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When treating Markov decision processes (MDPs) with large state spaces, using explicit representa-
tions quickly becomes unfeasible. Lately, Wimmer et al. have proposed a so-called symblicit algo-
rithm for the synthesis of optimal strategies in MDPs, in thequantitative setting of expected mean-
payoff. This algorithm, based on the strategy iteration algorithm of Howard and Veinott, efficiently
combines symbolic and explicit data structures, and uses binary decision diagrams as symbolic rep-
resentation. The aim of this paper is to show that the new datastructure of pseudo-antichains (an
extension of antichains) provides another interesting alternative, especially for the class of mono-
tonic MDPs. We design efficient pseudo-antichain based symblicit algorithms (with open source
implementations) for two quantitative settings: the expected mean-payoff and the stochastic shortest
path. For two practical applications coming from automatedplanning andLTL synthesis, we report
promising experimental results w.r.t. both the run time andthe memory consumption.

1 Introduction

Markov decision processes [34, 2] (MDPs) are rich models that exhibit both nondeterministic choices and
stochastic transitions. Model-checking and synthesis algorithms for MDPs exist for logical properties
expressible in the logicPCTL [23], a stochastic extension ofCTL [15], and are implemented in tools like
PRISM [29], MODEST [24], MRMC [27]. . . There also exist algorithms forquantitative propertiessuch
as the long-run average reward (mean-payoff) or the stochastic shortest path, that have been implemented
in tools likeQUASY [14] andPRISM [19].

There are two main families of algorithms for MDPs. First,value iterationalgorithms assign values
to states of the MDPs and refine locally those values by successive approximations. If a fixpoint is
reached, the value at a states represents a probability or an expectation that can be achieved by an
optimal strategy that resolves the choices present in the MDP starting froms. This value can be, for
example, the maximal probability to reach a set of goal states. Second,strategy iterationalgorithms
start from an arbitrary strategy and iteratively improve the current strategy by local changes up to the
convergence to an optimal strategy. Both methods have theiradvantages and disadvantages. Value
iteration algorithms usually lead to easy and efficient implementations, but in general the fixpoint is not
guaranteed to be reached in a finite number of iterations, andso only approximations are computed. On
the other hand, strategy iteration algorithms have better theoretical properties as convergence towards an
optimal strategy in a finite number of steps is usually ensured, but they often require to solve systems of
linear equations, and so they are more difficult to implementefficiently.

When considering large MDPs obtained from high level descriptions or as the product of several
components, explicit methods often exhaust available memory and are thus impractical. This is the man-
ifestation of the well-knownstate explosion problem. In non-probabilistic systems, symbolic data struc-
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tures like binary decision diagrams (BDDs) have been investigated [13] to mitigate this phenomenon.
For probabilistic systems, multi-terminal BDDs (MTBDDs) are useful but they are usually limited to
systems with around 1010 or 1011 states only [33]. Also, as mentioned above, some algorithmsfor MDPs
rely on solving linear systems, and there is no easy use of BDDlike structures for implementing such
algorithms.

Recently, Wimmer et al. [38] have proposed a method thatmixessymbolic and explicit representa-
tions to efficiently implement the Howard and Veinott strategy iteration algorithm [25, 36] to synthesize
optimal strategies for mean-payoff objectives in MDPs. Their solution is as follows. First, the MDP
is represented and handled symbolically using MTBDDs. Second, a strategy is fixed symbolically and
the MDP is transformed into a Markov chain (MC). To analyze this MC, a linear system needs to be
constructed from its state space. As this state space is potentially huge, the MC is first reduced bylump-
ing [28, 12] (bisimulation reduction), and then a (hopefully) compact linear system can be constructed
and solved. Solutions to this linear system allow to show that the current strategy is optimal, or to obtain
sufficient information to improve it. A new iteration is thenstarted. The main difference between this
method and the other methods proposed in the literature is its hybrid nature: it is symbolic for handling
the MDP and for computing the lumping, and it is explicit for the analysis of the reduced MC. This is
why the authors of [38] have coined their approachsymblicit.

Contributions. In this paper, we build on the symblicit approach described above. Our contributions
are threefold. First, we show that the symblicit approach and strategy iteration can also be efficiently
applied to thestochastic shortest pathproblem. We start from an algorithm proposed by Bertsekas
and Tsitsiklis [4] with a preliminary step of de Alfaro [1], and we show how to cast it in the symblicit
approach. Second, we show that alternative data structurescan be more efficient than BDDs or MTBDDs
for implementing a symblicit approach, both for mean-payoff and stochastic shortest path objectives. In
particular, we consider a natural class of MDPs withmonotonic propertieson which our alternative
data structure is more efficient. For such MDPs, as for subsetconstructions in automata theory [39,
17], antichain based data structures usually behave betterthan BDDs. The application of antichains to
monotonic MDPs requires nontrivial extensions: for instance, to handle the lumping step, we need to
generalize existing antichain based data structures in order to be closed under negation. To this end, we
introduce a new data structure calledpseudo-antichain. Third, we have implemented our algorithms and
we show that they are more efficient than existing solutions on natural examples of monotonic MDPs. We
show that monotonic MDPs naturally arise in probabilistic planning [6] and when optimizing controllers
synthesized fromLTL specifications with mean-payoff objectives [9].

Structure of the paper. In Section 2, we recall useful definitions and we introduce the notion of
monotonic MDP. In Section 3, we recall strategy iteration algorithms for mean-payoff and shortest path
objectives, and we present the symblicit version of those algorithms. We introduce the notion of pseudo-
antichains in Section 4, and we describe our pseudo-antichain based symblicit algorithms in Section 5. In
Section 6, we propose two applications of the symblicit algorithms and give experimental results. Finally
in Section 7, we summarize our results.

2 Background and studied problems

In this section, we recall useful definitions and we introduce the notion of monotonic Markov decision
process. We also state the problems that we study.
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Stochastic models. We denote byDom( f ) the domain of definition of a functionf , and byFtot(A,B)
the set of total functions fromA to B. A probability distributionover a finite setA is a total function
π : A→ [0,1] such that∑a∈A π(a) = 1. We denote byD(A) the set of probability distributions overA.

A discrete-time Markov chain (MC)is a tuple(S,P) whereS is a finite set of states andP : S→D(S)
is a total stochastic transition function. In the sequel,P is sometimes seen as a matrix, and for all
s,s′ ∈ S, we writeP(s,s′) for P(s)(s′). A path is an infinite sequence of statesρ = s0s1s2 . . . such that
P(si ,si+1)> 0 for all i ≥ 0. Finite paths are defined similarly, andP is naturally extended to finite paths.

A Markov decision process (MDP)is a tuple(S,Σ,P) whereS is a finite set of states,Σ is a finite set
of actions, andP : S×Σ →D(S) is a partial stochastic transition function. We often writeP(s,σ ,s′) for
P(s,σ)(s′). For eachs∈ S, we denote byΣs ⊆ Σ the set of enabled actions ins, where an actionσ ∈ Σ
is enabledin s if (s,σ) ∈ Dom(P). We require∀s∈ S, Σs 6= /0, that is, the MDP isΣ-non-blocking. For
eachσ ∈ Σ, Sσ denotes the set of states in whichσ is enabled.

Let M = (S,Σ,P) be an MDP. Amemoryless strategyis a total functionλ : S→ Σ mapping each
states to an enabled actionσ ∈ Σs. We denote byΛ the set of all memoryless strategies. A memoryless
strategyλ induces an MCMλ = (S,Pλ ) such that for alls,s′ ∈ S, Pλ (s,s

′) = P(s,λ (s),s′).

Costs and value functions. In addition to an MDPM = (S,Σ,P), we consider a partialcost function
C : S×Σ → R with Dom(C) = Dom(P) that associates a cost withs∈ S andσ ∈ Σs. A memoryless
strategyλ assigns a total cost functionCλ : S→R to the induced MCMλ , such thatCλ (s) = C(s,λ (s)).
Given a pathρ = s0s1s2 . . . in Mλ , themean-payoffof ρ isMP(ρ) = limsupn→∞

1
n ∑n−1

i=0 Cλ (si). Given a
subsetG⊆ Sof goal states and a finite pathρ reaching a state ofG, the truncated sum up to Gof ρ is
TSG(ρ) = ∑n−1

i=0 Cλ (si) wheren is the first index such thatsn ∈ G.
Given an MDP with a cost functionC, and a memoryless strategyλ , we consider two classical value

functions ofλ . For all statess∈ S, theexpected mean-payoffof λ isEMP
λ (s) = limn→∞

1
n ∑n−1

i=0 Pi
λ Cλ (s).

Given a subsetG ⊆ S, and assuming thatλ reachesG from states with probability 1, theexpected
truncated sum up to Gof λ is E

TSG
λ (s) = ∑ρ Pλ (ρ)TSG(ρ) where the sum is over all finite pathsρ =

s0s1 . . .sn such thats0 = s, sn ∈ G, ands0, . . . ,sn−1 6∈ G. Let λ ∗ be a memoryless strategy. Given a value
functionE ·

λ ∈ {EMP
λ ,E

TSG
λ }, we say thatλ ∗ is optimal if E ·

λ ∗(s) = infλ∈ΛE
·

λ (s) for all s∈ S, andE ·
λ ∗ is

called theoptimal value function.1 Note that we might have considered other classes of strategies, but
for these value functions, there always exists a memorylessstrategy minimizing the expected value of all
states [2, 34].

Studied problems. In this paper, we study algorithms for solving MDPs for two quantitative settings:
the expected mean-payoff and the stochastic shortest path.Let M be an MDP with a cost functionC.
(i) Theexpected mean-payoff (EMP) problemis to synthesize an optimal strategy for the expected mean-
payoff value function.(ii) WhenC is restricted tostrictly positivevalues inR>0, and a subsetG⊆ Sof
goal states is given, thestochastic shortest path (SSP) problemis to synthesize an optimal strategy for
the expected truncated sum value function, among the set of strategies that reachG with probability 1,
provided such strategies exist. For alls∈ S, we denote byΛP

s the set ofproper strategiesthat lead froms
to G with probability 1. Solving the SSP problem consists of two steps. The first step is to determine the
setSP = {s∈ S| ΛP

s 6= /0} of proper statesthat have at least one proper strategy. The second step consists
in synthesizing an optimal strategyλ ∗ such thatETSG

λ ∗ (s) = infλ∈ΛP
s
E

TSG
λ (s) for all s∈ SP. It is known

that both problems can be solved in polynomial time via linear programming, with memoryless optimal
strategies [34, 20, 4, 5].

1An alternative objective is to maximize the value function,in which caseλ ∗ is optimal ifE ·
λ ∗(s) = supλ∈ΛE

·
λ (s), ∀s∈ S.
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Monotonic MDPs. In this paper, we need a slightly different, but equivalent,definition of MDPs based
on the next idea. Instead of a transition functionP : S×Σ →D(S), we rather use two functions in a way
to separate the probabilities from the successors as indicated in Figure 1. In this new definition, an MDP
is a tupleM = (S,Σ,T,E,D) whereSis a finite set of states,Σ andT are two disjoint finite sets of actions,
E : S×Σ→Ftot(T,S) is a partial successor function, andD : S×Σ→D(T) is a partial stochastic function
such thatDom(E) = Dom(D). In this context, the notion of MCMλ induced by a strategyλ is defined
as(S,T,Eλ ,Dλ ) with functionsEλ ,Dλ naturally defined. In the sequel, depending on the context, we
will use both definitions.

s0

s1

s2

s0

s1

s2

P(s0,σ ,s0) =
1
2

P(s0,σ ,s1) =
1
6
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Figure 1: Illustration of the new definition of MDPs for a state s0 ∈ Sand an actionσ ∈ Σs0.

Let S be a finite set equipped with a partial order� such that(S,�) is a semilattice, i.e. for all
s,s′ ∈ S, their greatest lower bounds⊓s′ always exists. A setL ⊆ S is closedfor � if for all s∈ L and all
s′ � s, we haves′ ∈ L.

A monotonic MDPis an MDPM� = (S,Σ,T,E,D) such that:

1. S is equipped with a partial order� such that(S,�) is a semilattice, and
2. � is compatiblewith E, i.e. for alls,s′ ∈ S, if s� s′, then for allσ ∈ Σ, τ ∈ T, for all t ′ ∈ Ssuch

thatE(s′,σ)(τ) = t ′, there existst ∈ Ssuch thatE(s,σ)(τ) = t andt � t ′.

Note that since(S,�) is a semilattice,S is trivially closed for�. With this definition, we have the next
important properties: (1) for alls,s′ ∈ S, if s� s′ thenΣs′ ⊆ Σs, and (2) for allσ ∈ Σ, Sσ is closed.

Remark1. In this definition, by monotonic MDPs, we mean MDPs that are built on state spacesalready
equipped with a natural partial order. For instance, this is the case for the two classes of MDPs studied
in Section 6. The same kind of approach has already been proposed in [22].

Note that all MDPs can be seen monotonic. Indeed, let(S,Σ,T,E,D) be a given MDP and let� be a
partial order such that all states inSare pairwise incomparable with respect to�. By adding a new statet
such thatt � s, for all s∈ S, and such thatt is an isolated state with a self-loop, we have that(S∪{t},�)
is a semilattice and� is compatible withE. However, such a partial order would not lead to efficient
algorithms in the sense studied in this paper.

3 Strategy iteration algorithms and symblicit approach

In this section, we first present strategy iteration algorithms for synthesizing optimal strategies for both
the SSP and EMP problems. We then present a symblicit versionof those algorithms that mixes symbolic
and explicit data representations. Our presentation is inspired from the one given in [38] for the EMP
problem.

Algorithm for the SSP problem. Let M = (S,Σ,P) be an MDP,C : S×Σ → R>0 be a strictly positive
cost function, andG⊆ Sbe a set of goal states. As explained in Section 2, the setSP of proper states is
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Algorithm 1 SSPSI(MDP M, Strictly positive cost
functionC, Goal statesG)

1: n := 0,λn := INITIAL PROPERSTRAT(M,G)
2: repeat
3: Obtainvn by solving

Cλn +(Pλn − I)vn = 0

4: Σ̂s := argmin
σ∈Σs

(C(s,σ)+ ∑
s′∈S

P(s,σ ,s′) ·vn(s′)),∀s∈ S

5: Chooseλn+1 s.t. λn+1(s) ∈ Σ̂s,∀s∈ S,
settingλn+1(s) := λn(s) if possible.

6: n := n+1
7: until λn = λn−1
8: return(λn−1,vn−1)

Algorithm 2 SYMBLICIT (MDP M, [Strictly positive]

cost functionC[, Goal statesG])
1: n := 0,λn := INITIAL STRAT(M[,G])
2: repeat
3: (Mλn ,Cλn) := INDUCEDMC&COST(M,C,λn)
4: (M′

λn
,C′

λn
) := LUMP(Mλn,Cλn )

5: (M′
λn
,C′

λn
) := EXPLICIT(M′

λn
,C′

λn
)

6: xn := SOLVEL INEARSYSTEM(M′
λn
,C′

λn
)

7: Xn := SYMBOLIC(xn)
8: λn+1 := IMPROVESTRAT(M,λn,Xn)
9: n := n+1

10: until λn = λn−1
11: return(λn−1,Xn−1)

computed in a preliminary step (see [1] for a quadratic algorithm). The strategy iteration algorithm [25, 4]
(see Algorithm 1) is then applied under the typical assumption that all cycles in the underlying graph of
M have strictly positive cost [4]. This assumption holds in our case by definition of the cost functionC.
Algorithm 1 starts with an arbitrary proper strategyλ0, that can be easily computed with the algorithm
of [1], and improves it until an optimal strategy is found. The expected truncated sumvn up toG of the
current strategyλn is computed by solving the system of linear equations in line3, and used to improve
the strategy (if possible) at each state. Note that the strategyλn is improved at a states to an actionσ ∈ Σs

only if the new expected truncated sum is strictly smaller than the expected truncated sum of the action
λn(s), i.e. only if λn(s) 6∈ argmin

σ∈Σs

(C(s,σ)+ ∑
s′∈S

P(s,σ ,s′) ·vn(s′)). If no improvement is possible for any

state, an optimal strategy is found and the algorithm terminates in line 7. Otherwise, it restarts by solving
the new equation system, tries to improve the strategy usingthe new values computed, and so on.

Algorithm for the EMP problem. The strategy iteration algorithm for the EMP problem works simi-
larly (see [36, 34] for more details). The algorithm starts with an arbitrary strategyλ0. Solving the related
linear system leads to two values: the gain valuegn and bias valuebn of strategyλn. The gain corre-
sponds to the expected mean-payoff, while the bias can be interpreted as the expected total difference
between the cost and the expected mean-payoff. The computedgain value is used to locally improve the
strategy. If such an improvement is not possible for any state, the bias value is used to locally improve
the strategy such that only actions that also optimize the gain are considered.

Bisimulation lumping. When treating MDPs and induced MCs with large state spaces, using explicit
representations quickly becomes unfeasible for the algorithms presented above. Given an MC(S,P) and
a cost functionC : S→ R, thebisimulation lumpingtechnique [28, 30, 12] consists in gathering certain
states ofS which behave equivalently according to the class of properties under consideration. Let∼
be an equivalence relation onS andS∼ be the inducedpartition. We callblock of S∼ any equivalence
class of∼. We say that∼ is abisimulationif for all s, t ∈ S such thats∼ t, we haveC(s) = C(t) and
P(s,C) =P(t,C) for all blockC∈S∼, whereP(s,C) =∑s′∈C P(s,s′). Thebisimulation quotientis the MC
(S∼,P∼) such thatP∼(C,C′) = P(s,C′), wheres∈C andC,C′ ∈ S∼. The cost functionC∼ : S∼ → R is
transferred to the quotient such thatC∼(C) =C(s), wheres∈C andC∈S∼. This quotient is a minimized
model equivalent to the original, since it keeps the expected truncated sum and expected mean-payoff
as in the original model [3]. Usually, we are interested in computing the uniquelargestbisimulation,
denoted∼L, which leads to the smallest bisimulation quotient(S∼L ,P∼L) (see [16] for an algorithm).
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Symblicit algorithm. The symblicit algorithm is described in Algorithm SYMBLICIT for both the SSP
and EMP (see Algorithm 2). It combines symbolic2 and explicit representations of the manipulated data
as follows. The MDPM, the cost functionC, the strategiesλn, the induced MCsMλn

with cost functions
Cλn

, and the setG of goal states for the SSP, are symbolically represented. The lumping algorithm is
applied on symbolic MCs and produces a symbolic representation of the bisimulation quotientM′

λn
with

cost functionC′
λn

(line 4). The computed quotient is converted to a sparse matrix representation (line 5).
As it is in general much smaller than the original model, there is no memory issue by storing it explicitly,
and the linear system can be solved. The computed value functionsxn (corresponding tovn for the SPP,
andgn andbn for the EMP) are then converted into symbolic representationsXn, and transferred back to
the original MDP (line 7). Finally, the update of the strategy is performed symbolically.

4 Pseudo-antichains

We want to develop a symblicit algorithm for solving the SSP and EMP problems for monotonic MDPs.
To this end, we here introduce a new data structure extended from antichains, called pseudo-antichains.

Closed sets and antichains. Let (S,�) be a semilattice. Theclosure↓L of a setL ⊆ S is the set
↓L = {s′ ∈ S | ∃s∈ L ·s′ � s}. A setα is anantichain if all its elements are pairwise incomparable with
respect to�. For L ⊆ S, we denote by⌈L⌉ the antichain of its maximal elements. IfL is closed, then
↓⌈L⌉ = L, and⌈L⌉ is called thecanonical representationof L. The interest of antichains is that they
arecompact representations of closed sets. Antichain based algorithms have proved worthy for solving
classical problems in game theory, but also in logic and automata theory (e.g. [39, 17, 11, 18]). We have
the following classical properties on antichains (see for instance [21]):

Proposition 1. Letα1,α2 ⊆ S be two antichains and s∈ S. Then:

• s∈ ↓α1 iff ∃a∈ α1 ·s� a

• ↓α1 ∪ ↓α2 = ↓⌈α1∪α2⌉

• ↓α1 ∩ ↓α2 = ↓⌈α1⊓α2⌉, whereα1⊓α2
def
= {a1⊓a2 | a1 ∈ α1,a2 ∈ α2}

• ↓α1 ⊆ ↓α2 iff ∀a1 ∈ α1 · ∃a2 ∈ α2 ·a1 � a2

For convenience, whenα1 and α2 are antichains, we use notationα1 ∪̇ α2 (resp. α1 ∩̇ α2) for the
antichain⌈↓α1 ∪ ↓α2⌉ (resp. ⌈↓α1 ∩ ↓α2⌉). Let L1,L2 ⊆ S be two closed sets. Unlike the union or
intersection, the differenceL1\L2 is not necessarily a closed set. There is thus a need for a new structure
that “represents”L1\L2 in a compact way.

Pseudo-elements and pseudo-closures. A pseudo-elementis a pair(x,α) wherex ∈ S andα ⊆ S is
an antichain such thatx 6∈ ↓α . Thepseudo-closureof a pseudo-element(x,α), denoted byl(x,α), is the
setl(x,α) = {s∈ S| s� x ands 6∈ ↓α} = ↓{x}\↓α . Notice thatl(x,α) is non empty sincex 6∈ ↓α by
definition of a pseudo-element. The following example illustrates these notions.

Example1. Let N2
≤3 be the set of pairs of natural numbers in[0,3] and let� be a partial order on

N
2
≤3 such that(n1,n′1)� (n2,n′2) iff n1 ≤ n2 andn′1 ≤ n′2. Then,(N2

≤3,�) is a complete lattice with least
upper bound⊔ such that(n1,n′1)⊔(n2,n′2)= (max(n1,n2),max(n′1,n

′
2)), and greatest lower bound⊓ such

that(n1,n′1)⊓ (n2,n′2) = (min(n1,n2),min(n′1,n
′
2)). With x= (3,2) andα = {(2,1),(0,2)}, the pseudo-

closure of the pseudo-element(x,α) is the setl(x,α) = {(3,2),(3,1),(3,0), (2,2), (1,2)} = ↓{x}\↓α
(see Figure 2).
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Figure 2: Pseudo-closure of a pseudo-element
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Figure 3: Inclusion of pseudo-closures of
pseudo-elements.

There may exist two pseudo-elements(x,α) and(y,β ) such thatl(x,α) = l(y,β ). A pseudo-element
(x,α) is said to be incanonical formif ∀a ∈ α ·a � x (as in Example 1). Notice that for all pseudo-
elements(x,α), there exists a pseudo-element in canonical form(y,β ) such thatl(x,α) = l(y,β ):
it is equal to(x,{x} ∩̇ α) and called thecanonical representationof l(x,α). The next corollary of
Proposition 2 shows that the canonical form is unique.

Proposition 2. Let (x,α) and (y,β ) be two pseudo-elements. Thenl(x,α) ⊆ l(y,β ) iff x � y and
∀b∈ β ·b⊓x∈ ↓α .

Corollary 1. Let (x,α) and(y,β ) be two pseudo-elements in canonical form. Thenl(x,α) = l(y,β ) iff
x= y andα = β .

The following example illustrates Proposition 2.

Example2. Let (S,�) be a semilattice and let(x,{a}) and(y,{b1,b2}), with x,y,a,b1,b2 ∈ S, be two
pseudo-elements as depicted in Figure 3. The pseudo-closure of(x,{a}) is depicted in dark gray, whereas
the pseudo-closure of(y,{b1,b2}) is depicted in (light and dark) gray. We havex� y, b1⊓x= b1 ∈ ↓{a}
andb2⊓x= b2 ∈ ↓{a}. Thereforel(x,{a}) ⊆ l(y,{b1,b2}).

Pseudo-antichains. A pseudo-antichain Ais a finite set of pseudo-elements, that isA= {(xi ,αi) | i ∈ I}
with I finite. Thepseudo-closurelA of A is defined as the setlA =

⋃
i∈I l(xi ,αi). Given (xi ,αi),

(x j ,α j) ∈ A, we observe that: (1) ifxi = x j , then(xi ,αi) and(x j ,α j) can be replaced inA by the pseudo-
element(xi ,αi ∩̇ α j), and (2) ifl(xi ,αi) ⊆ l(x j ,α j), then(xi ,αi) can be removed fromA. Therefore,
we say that a pseudo-antichainA= {(xi ,αi) | i ∈ I} is simplifiedif ∀i · (xi ,αi) is in canonical form, and
∀i 6= j ·xi 6= x j andl(xi ,αi) 6⊆ l(x j ,α j). Notice that two distinct pseudo-antichainsA andB can have the
same pseudo-closurelA= lB even if they are simplified. We thus say thatA is aPA-representation3 of
lA (without saying that it is a canonical representation), andthatlA is PA-representedby A.

Any antichainα can be seen as the pseudo-antichainA= {(x, /0) | x∈ α}. Furthermore, notice that
any set Xis PA-represented byA = {(x,αx) | x ∈ X}, with αx = ⌈{s∈ S | s� x ands 6= x}⌉. Indeed
l(x,αx) = {x} for all x, and thusX = lA.

The interest of pseudo-antichains is that they behave well with respect toall Boolean operations, as
shown by Proposition 3 on pseudo-elements (and easily extended to pseudo-antichains). From the algo-
rithmic point of view, it is important to note that the computations only manipulate (pseudo-)antichains
instead of their (pseudo-)closure. Note also that the pseudo-antichains computed in this proposition are

2We use caligraphic style for symbols denoting a symbolic representation.
3“PA-representation” means pseudo-antichain based representation.
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Figure 4: Intersection (left) and difference (right) of twopseudo-closures of pseudo-elements.

not necessarily simplified. However, our algorithms implementing those operations always simplify the
computed pseudo-antichains for the sake of efficiency.

Proposition 3. Let (x,α),(y,β ) be two pseudo-elements. Then:

• l(x,α) ∪ l(y,β ) = l{(x,α),(y,β )}
• l(x,α) ∩ l(y,β ) = l{(x⊓y,α ∪̇ β )}
• l(x,α) \ l(y,β ) = l

(
{(x,{y} ∪̇ α)}∪{(x⊓b,α) | b∈ β}

)

The following example illustrates the second and third statements of the previous proposition.

Example3. Let (S,�) be a lower semilattice and let(x,{a}) and (y,{b}), with x,y,a,b ∈ S, be two
pseudo-elements as depicted in Figure 4. We havel(x,{a}) ∩ l(y,{b}) = l(x⊓ y,{a,b}). We also
havel(x,{a}) \ l(y,{b}) = l{(x,{y}∪̇{a}),(x⊓b,{a})} = l{(x,{y}),(b,{a})}. Note that(x,{y}) and
(b,{a}) are not in canonical form. The canonical representation ofl(x,{y}) (resp.l(b,{a})) is given by
(x,{x⊓y}) (resp.(b,{b⊓a})).

5 Pseudo-antichain based algorithms

In this section, we propose a pseudo-antichain based version of the symblicit algorithm described in
Section 3 for solving the SSP and EMP problems for monotonic MDPs.

5.1 Operator Preσ ,τ

We begin by presenting a new operatorPreσ ,τ that is useful for our algorithms. LetM� = (S,Σ,T,E,D)
be a monotonic MDP. GivenL⊆S, σ ∈ Σ andτ ∈T, we denote byPreσ ,τ (L) the set of states that reachL
by σ ,τ in M�, that is

Preσ ,τ (L) = {s∈ S| E(s,σ)(τ) ∈ L}.

The elements ofPreσ ,τ(L) are calledpredecessorsof L for σ ,τ in M�. This operator has the nice
following properties: (1) ifL is closed, thenPreσ ,τ (L) is closed, and (2) for all setsL1, L2 and for all
· ∈ {∪,∩,\}, Preσ ,τ(L1 ·L2) = Preσ ,τ (L1) ·Preσ ,τ (L2). Moreover, we have:

Proposition 4. Let (x,α) be a pseudo-element with x∈ S andα ⊆ S. Let A= {(xi ,αi) | i ∈ I} be a
pseudo-antichain with xi ∈ S andαi ⊆ S for all i∈ I. Then, for allσ ∈ Σ andτ ∈ T,

• Preσ ,τ(l(x,α)) =
⋃

x′∈⌈Preσ ,τ (↓{x})⌉ l(x
′,⌈Preσ ,τ (↓α)⌉)

• Preσ ,τ(lA) =
⋃

i∈I Preσ ,τ(l(xi ,αi))
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From Proposition 4, we can efficiently compute pseudo-antichains w.r.t. thePreσ ,τ operator if we
have an efficient algorithm to compute antichains w.r.t.Preσ ,τ (see the first statement). We make the fol-
lowing assumption that we can compute the predecessors of a closed set by only considering the antichain
of its maximal elements. Together with Proposition 4, it implies that the computation ofPreσ ,τ(lA), for
all pseudo-antichainsA, does not need to treat the whole pseudo-closurelA.

Assumption 1. There exists an algorithm taking any state x∈ S as input and returning⌈Preσ ,τ(↓{x})⌉
as output.

Remark2. Assumption 1 is a realistic and natural assumption when considering partially ordered state
spaces. For instance, it holds for the two classes of MDPs considered in Section 6 for which the given
algorithm is straightforward. Assumptions in the same flavor are made in [22] (see Definition 3.2).

5.2 Symbolic representations

We detail in this section the symbolic representations based on pseudo-antichains that we are going to use
in our algorithms. Recall from Section 4 that PA-representations are not unique. For efficiency reasons,
it will be necessary to work with PA-representations that are ascompactas possible, as suggested in the
sequel.

Representation of the stochastic models. Let M� = (S,Σ,T,E,D) be a monotonic MDP andM�,λ =
(S,T,Eλ ,Dλ ) be the MC induced by a strategyλ . For algorithmic purposes, in addition to Assumption 1,
we make the following assumption4 onM�.

Assumption 2. There exists an algorithm taking as input any state s∈ S and actionsσ ∈ Σs,τ ∈ T, and
returning as outputE(s,σ)(τ) andD(s,σ)(τ).

By definition ofM�, S is a closed set, and can thus be represented by the pseudo-antichain {(x, /0) |
x∈ ⌈S⌉}. By Assumption 2, we have a PA-representation ofM�, in the sense thatS is PA-represented
and we can computeE(s,σ)(τ) andD(s,σ)(τ) on demand.

Givenλ , we denote by∼λ the equivalence relation onSsuch thats∼λ s′ iff λ (s) = λ (s′). We denote
by S∼λ the induced partition ofS. Given a blockB∈ S∼λ , we denote byλ (B) the unique actionλ (s),
for all s∈ B. As any set can be represented by a pseudo-antichain, each block of S∼λ is PA-represented.
Therefore by Assumption 2, we have a PA-representation ofM�,λ .

Representation of a subset of goal states. Recall that a subsetG ⊆ S of goal states is required for
the SSP problem. Our algorithm will manipulateG when computing the set of proper states. A natural
assumption is to require thatG is closed(like S), as it is the case for the two classes of monotonic MDPs
studied in Section 6. Under this assumption, we have a compact representation ofG as the one proposed
above forS. Otherwise, we take forG any PA-representation.

Representation for D and C. For the needs of our algorithm, we introduce symbolic representations
for Dλ andCλ . Similarly to∼λ , let∼D,λ be the equivalence relation onSsuch thats∼D,λ s′ iff Dλ (s) =
Dλ (s

′). We denote byS∼D,λ the induced partition, and for each blockB ∈ S∼D,λ , by Dλ (B) the unique
probability distributionDλ (s), with s∈ B. We use similar notations for the relation∼C,λ on Ssuch that
s∼C,λ s′ iff Cλ (s) = Cλ (s

′). Each block ofS∼D,λ andS∼C,λ is PA-represented.

4Remark 2 also holds for Assumption 2.
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For eachσ ∈ Σ, we also need the next equivalence relations∼D,σ and∼C,σ onS, such thats∼D,σ s′

iff D(s,σ) = D(s′,σ), and thats∼C,σ s′ iff C(s,σ) = C(s′,σ). Recall thatD andC are partial functions,
there may thus exist one block in their corresponding relation gathering all statess such thatσ 6∈ Σs.
Each block of the induced partitionsS∼D,σ andS∼C,σ is PA-represented.

For the two classes of MDPs studied in Section 6, both functions D and C are independent ofS.
It follows that the previously described equivalence relations have only one or two blocks, leading to
compact symbolic representations of these relations.

Now that the operatorPreσ ,τ and the used symbolic representations have been introduced, we come
back to the steps5 of the symblicit approach of Section 3 (see Algorithm 2) and show how to derive a
pseudo-antichain based algorithm.

5.3 Bisimulation lumping

Algorithm LUMP. LetM�= (S,Σ,T,E,D) be a monotonic MDP andM�,λ = (S,T,Eλ ,Dλ ) be the MC
induced by a strategyλ .6 In Algorithm 2, Algorithm LUMP is called to compute the largest bisimulation
∼L of the MCM�,λ (line 4 with λ = λn). This algorithm (see [16]) first computes the initial partition
P = S∼C,λ such that two states of the MC are in the same block iff they have the same cost. It then
repeatedly splits blocksB of P according to their probability of reaching a given blockC, for all C. It
stops as soon as for allB,B′ ∈ P ands,s′ ∈ B, Pλ (s,B

′) = Pλ (s
′,B′). The operation of splitting blocks is

performed with Algorithm SPLIT (see Algorithm 3). Before describing it, we need a new operator Preλ .
GivenL ⊆ Sandτ ∈ T, we define

Preλ (L,τ) = {s∈ S| Eλ (s)(τ) ∈ L}

as the set of states from whichL is reached byτ in M� under the selection made byλ .

Algorithm SPLIT. Given two blocksB,C ⊆ S, Algorithm SPLIT splitsB into a partitionP composed
of sub-blocksB1, . . . ,Bk according to the probability of reachingC, i.e. for all s,s′ ∈ B, s,s′ ∈ Bl for
somel iff Pλ (s,C) = Pλ (s

′,C). GivenT = {τ1, . . . ,τm}, it computes intermediate partitionsP of B such
that at stepi, B is split according to the probability of reachingC whenT is restricted to{τ1, . . . ,τi}.

Initially, T is restricted to /0, and the partitionP is composed of one blockB (see line 1).

Bl

D1
D2

Preλ (C,τi)

p

p

p+Dλ (D1)(τi)

p+Dλ (D2)(τi)

Figure 5: Stepi of Algorithm 3
on a blockBl .

At stepi with i ≥ 1, each blockBl of P computed at stepi −1 is split
into several sub-blocks according to its intersection withPreλ (C,τi)
and eachD∈S∼D,λ . We take into account intersections withD∈S∼D,λ

in a way to know which stochastic functionDλ (D) is associated with
the states we are considering. Suppose that at stepi−1 the probability
for any state of blockBl of reachingC is p. Then at stepi, it is equal to
p+Dλ (D)(τi) if this state belongs toD∩Preλ (C,τi), with D∈S∼D,λ ,
and top if it does not belong toPreλ (C,τi) (lines 5-7). See Figure 5
for intuition. Notice that some newly created sub-blocks could have
the same probability, they are therefore merged.

The intermediate partitionsP (or Pnew) are represented by hash
tables for efficiency reasons: each entry(p,block) is stored asP[p] =
blocksuch thatblock is the set of states that reachC with probability p. Algorithm INITTABLE is called

5Due to lack of space, some steps are not detailed. See [10] fora complete description.
6Equivalently, with the usual definition of MCs,M�,λ = (S,Pλ ) with Pλ derived fromEλ andDλ (see Section 2).
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Algorithm 3 SPLIT(B,C,λ )
1: P[0] := B
2: for i in [1,m] do
3: Pnew := INITTABLE(P,τi)
4: for all (p,block) in P do
5: Pnew[p] := Pnew[p]∪ (block\Preλ (C,τi ))
6: for all D ∈ S∼D,λ do
7: Pnew[p+Dλ (D)(τi)] := Pnew[p+Dλ (D)(τi)]∪ (block∩D∩Preλ (C,τi ))
8: P := REMOVEEMPTYBLOCKS(Pnew)
9: returnP

Algorithm 4 IMPROVESTRAT(L,S∼λ)

1: for C ∈ L do
2: S∼λ ′ := /0
3: for B∈ S∼λ do
4: if B∩C 6= /0 then
5: S∼λ ′

:= S∼λ ′
∪{B∩C,B\C}

6: else
7: S∼λ ′

:= S∼λ ′
∪B

8: S∼λ := S∼λ ′
9: returnS∼λ ′

to initialize a new partitionPnew from a previous partitionP and symbolτi : Pnew[p] := /0 andPnew[p+
Dλ (D)(τi)] := /0, for all D ∈ S∼D,λ and all (p,block) in P. Algorithm REMOVEEMPTYBLOCKS(P)
removes fromP each pair(p,block) with block= /0.

Pseudo-antichain approach. Notice that we have a pseudo-antichain version of AlgorithmLUMP as
soon as the given blocksB andC are PA-represented. Indeed, this algorithm uses boolean operations and
thePreλ operator which can be computed asPreλ (C,τ) =

⋃{
Preσ ,τ(C) ∩B | σ ∈ Σ,B∈ S∼λ ,λ (B) =

σ
}

. By Propositions 1, 3-4 and Assumptions 1-2, all these operations can be performed efficiently on
pseudo-closures of pseudo-antichains, by limiting the computations to the related pseudo-antichains.

5.4 Improving strategies

Given an MDPM� with cost functionC and the MCM�,λ induced by a strategyλ , we now present a
pseudo-antichain based algorithm to improve strategyλ for the SSP (see line 8 of Algorithm 2). Re-
call that for alls∈ S, we have to compute the set̂Σs of actionsσ ∈ Σs that minimize the expression
lσ (s) = C(s,σ) +∑s′∈SP(s,σ ,s′) · v(s′), and then we improve the strategy based on the computedΣ̂s

(see Algorithm 1 withv= vn andλ = λn). We proceed in two steps: (1) we compute for allσ ∈ Σ, an
equivalence relation∼lσ such that the valuelσ (s) is constant on each block of the relation, (2) we use the
relations∼lσ , with σ ∈ Σ, to improve the strategy.

Computing value lσ . Let σ ∈ Σ be a fixed action. We are looking for an equivalence relation∼lσ on
the setSσ of states where actionσ is enabled, such that

∀s,s′ ∈ Sσ : s∼lσ s′ ⇒ lσ (s) = lσ (s
′).

Given∼L the largest bisimulation forM�,λ and the induced partitionS∼L , we havelσ (s) = C(s,σ)+

∑C∈S∼L
P(s,σ ,C) · v(C) for eachs∈ Sσ , since the valuev is constant on each blockC. Therefore to get

relation∼lσ , it is enough to haves∼lσ s′ ⇒ C(s,σ) = C(s′,σ) andP(s,σ ,C) = P(s′,σ ,C),∀C∈ S∼L .

We proceed by defining the following equivalence relations on Sσ . For the cost part, we use relation
∼C,σ defined in Section 5.2. For the probabilities part, for each blockC of S∼L , we define relation∼P,σ ,C

such thats∼P,σ ,C s′ iff P(s,σ ,C) = P(s′,σ ,C). The required relation∼lσ on Sσ is then defined as the
relation

∼lσ = ∼C,σ ∩
⋂

C∈S∼L

∼P,σ ,C = ∼C,σ ∩∼P,σ

Relation∼lσ induces a partition ofSσ that we denote(Sσ )∼lσ . For each blockD ∈ (Sσ )∼lσ , we denote
by lσ (D) the unique valuelσ (s), for s∈ D.
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Let us now explain how to compute∼lσ with a pseudo-antichain based approach. (1) The setSσ
is obtained asSσ = Preσ ,τ (S) with τ an arbitrary action ofT. (2) Each relation∼P,σ ,C is the output
returned by SPLIT(Sσ ,C,λ ) whereλ is defined onSσ by λ (s) = σ for all s∈ Sσ

7 (see Algorithm 3). (3)
Let us detail a way to compute∼P,σ from ∼P,σ ,C, for all C ∈ S∼L . Let S∼P,σ ,C = {BC,1,BC,2, . . . ,BC,kC}
be the partition ofSσ induced by∼P,σ ,C. For eachBC,i ∈ S∼P,σ ,C, we denote byP(BC,i ,σ ,C) the unique
valueP(s,σ ,C), for all s∈ BC,i . Then, computing a blockD of ∼P,σ consists in picking, for allC∈ S∼L ,
one blockDC amongBC,1,BC,2, . . . ,BC,kC , such that the intersectionD =

⋂
C∈S∼L

DC is non empty. As

∑s′∈SP(s,σ ,s′) = 1, if D 6= /0, then∑C∈S∼L
P(DC,σ ,C) = 1. (4) Finally∼lσ is the intersection of∼C,σ

and∼P,σ .

Improving the strategy. We now propose a pseudo-antichain based algorithm for improving strategy
λ by using relations∼L, ∼λ , and∼lσ , ∀σ ∈ Σ (see Algorithm 4). We first compute for allσ ∈ Σ, the
equivalence relation∼lσ∧L =∼lσ ∩∼L onSσ . GivenB∈ (Sσ )∼lσ∧L , we denote bylσ (B) the unique value
lσ (s) and byv(B) the unique valuev(s), for all s∈ B. Let σ ∈ Σ, we denote by(Sσ )

<
∼lσ∧L

⊆ (Sσ )∼lσ∧L the
set of blocksC for which the valuev(C) is improved by settingλ (C) = σ , that is

(Sσ )
<
∼lσ∧L

= {C∈ (Sσ )∼lσ∧L | lσ (C)< v(C)}.

We then compute an ordered global listL made of the blocks of all sets(Sσ )
<
∼lσ ∧L

, for all σ ∈ Σ. It is
ordered according to the decreasing valuelσ (C). In this way, when traversingL, we have more and more
promising blocks to decreasev.

From inputL and∼λ , Algorithm 4 outputs an equivalence relation∼λ ′ for a new strategyλ ′ improv-
ing λ . GivenC ∈ L, suppose thatC comes from the relation∼lσ∧L (σ is considered). For eachB∈ S∼λ

with B∩C 6= /0 (line 4), we improve the strategy by settingλ ′(B∩C) = σ , while λ ′ is kept unchanged for
B\C. Algorithm 4 outputs a partitionS∼λ ′

such thats∼λ ′ s′ ⇒ λ ′(s) = λ ′(s′) for the improved strategy
λ ′. If necessary, for efficiency reasons, we can compute a coarser relation for the new strategyλ ′ by
gathering blocksB1,B2 of S∼λ ′

, for all B1,B2 such thatλ ′(B1) = λ ′(B2).

6 Experiments

We present two applications of the symblicit algorithm of Section 5, one for the SSP problem in the
context of automated planning, and the other for the EMP problem in the context ofLTL synthesis. In
both cases, we have a reduction, described in [10], to monotonic MDPs equipped with a natural partial
order and that satisfy Assumptions 1 and 2. Our experiments have been done on a Linux platform with a
3.2GHz CPU (Intel Core i7), with a timeout of 10 hours and a memory usage limited to 4GB.

6.1 Stochastic shortest path on STRIPSs

Monotonic STRIPS. A monotonic STRIPS (MS)is a tuple(P, I ,M,O) whereP is a finite set ofcon-
ditions (i.e. propositional variables),I ⊆ P is a subset of conditions that are initially true (all othersare
assumed to be false),M ⊆ P specifies which conditions must be true in a goal state, andO is a finite
set ofoperators. An operatoro∈ O is a pair(γ ,(α ,δ )) whereγ ⊆ P is theguard of o, that is, the set
of conditions that must be true foro to be executable, and(α ,δ ) is theeffectof o, that is,α ⊆ P (resp.
δ ⊆P) is the set of conditions that are made true (resp. false) by the execution ofo. Monotonic stochastic

7As Algorithm SPLIT only works onSσ , it is not a problem ifλ is not defined onS\Sσ .
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STRIPS (MSS)are MSs extended with stochastic aspects as follows [6]. Each operatoro = (γ ,π) ∈ O
consists of a guardγ as before, and an effect given as a probability distributionπ : 2P×2P → [0,1] on the
set of pairs(α ,δ ). If additionally, we have acost function C: O→ R>0, then the problem of planning
from MSSs is to minimize the expected truncated sum up to the set of goal states from the initial state.
One can check that MSSs naturally define monotonic MDPs on which our algorithm of Section 5 can be
applied for solving the mentioned SSP problem.

Experiments. Our implementation is available athttp://lit2.ulb.ac.be/STRIPSSolver/
together with the two benchmarks presented in this section.It is compared with the purely explicit8 strat-
egy iteration algorithm implemented in the development release 4.1.dev.r7712 of the toolPRISM [29].
This explicit implementation exists primarily to prototype new techniques and is thus not fully opti-
mized [32]. While value iteration algorithms are usually efficient, they only compute approximations.
As a consequence, for the sake of a fair comparison, we consider here only the performances of strategy
iteration algorithms.

In the benchmarkMonkey inspired from [35], a monkey has several items (boxes, stones, pieces of
sticks. . .) at its disposal to reach a bunch of bananas, with the condition that it has to assemble some
pieces to get a stick. The monkey has multiple ways to build the stick with varying building times. The
operators of getting some items and the bananas are stochastic. For instance, the probability of getting
the bananas varies according to the owned items. The benchmark is parameterized in the pair(p,s)
wherep is the number of pieces to build a stick, andp·s is the total number of pieces.

The benchmarkMoats and castles is an adaptation of a benchmark of [31] as proposed in [6]9. The
goal is to build a sand castle on the beach; a moat can be dug in away to protect it. We consider up to
7 discrete depths of moat. The operator of building the castle is stochastic: there is a strictly positive
probability for the castle to be demolished by the waves. However, the deeper the moat is, the higher the
probability of success is. To increase the difficulty of the problem, we consider building several castles,
each one having its own moat. The benchmark is parameterizedin the pair(d,c) whered is the number
of depths of moat that can be dug, andc is the numbers of castles to be built.

Results are given in Table 1. On those two benchmarks, the explicit implementation quickly runs
out of memory when the state space of the MDP grows. Indeed, with this method, we were not able to
solve MDPs with more than 65536 states. On the other hand, thesymblicit algorithm behaves well on
large models: the memory consumption never exceeds 150Mo and this even for MDPs with hundreds of
millions of states10.

6.2 Expected mean-payoff with LTLMP synthesis

LTLMP synthesis problem. Let φ be anLTL formula over a setP= I ⊎O. Let ΣP = 2P, ΣO = 2O and
ΣI = 2I , andw : ΣO 7→ Z be a weight function overΣO. Consider the next infinite game between Player
O and PlayerI . At each turnk, PlayerO givesok ∈ ΣO and PlayerI responds by givingik ∈ ΣI . The
outcome of the game is the wordu= (o0∪ i0)(o1∪ i1) · · · ∈ Σω

P . A valueVal(u) is associated withu such
that

8To the best of our knowledge, there is no tool implementing anMTBDD based symblicit algorithm for the SSP problem.
However, a comparison with an MTBDD based symblicit algorithm is done in the second application for the EMP problem.

9In [6], the authors study the problem of maximizing the probability of reaching the goal within a given number of steps.
10On our benchmarks, the value iteration algorithm ofPRISM performs better than the strategy iteration one w.r.t. the run

time and memory consumption. But it still consumes more memory than the pseudo-antichain based algorithm, and runs out of
memory on several examples.

http://lit2.ulb.ac.be/STRIPSSolver/
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Table 1:Stochastic shortest path on two benchmarks of MSSs. The column examplegives the parameters(s, p)
(resp. (c,d)) for theMonkey (resp. Moats and castles) benchmark. The columnETSG

λ gives the expected trun-
cated sum of the computed strategy, and|MS | the number of states of the MDP. For the pseudo-antichain based
implementation (PA), #it is the number of iterations of the strategy iteration algorithm,|S∼L | the maximum size of
computed bisimulation quotients, andlump, systandimpr the total times (in seconds) spent respectively for lump-
ing, solving the linear systems and improving the strategies. For both implementations,total is the total execution
time (in seconds) andmemthe total memory consumption (in megabytes).

PA Explicit

example E
TSG
λ |MS | #it |S∼L | lump syst impr total mem total mem

M
o
n
k
e
y

(3,2) 35.75 4096 4 23 0.09 0.00 0.07 0.16 16.0 60.59 1626
(3,3) 35.75 65536 5 43 1.14 0.00 0.43 1.57 17.3 >4000
(3,4) 35.75 1048576 6 57 12.89 0.01 4.92 17.83 21.7 >4000
(3,5) 36.00 16777216 7 88 208.33 0.05 63.73 272.13 37.5 >4000
(5,2) 35.75 65536 4 31 0.36 0.00 0.18 0.54 16.6 20316.17 2343
(5,3) 35.75 4194304 5 56 5.71 0.02 2.47 8.20 19.5 >4000
(5,4) 35.75 268435456 6 97 95.49 0.04 101.27 196.83 31.3 >4000
(5,5) 36.00 17179869184 7 152 1813.78 0.08 5284.31 7098.40 81.3 >4000

M
o
a
ts

a
n
d
c
a
st
le
s

(2,5) 32.2222 4096 3 49 1.36 0.00 0.45 1.82 17.3 133.66 1202
(2,6) 32.2222 16384 3 66 9.71 0.01 1.95 11.68 19.3 2966.80 1706
(3,3) 59.0000 4096 3 84 12.58 0.03 2.73 15.35 20.2 149.64 1205
(3,4) 52.0000 32768 3 219 129.17 0.05 21.56 150.83 30.7 14660.69 1611
(3,5) 48.3333 262144 3 357 658.86 0.13 81.08 740.17 49.1 >4000
(3,6) 48.3333 2097152 3 595 10730.09 0.42 865.48 11597.71 145.8 >4000
(4,2) 96.8889 4096 3 132 31.61 0.03 12.06 43.72 26.5 173.62 1211
(4,3) 78.6667 65536 3 464 1376.94 0.21 217.06 1594.48 82.2 >4000

Val(u) =

{
lim inf n→∞

1
n ∑n−1

k=0 w(ok) if u |= φ
−∞ otherwise

i.e. Val(u) is the mean-payoff value ofu if u satisfiesφ , otherwise, it is−∞. Given a threshold value
ν ∈ Z, the LTLMP realizability problemasks whether PlayerO has a strategy against any strategy of
PlayerI such thatVal(u) ≥ ν for the produced outcomeu. TheLTLMP synthesis problemis to produce
such a strategy for PlayerO.

In [8, 9], we propose an antichain based algorithm for solving theLTLMP realizability and synthesis
problems, that is incremental in some parameters(K,C), and uses a reduction to a two-player turn-
based safety gameG (see [8] for details). This game restricted to the winning positions of PlayerO is
a representation of a subsetW (depending on(K,C)) of all winning strategies for PlayerO for LTLMP

realizability problem. From this setW, we want to compute a strategy that behavesthe best against a
stochastic opponent. Let πI : ΣI → ]0,1] be a probability distribution such thatπ(i)> 0 for all i ∈ ΣI (to
make sense with the worst-case). By replacing PlayerI by πI in G, we can derive a monotonic MDPMG

equipped with a natural partial order, and computing the best strategy among strategies inW reduces to
solving the EMP problem for the MDPMG

11.

Experiments. We have integrated the symblicit algorithm presented in Section 5 for the EMP problem
into Acacia+ (v2.2) [7], a tool for solving theLTLMP realizability and synthesis problems. The latest
version ofAcacia+ can be downloaded athttp://lit2.ulb.ac.be/acaciaplus/, together

11More precisely, it reduces to the EMP problem where the objective is to maximize the expected mean-payoff (see foot-
note 1).

http://lit2.ulb.ac.be/acaciaplus/
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Table 2:Expected mean-payoff on theStochastic shared resource arbiter benchmark with 2 clients. The column
ν gives the threshold,|MR

G| the number of reachable states in the MDP, and all other columns have the same
meaning as in Table 1. The expected mean-payoffE

MP
λ of the optimal strategyλ for all the examples is−0.130435.

Acacia+ PRISM

ν |MG| #it |S∼L | lump LS impr total mem |MR
G| total mem

−1.1 5259 2 22 0.12 0.01 0.02 0.15 17.4 691 0.50 168.1
−1.04 35750 2 52 1.63 0.02 0.13 1.79 18.1 3325 2.06 264.1
−1.02 530299 2 102 16.62 0.11 0.64 17.39 20.2 11641 7.33 343.4
−1.01 4120599 2 202 237.78 0.50 3.94 242.30 26.2 43891 31.52 642.5
−1.004 63251499 2 502 7357.72 5.68 52.81 7416.77 60.5 264391 278.01 2544.0
−1.003 450012211 2 670 23455.44 12.72 120.25 23589.49 93.6 >4000

with the examples considered in this section. We compared our implementation with an MTBDD based
symblicit algorithm implemented inPRISM [37] (in the sequel, our implementation is simply called
Acacia+ whereas the other one is calledPRISM). In the used benchmark [9], a server has to grant
exclusive access to a resource to two clients. We set a probability distribution such that requests of client 1
(probability 3

5) are more likely to happen than requests of client 2 (probability 1
5), and the benchmark is

parameterized in the threshold valueν .
Results are given in Table 2. Note that the number of states inthe MDPs depends on the implementa-

tion. Indeed, forPRISM, it is the number of reachable states of the MDP, denoted|MR
G|, that is, the states

that are actually taken into account by the algorithm, whilefor Acacia+, it is the total number of states
since unlikePRISM, our implementation does not prune unreachable states. Forthis application sce-
nario, the ratio (number of reachable states)/(total number of states) is in general quite small12. On this
benchmark,PRISM is faster thatAcacia+ on large models, butAcacia+ is more efficient regarding
the memory consumption and this in spite of considering the whole state space. Note that the surpris-
ingly large amount of memory consumption of both implementations on small instances is due to Python
libraries loaded in memory forAcacia+, and to the JVM and the CUDD package forPRISM [26].

Finally, in the majority of experiments we performed for both the EMP and the SSP problems, we
observe that most of the execution time of the pseudo-antichain based symblicit algorithms is spent for
lumping. It is also the case for the MTBDD based symblicit algorithm [38].

7 Conclusion

We have presented the interesting class of monotonic MDPs, and the new data structure of pseudo-
antichains. We have shown how monotonic MDPs can be exploited by symblicit algorithms using
pseudo-antichains (instead of MTBDDs) for two quantitative settings: the expected mean-payoff and
the stochastic shortest path. Those algorithms have been implemented, and we have reported promising
experimental results for two applications coming from automated planning andLTLMP synthesis. We are
convinced that pseudo-antichains can be used in the design of efficient algorithms in other contexts like
for instance model-checking or synthesis of non-stochastic models, as soon as a natural partial order can
be exploited.

Acknowledgments. We would like to thank Mickael Randour for his fruitful discussions, Marta
Kwiatkowska, David Parker and Christian Von Essen for theirhelp regarding the toolPRISM, and Holger
Hermanns and Ernst Moritz Hahn for sharing with us their prototypical implementation.

12For all the MDPs considered in Table 1, this ratio is 1.
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