraints over pointers can be solved by a solver



T. Mangels and J. Peleska 95

C code path constraint solver solution
void t e s t ( i n t p1 , i n t p2 ){

r t t m o d i f i e s ( g l o b a l V a r ) ;
g l o b a l V a r = −p2 ;
i f ( f u n c e x t ( p1 ) > p2 && f u n c e x t ( p2 ) == p1 &&

g l o b a l V a r == p2 ){
ERROR;
}
}

func ext@RETURN@0 > p2 &&
func ext@RETURN@1 == p1 &&
globalVar@func ext@1 == p2

func ext@RETURN@0 = 21
func ext@RETURN@1 = 0
globalVar@func ext@1 = −1
p1 = 0
p2 = −1

generated test case generated stub
e x t er n unsigned i n t f u n c e x t S T U B t e s t C a s e N r ;
e x t er n unsigned i n t f u n c e x t S T U B r e t I D ;
e x t er n i n t f u n c e x t S T U B r e t V a l [ 2 ] ;

i n t p1 , p2 ;

/∗∗∗∗∗ STUB f u n c e x t ∗∗∗∗∗ /
f u n c e x t S T U B t e s t C a s e N r = 0 ;
f u n c e x t S T U B r e t I D = 0 ;

/∗ s e t v a l u e s f o r r e t u r n ∗ /
f u n c e x t S T U B r e t V a l [ 0 ] = 2 1 ;
f u n c e x t S T U B r e t V a l [ 1 ] = 0 ;
/∗∗∗∗∗ end STUB f u n c e x t ∗∗∗∗∗ /

p1 = 0 ;
p2 = −1;
@rttCal l ( t e s t ( p1 , p2 ) ) ;

i n t f u n c e x t ( i n t a ){
@GLOBAL:

unsigned i n t f u n c e x t S T U B t e s t C a s e N r ;
unsigned i n t f u n c e x t S T U B r e t I D ;
i n t f u n c e x t S T U B r e t V a l [ 2 ] ;

@BODY:
func ext RETURN = f u n c e x t S T U B r e t V a l [ f u n c e x t S T U B r e t I D %2];
i f ( f u n c e x t S T U B t e s t C a s e N r == 0){

i f ( f u n c e x t S T U B r e t I D == 1){
g l o b a l V a r = −1;

}
}
f u n c e x t S T U B r e t I D ++;

} ;

Table 2: External function handling example.

capable of integer arithmetics. Each pointer p is associated with a pair of unsigned integers (A,x), where
A corresponds to a base address of the memory area p points into and x is its offset (p=A+x). Whenever
two pointers pi = (Ai,xi), i = 1,2 occur in an expression (p1 ω p2) with some comparison operator ω ,
we construct the following constraint:

A1 == A2 && x1 ω x2 && 0≤ x1 < dim(p1) && 0≤ x2 < dim(p2) && dim(p1) == dim(p2).

where A1 == A2 ensures, that p1 and p2 point to members of the same memory portion, x1 ω x2 reflects
the pointer expression and 0 ≤ xi < dim(pi) guarantees, that the pointer stays within array bounds. To
illustrate how CTGEN handles pointer operations we use the simple example shown in Table 1. Consider
function test(): to reach the line with an error, input pointers p1 and p2 should fulfil p1 < p2. The
symbolic interpreter generates a path constraint according to our approach with the size for the auxiliary
arrays configured by the user over the command line argument equal to 10 (if it is not configured, default
size will be taken), because this memory size makes condition p1 < p2 feasible (any size ≥ 2 would
suffice). All auxiliary variables used here are of type unsigned int so that the solver can easily solve
the generated path constraint. CTGEN considers the calculated base address as a unique identifier of
an auxiliary array: so, if the identifier appears for the first time, a new array is created, if the identifier
is already known, the corresponding auxiliary array is taken. In our example identifier 2147483648
appears for the first time in the solution for p1@baseAddress, so the new array p1__autogen_array

is created and the pointer p1 is initialised with it. When the same identifier appears in the solution for
p2@baseAddress, it is already known to CTGEN, so p2 is also initialised with p1__autogen_array.
Then offset values are processed and pointers are modified accordingly. With this test input the erroneous
code in test() is uncovered.

External Function Handling When an external function call appears on the path under consideration,
the return value of this external function, its output parameters and all global variables allowed for
modification are handled as symbolic stub variables. These symbolic stub variables can possibly be
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Executable Lines Branches Time Nr of Test Cases Lines Coverage Branch Coverage
f1() 714 492 31m27.098s 59 95,1 % 89,0 %
f2() 50 30 0m1.444s 8 100 % 100 %
f3() 11 4 0m0.228s 3 100 % 100 %

Table 3: Experimental results on some functions of HELLA software.

modified by this call. A stub variable holds the information about the stub function to which it belongs
and if it corresponds to the return value, the output parameter or global variable, changed by this stub.

To illustrate how this algorithm works we use the example shown in Table 2. In function test() the
external function func_ext() is called twice. To reach the line with an error, func_ext() must return
a value that is greater than the value of the parameter p2 by the first call. Furthermore, by the second
call it must return a value that is equal to the value of the parameter p1. The symbolic interpreter anal-
yses, what could possibly be altered by func_ext() and creates the stub variables func_ext@RETURN
and globalVar@func_ext. The constraint generator generates a path constraint as shown in Table 2.
The occurences of the stub variables are versioned (actually, in CTGEN all variables in path constraint
are versioned [20], but this is ignored here to keep the example simple). The version of a stub variable
corresponds to the running number of the call of the external function. Here func_ext@RETURN@0 corre-
sponds to the return value of the first call and func_ext@RETURN@1 to the return value of the second one.
Now consider the generated test case and the generated stub in Table 2. As was already mentioned, CT-
GEN generates tests in RT-Tester syntax. An array func_ext_STUB_retVal of size two (corresponding
to the number of calls of the function func_ext()) is created to hold the calculated return values. These
values are stored by the test driver according to their version. The variable func_ext_STUB_retID cor-
responds to the running number of the stub call. It is reset by the test driver before each call of UUT and
incremented by the corresponding stub each time it is called. Since one test driver can hold many test
cases, the variable func_ext_STUB_testCaseNr that corresponds to the number of test case is created.
This variable is set by the test driver. The value of the global variable globalVar is set by the stub if the
number of the stub call and the test case number match the calculated ones for this global variable.

A detailed description how to perform symbolic execution in presence of arrays and primitive datatypes
can be found in [20].

6 Experimental Results

The experimental evaluation of CTGEN and comparison with competing tools was performed both with
synthetic examples evaluating the tools’ specific pointer handling capabilities and with embedded sys-
tems code from an industrial automotive application. The latter presented specific challenges: (1) the
code was automatically generated from Simulink models. This made automated testing mandatory since
small model changes considerably affected the structure of the generated code, so that re-use of existing
unit tests was impossible if models had been changed. (2) Some units were exceptionally long because
insufficient HW resources required to reduce the amount of function calls.

Table 3 shows the results achieved by CTGEN in the automotive test project on some selected func-
tions. The most challenging function was f1 with over 2000 lines of code (714 executable lines), using
structures, bit vectors, pointer parameters and complex branch conditions. Nevertheless CTGEN was
able to generate 95,1% line and 89,0% branch coverage with 59 automatically generated test cases. Fur-
thermore, by using preconditions as guides for CTGEN to cover parts of code further down in the CFG, it
was possible to increase the coverage even more. Function f2 with 50 executable lines of code (about 300
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lines of code) represents a typical function in the project. For such functions CTGEN achieved 100% C1
coverage. Function f3 includes pointer comparison, pointer dereferencing and a for-loop with an input
parameter as a limit. However, due to small branching factor CTGEN achieves 100% coverage with only
3 test cases and a generation time under one second. Summarising, CTGEN proved to be efficient for
industrial test campaigns in the embedded domain and considerably reduced the over all project efforts.

In comparison (see Table 4), experiments with KLEE [7] and PathCrawler [6] demonstrated that
CTGEN delivers competitive results and outperformed the others for the most complex function f1().
The experiments with PathCrawler were made with the online version [1], so it was not possible to
exactly measure the time spent by this tool. This tool, however, could not handle the complexity of f1(),
and KLEE did not achieve as much coverage as CTGEN, we assume that this is due to the path-coverage
oriented search strategy which has not been optimised for achieving C1 coverage.

Functions f4() and f5() are also taken from the automotive testing project. Function f5() has struct-
inputs with bit fields. KLEE achieved 100 % path coverage. PathCrawler also targets path coverage, but
due to limitations of the online version (number of generated test cases, available amount of memory)
delivers only 201 test cases. However, we assume that without these limitations it will also achieve 100
% path coverage, although in a larger amount of time than KLEE. For the example function Tritype()
KLEE delivers bad results because it does not support floating types; there is, however, an extension
KLEE-FP [11] targeting this problem. PathCrawler excels CTGEN and KLEE, but can handle only the
double type, not float, while CTGEN can calculate bit-precise solutions for both. alloc ptr() and
comp ptr() demonstrate handling of symbolic pointers which is not supported by PathCrawler; KLEE
and CTGEN deliver comparable results.

7 Related Work

The idea of using symbolic execution for test data generation is not new, it is an active area of research
since the 70’s [17, 10]. In the past a number of test data generation tools [7, 8, 6, 4, 18, 2, 26, 25, 14,
15, 23] were introduced. Nevertheless to the best of our knowledge, only Pex (with Moles) supports
automatic stub generation as provided by CTGEN. Furthermore, CTGEN seems to be the only tool
supporting traceability between test cases and requirements. From the experimental results available
from other tool evaluations we conclude that CTGEN outperforms most of them with respect to the UUT
size that still can be handled for C1 coverage generation.

DART [14] is one of the first concolic testing tools to generate test data for C programs. It falls back
to concrete values by external function calls, and does not support symbolic pointers. CUTE [25] is also
a concolic test data generator for C, and, like DART, falls back to concrete values by external function
calls. It supports pointers, but collects only equalities/inequalities over them, while CTGEN supports all
regular pointer arithmetic operations.

SAGE [15] is built on DART, is a very powerful concolic testing tool utilising whitebox fuzzing. It
is fully automated and is in daily use by Windows in software development process, and, accordingly to
authors, uncovered about half of all bugs found in Windows 7. SAGE has a precise memory model, that
allows accurate pointer reasoning [12] and is very effective because it works on large applications and
not small units, which allows to detect problems across components. Nevertheless SAGE uses concrete
values for sub-function calls which cannot be symbolically represented and, to our best knowledge, does
not support pre- and post-conditions.

Pex [26] is an automatic white-box test generation tool for .NET, developed at Microsoft Research.
It generates high coverage test suites applying dynamic symbolic execution for parameterised unit tests
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CTGEN KLEE PathCrawler
f1() (714 lines, 492 branches )

Time 31m27.098s 16m50s 586m16.590s -
Nr of Test Cases 59 1120 24311 -
Lines Coverage 95,1 % 77,9 % 78,54 % -

Branch Coverage 89,0 % 58,2 % 59,36 % -
f4() (19 lines, 4 branches )

Time 0.062s 0.040s < 1s
Nr of Test Cases 3 3 9
Lines Coverage 100 % 100 % 100 %

Branch Coverage 100 % 100 % 100 %
f5() (28 lines, 35 branches )

Time 0.337s 3.234s 41,176s 10s
Nr of Test Cases 3 463 2187 201
Lines Coverage 100 % 100 % 100 % 85,71 %

Branch Coverage 100 % 100 % 100 % 85,71 %

CTGEN KLEE PathCrawler
Tritype()

Time 8.404 0.095 < 1s
Nr of Test Cases 8 1 11
Lines Coverage 100 % 41,66 % 100 %

Branch Coverage 100 % 20 % 100 %

i n t T r i t y p e ( double i , double j , double k ){
i n t t r i t y p = 0 ;
i f ( i < 0 . 0 | | j < 0 . 0 | | k < 0 . 0 )

re turn 3 ;
i f ( i + j <= k | | j + k <= i | | k + i <= j )

re turn 3 ;
i f ( i == j ) t r i t y p = t r i t y p + 1 ;
i f ( i == k ) t r i t y p = t r i t y p + 1 ;
i f ( j == k ) t r i t y p = t r i t y p + 1 ;
i f ( t r i t y p >= 2)

t r i t y p = 2 ;
re turn t r i t y p ;

}

CTGEN KLEE PathCrawler
alloc ptr()

Time 0.071s 0.064s < 1s
Nr of Test Cases 4 4 2
Lines Coverage 100 % 100 % 42,86 %

Branch Coverage 100 % 100 % 50 %

char ∗ a l l o c p t r ( char ∗a l l o c b u f p , char ∗a l l o c p ,
unsigned i n t n )

{
i f ( a l l o c b u f p == 0 | | a l l o c p == 0)

re turn 0 ;

i f ( a l l o c b u f p + ALLOCSIZE − a l l o c p >= n ){
a l l o c p += n ;
re turn a l l o c p − n ;

}
re turn 0 ;

}

CTGEN KLEE PathCrawler
comp ptr()

Time 0.032s 0.055s < 1s
Nr of Test Cases 4 4 2
Lines Coverage 100 % 100 % 75 %

Branch Coverage 100 % 100 % 50 %

i n t comp p t r ( char ∗p1 , char ∗p2 )
{

i f ( p1 != NULL && p2 != NULL && p1 == p2 ){
re turn 1 ;

}
re turn 0 ;

}

Table 4: Experimental results compared with other tools.
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(PUT). Similarly to CTGEN it uses annotations to define expected results, and the Z3 SMT Solver to
decide on feasibility of execution paths. It also supports complex pointer structures [27]. Pex with Moles
also offers a possibility to handle external function calls with stubs; however, it is required, that the mock
object is first generated by the user with Moles to enable Pex to handle such calls, while CTGEN does it
automatically.

Another approach using symbolic execution is applied by KLEE [7], the successor of EXE [8]. KLEE
focuses on the interactions of the UUT with the running environment – command-line arguments, files,
environment variables etc. It redirects calls accessing the environment to models describing external
functions in sufficient depth to allow generation of the path constraints required. Therefore KLEE can
handle library functions symbolically only if a corresponding model exists, and all unmodelled library
and external function calls are executed with concrete values. This may reduce the coverage to be gener-
ated, due to random testing limitations. Furthermore KLEE does not provide fully automated detection
of inputs: they must be determined by the user either by code instrumentation or by the command line
argument defining the number, size and types of symbolic inputs.

Pathcrawler [6] is another concolic testing tool. It tries to generate path coverage for C functions. In
contrast to CTGEN, it only supports one dimensional arrays and does not support pointer comparisons
and external function calls. Pathcrawler proposed an approach, similar to ours for handling of external
function calls. Though, like Pex, it requires mock objects to be defined first by the user, together with a
formal specification of its intended behaviour.

Another approach to test data generation in productive industrial environments is based on bounded
model checking [2]. The authors used CBMC [9], a Bounded Model Checker for ANSI-C and C++
programs, for the generation of test vectors. The tool supports pointer dereferencing, arithmetic, dynamic
memory and more. However, since CBMC is applied here to generate a test case for each block of the
CFG of the UUT, CTGEN will be able to achieve full decision coverage with fewer test cases in most
situations. For handling external function calls the authors of [2] use nondeterministic choice functions
available in CBCM as stubs, and CBCM evaluates all traces resulting from all possible choices. However,
the tool can only simulate return values of external functions and does not consider the possibility of
manipulating values of global variables. Although CBMC allows assertions and assumptions in the
function body, the authors use them only to achieve the branch coverage, not for checking functional
properties.

PathFinder [23] is a symbolic execution framework, that uses a model checker to generate and ex-
plore different execution paths. PathFinder works on Java byte code, one of its main applications is the
production of test data for achieving high code coverage. PathFinder does not address pointer prob-
lems since these do not exist in Java. For handling of external function calls the authors propose mixed
concrete-symbolic solving [22], which is more precise than CTGEN’s solution with stubs - it will not
generate test data that is impossible in practise, but is incomplete, i.e. there exist feasible paths, for
which mixed concrete-symbolic solving fails to find a solution. Furthermore, by definition of accurate
pre- and post-conditions the problem with impossible inputs can be avoided by CTGEN.

Table 5 summarises the results of our comparison.

8 Conclusion

In this paper we presented CTGEN, a unit test generator for C functions. CTGEN aims at test data
generation for C0 or C1 coverage and supports test specifications with pre- and post-conditions and other
annotation techniques, automated stub generation, as well as structure, pointer and array handling in the
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CTGEN PEX CUTE KLEE PathCrawler CBMC for SCS DART SAGE PathFinder
Platform Linux Windows Linux Linux Linux Linux Windows Linux
Language C .NET C C C C C machine code Java
CAPABILITIES
C0 Y Y Y Y Y Y Y Y Y
C1 Y Y Y Y Y Y Y Y Y
MC/DC N Y N N N N N N Y
C2 N Y Y Y N Y Y Y
Pre-/Post Y Y Y Y Y N N N Y
Requirements trac-
ing

Y N N N N N N N N

Auxiliary vars Y N NA N N N N N N
Pointer arithmetics Y Y N Y Y Y N Y -
Pointer dereferenc-
ing

Y Y N Y Y Y N Y -

Pointer comparison Y Y Y Y N Y N Y -
Function pointer N NA N NA N Y N NA
Arrays Y Y Y Y P Y Y Y
Symbolic offset Y NA N Y N Y
Complex dynamic
data structures
(lists...)

N Y Y N Y N Y

External function
calls

Y P N P N Y N N P

Automatic stub
handling

Y P N N N N N N N

Float/double Y N N N Y N N Y Y
Recursion N Y NA Y N Y Y
Multithreading N N Y N N N N Y
Automatic detec-
tion of inputs

Y Y N N Y Y Y Y

TECHNIQUES
SMT solver SONOLAR Z3 lp solver STP COLIBRI lp solver Z3 choco,

IASolver,
CVC3

Concolic testing N Y Y Y Y N Y Y N
STCT or acyclic
graph with reNuse
of nodes

STCT STCT application states transition relation Y

Depth-first search N N Y N Y N Y N N

Table 5: Test Data Generating Tools.

UUT. The tool is targeted at embedded systems software testing. Its fitness for industrial scale testing
campaigns has been demonstrated in a project from the automotive domain, where it effectively reduced
time and effort spent during the testing phase. Further experiments with other test data generation tools
showed that CTGEN produced competitive results and in some aspects outperformed the others.

To further improve performance and scalability of the tool we plan to replace the current test case
tree structure used for investigation of function paths to be covered by acyclic graphs allowing the re-use
of nodes. The test generation technique is currently extended to support MC/DC coverage.
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