
Černý, Kuncak, Madhusudan (Eds.): Fourth Workshop on
Synthesis (SYNT 2015)
EPTCS 202, 2016, pp. 58–72, doi:10.4204/EPTCS.202.5

c© S. Maoz & J.O. Ringert
This work is licensed under the
Creative Commons Attribution License.

Synthesizing a Lego Forklift Controller in GR(1):
A Case Study

Shahar Maoz Jan Oliver Ringert
School of Computer Science
Tel Aviv University, Israel

http://www.cs.tau.ac.il

Reactive synthesis is an automated procedure to obtain a correct-by-construction reactive system
from a given specification. GR(1) is a well-known fragment of linear temporal logic (LTL) where
synthesis is possible using a polynomial symbolic algorithm. We conducted a case study to learn
about the challenges that software engineers may face when using GR(1) synthesis for the develop-
ment of a reactive robotic system. In the case study we developed two variants of a forklift controller,
deployed on a Lego robot. The case study employs LTL specification patterns as an extension of the
GR(1) specification language, an examination of two specification variants for execution scheduling,
traceability from the synthesized controller to constraints in the specification, and generated counter
strategies to support understanding reasons for unrealizability. We present the specifications we de-
veloped, our observations, and challenges faced during the case study.

1 Motivation and Context

Reactive synthesis is an automated procedure to obtain a correct-by-construction reactive system from a
given specification, if one exists. The time complexity for synthesis of a reactive system from a linear
temporal logic (LTL) formula is double exponential in the length of the formula [18]. However, limited
fragments of LTL together with symbolic implementations exhibit more practical time complexities. One
such fragment is General Reactivity of rank 1 (GR(1)), where synthesis is possible using a polynomial
symbolic algorithm [3, 17].

The availability of efficient synthesis algorithms, as in the case of GR(1), and the guarantee of imple-
mentations being correct by construction, motivate applications in software engineering. GR(1) synthesis
has been recently used in various application domains, including robotics [11], scenario-based specifica-
tions [14], aspect languages [13], and event-based behavior models [4], to name a few.

We conducted a case study to explore the benefits and current challenges of using existing tools and
implementations of GR(1) synthesis to develop a reactive system. The research objectives of our case
study were to learn about the following questions:

• What are challenges faced when using a GR(1) synthesis tool to synthesize a software controller
for a robotic system?

• Is the use of LTL specification patterns helpful to formulate assumptions and guarantees?

• Is it easy to understand reasons for unrealizability?

• Do successfully synthesized controllers work as expected? If not, how can one understand why?

Our goal is to learn what reactive GR(1) synthesis offers and what it lacks to be successfully applied
by software engineers in a model-based development process. On a wider scale, we want to understand

http://dx.doi.org/10.4204/EPTCS.202.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

S. Maoz & J.O. Ringert 59

what is required to make a synthesis specification language and synthesis tools available and accepted
by reactive systems software engineers.

It is important to note that our case study concerns the initial development of a specification and
synthesized controller. This case study was not about applying new methods and tricks for specification
rewriting to make synthesis faster or to optimize the synthesized controller, e.g., as in case studies of
the AMBA AHB protocol [2, 7]. When including excerpts of the developed specifications in this paper
we decided to not rewrite LTL formulas in a more clever way but to present them as written during
specification development.

The context of our case study is the synthesis of software for a robotic system. Synthesis is limited
to a single controller that interacts with its environment. The specification is written and analyzed by a
software engineer and the synthesized controller is used without modification for automatic, direct code
generation and deployment to a robotic system. The tools used in our case study are:

• a symbolic GR(1) synthesis algorithm implementation from [3] using the JTLV framework [19]
including the synthesis of counter strategies for unrealizable specifications;

• the AspectLTL [13] input language, with syntax similar to SMV, for specifying environment as-
sumptions and system guarantees, with syntax highlighting and code completion;

• an implementation for traceability between a synthesized controller and its temporal specification
based on [16]; and

• a catalog of LTL specification patterns [5] and their GR(1) templates [12] (catalog of GR(1) tem-
plates available from [23].

The GR(1) synthesis problem is to find a controller that realizes a given specification over a set of
environment variables and a set of system variables. A GR(1) specification consists of:

• constraints on initial assignments (constraints without temporal operators),

• safety constraints over current and next assignments (constraints of the form G (exp) where the
expression exp is limited to past time temporal operators and the next operator), and

• liveness constraints, more specifically justice constraints, that should hold infinitely often (con-
straints of the form G F (exp) where the expression exp has no temporal operators).

All constraints are either assumptions, i.e., obligations of the environment, or guarantees, i.e., obli-
gations of the system. Intuitively, if all assumptions are satisfied by the environment a synthesized
controller satisfies all guarantees. If no such controller exists, the specification is called unrealizable. A
detailed introduction to LTL, past time LTL, and GR(1) synthesis is available from [3].

In this case study we use an extension of the GR(1) synthesis problem where assumptions and guar-
antees may also be specified using LTL specification patterns [5]. The extension is described in [12].

Apart from the above GR(1) synthesis implementations we have used the MontiArcAutomaton lan-
guage [21] for modeling the components of the robotic system and as a concrete syntax for the syn-
thesized controllers. We have used code generators from this intermediate representation to Java for
deployment to the Lego Mindstorms NXT platform1.

1LEGO Mindstorms website: http://www.lego.com/en-us/mindstorms

http://www.lego.com/en-us/mindstorms

60 Synthesizing a Lego Forklift Controller in GR(1):A Case Study

ForkLift

StationSensor

stationSense

LiftMotor(A)

mLift

Controller

MontiArcAutomaton

DistanceSensor

distSense

DistanceSensor

cargoSense

Button

emgOffButton

Motor

mRight

Motor

mLeft

boolean

station

Distance

sense

Distance

cargo

boolean

emgOff

boolean

liftAck

MotorCmd

mLeft

MotorCmd

mRight

LiftCmd

lift

(a) (b)

Figure 1: (a) The Lego forklift robot with four sensors and three actuators. (b) The logical software
architecture of the robot with wrappers for sensors and actuators and the main component Controller
to be synthesized (data types of input and output ports defined in Figure 2). The dashed elements describe
a second variant with feedback of the lift motor to acknowledge completion of lifting or dropping the
fork

2 Case Design and Variant

The task of the case study was to develop a specification for a Lego forklift robot shown on the left side
of Figure 1. The forklift is an actual Lego robot2 we have constructed and experimented with in our lab.
A criterion for success of synthesis was not only to obtain and inspect a synthesized controller but also
to deploy it to the real robot and see that its behavior makes sense.

The forklift shown in Figure 1 has a sensor to determine whether it is at a station, two distance
sensors to detect obstacles and cargo, and an emergency button to stop it. It has two motors to turn
the left and right wheels and one motor to lift the fork. The case definition consists of an initial set of
informal requirements for the behavior of the forklift:

1. Do not run into obstacles.

2. Only pick up or drop cargo at stations.

3. Do not attempt to lift cargo if cargo is lifted.

4. Always keep on delivering cargo.

5. Never drop cargo at the station where it was picked up.

6. Stop moving if emergency off switch is pressed.

Formalization and refinement of these requirements into guarantees and the elicitation of suitable
assumptions was part of the case study execution.

Together with the above list of informal requirements the logical software architecture of the forklift
was defined before case study execution. It is depicted as a component and connector model in Fig-
ure 1 (b). The components on the left side are hardware wrappers that read sensor values and publish

2Robot based on these building instructions: http://www.nxtprograms.com/NXT2/forklift/steps.html

http://www.nxtprograms.com/NXT2/forklift/steps.html

S. Maoz & J.O. Ringert 61

enum

MotorCmd

FWD

STP

BWD

enum

LiftCmd

LIFT

DROP

NIL

enum

Distance

CLOSE

FAR

Figure 2: Data type definitions for ports of component Controller shown in Figure 1

them as messages on their output ports. The output ports of the sensor components are connected to
input ports of component Controller. The output ports of component Controller are connected
to three components on the right that receive commands and encapsulate access to the motors of the fork-
lift. The datatypes of input and output ports as well as their names are written on the ports of component
Controller. Datatypes other than boolean are defined as enumerations in Figure 2.

The execution of the robot is performed in a cycle: read sensor data, execute controller, perform ac-
tions. When deploying the synthesized controller on the forklift robot the output produced by transitions
between states of the controller manipulates the robots environment through its actuators. We decided
on two scheduling variants to integrate the synthesized controller and the real world.

V1.Delayed In the first variant the execution of transitions of the synthesized controller is delayed to
give the physical robot enough time to execute tasks of the actuators. The delay has to be large
enough to, e.g., completely lift or drop the fork, complete a 90 degrees turn, or back up from an
obstacle. We set the delay to 2000ms.

V2.Continuous In the second variant the controller is executed continuously without any delay. This
variant uses a technique inspired by Raman et al. [20] to synthesize a reactive controller for con-
tinuous control. The setting requires the controller to be aware whether actions have completed
or not. In our case driving actions get feedback from distance sensors but an additional feedback
signal had to be added from the lift motor to acknowledge completion of its actions (shown as a
dashed line in Figure 1).

Depending on the scheduler and actuator implementations more variants are possible, e.g., a variant
where the scheduler pauses execution of the synthesized controller while an actuator performs a task
(e.g., similarly by Kress-Gazit et al. [10]).

3 Resulting Specifications

Development of the specifications started with the first variant V1.Delay in 7 versions with incre-
mental addition of features. When the first variant was almost complete the development of variant
V2.Continuous started based on the existing specification. The final specifications for both variants are
available from [22].

The first and common part to both specifications is a schematic translation of the input and output
ports of component Controller shown in Figure 1 to environment variables (VARENV) and system
variables (VAR) declared in Listing 1. The following excerpts of the two specifications refer to variable
names and short names defined in the DEFINE block of Listing 1. The only difference between the
variable declarations for V1.Delay and V2.Continuous is the environment variable liftAck in line 6
added only in variant V2.Continuous.

The two system variants are however very different. The main difference between both systems is
that the first variant of the forklift is scheduled in steps of 2000ms (it waits for 2 seconds after each read

62 Synthesizing a Lego Forklift Controller in GR(1):A Case Study

1 VARENV
2 cargo : { CLEAR, BLOCKED };
3 sense : { CLEAR, BLOCKED };
4 station : boolean;
5 emgOff : boolean;
6 liftAck : boolean; -- only in V2.Continuous
7

8 VAR
9 mLeft : { FWD, STOP, BWD };

10 mRight : { FWD, STOP, BWD };
11 lift : { LIFT, DROP, NIL };
12

13 DEFINE -- defines to ease reading specs
14 backing := mLeft = BWD & mRight = BWD;
15 stopping := mLeft = STOP & mRight = STOP;
16 turning := mLeft = BWD & mRight = FWD | mLeft = FWD & mRight = BWD;
17 forwarding := mLeft = FWD & mRight = FWD;
18 dropping := lift = DROP;
19 lifting := lift = LIFT;

Listing 1: Environment variables (VARENV), system variables (VAR), and definitions of short names
(DEFINE) of the controller to synthesize as an implementation of component Controller from
Figure 1 (b)

input, compute, write output iteration), while the second variant does not use any delay. To illustrate this
difference: when executing the controller synthesized from V1.Delay without the delay the forklift runs
over cargo it was expected to have lifted up; it may initiate dropping cargo at a station but only completes
dropping it after leaving the station; during this process it detects the dropping cargo as an obstacle and
tries to drive clear from it.

3.1 Specifications

We give an overview of both specifications developed as part of the case study. We start with V1.Delay
and later discuss the changes in V2.Continuous compared to V1.Delay.

V1.Delay: Assumptions and Guarantees

The specification document for V1.Delay contains 7 assumptions, 12 guarantees, and 1 auxiliary vari-
able.

Of the 7 assumptions, 1 is a safety constraint, and 6 are LTL specification patterns: 5 instances of the
response pattern P26 and 1 instance of a bounded existence pattern P15 (patterns numbered as appearing
on the website of [5] and in our catalog of GR(1) templates [12, 23]). An example for a typical response
pattern is shown in Listing 2, ll. 1-3. The pattern expresses the assumption that if the robot is backing
or turning it will reach a state where both distance sensors are clear unless it decides to go forward or
stop, i.e., the robot may escape obstacles. A safety assumption about the environment is that the reading
of the sensor station will not change when the forklift is stopping (see Listing 2, ll. 5-6). Another
assumption is formulated using pattern P15 is shown in Listing 2, l. 8-9. It expresses that the robot will
encounter at most two low obstacles between stations.

Of the 12 guarantees of V1.Delay, 1 constrains the initial state, 8 are a safety constraints, 1 is a justice
constraint, and 2 are LTL specification patterns (P09 and P20). One auxiliary variable is defined (we treat

S. Maoz & J.O. Ringert 63

1 ASSUMPTION -- backing or turning clears sensors
2 Globally (backing | turning) leads to
3 ((sense=CLEAR & cargo=CLEAR) | forwarding | stopping)); --P26
4

5 ASSUMPTION -- station does not change when stopping
6 G (stopping -> station = next(station));
7

8 ASSUMPTION -- at most blocked twice between stations
9 After (!atStation) have at most two (lowObstacle) until (atStation); --P15

Listing 2: Three assumptions of variant V1.Delay using LTL specification patterns [5] with equivalent
representations in GR(1) [12]

1 GUARANTEE -- have to leave station to deliver
2 (!atStation) occurs between (lift=LIFT) and (lift=DROP); --P09
3

4 GUARANTEE -- don’t drop cargo after leaving station until arriving
5 Globally (lift!=DROP) after (!atStation) until (atStation) --P20

Listing 3: Two guarantees of of variant V1.Delay using LTL specification patterns [5] with equivalent
representations in GR(1) [12]

the variable definition and assignments as a special case although the assignments are currently imple-
mented as four safety guarantees). Our current implementation distinguishes manually added auxiliary
variables from other variables by the prefix spec preceding the name of the variable.

The specification uses pattern P09 as a guarantee that the forklift has to leave the station between
lifting cargo and delivering it (Listing 3, ll. 1-2). Another guarantee uses pattern P20 to express that after
leaving a station cargo cannot be dropped until the forklift reaches a station (Listing 3, ll. 4-5).

In Listing 4 a new auxiliary variable spec loaded is introduced for the purpose of simplifying
the specification. This variable is used by the specifier to keep track on whether the forklift has loaded
cargo or not. The value of the variable is determined by safety constraints. The variable is used in the
specification in both assumptions and guarantees as shown in Listing 5. The assumption in lines 1-3
expresses that if the forklift goes forward and has cargo loaded it will eventually find a station where it
can deliver cargo unless it stops or goes backward.

Two additional guarantees in Listing 6 describe the emergency stop feature of the forklift and the
main justice constraint to always eventually deliver cargo. The main justice constraint of the forklift is
shown in Listing 6, ll. 4-5. It does not only contain the expected lift = DROP, i.e., delivering cargo,
but also the alternatives emgOff and lowObstacle. These alternatives represent environment actions
that if occurring infinitely often liberate the forklift from its obligation.

1 VAR -- new auxiliary variable to "remember" when cargo is loaded
2 spec_loaded : boolean;
3 GUARANTEE
4 !spec_loaded; -- initial value false
5 G (lifting -> next (spec_loaded)); -- set loaded when lifting
6 G (dropping -> ! next (spec_loaded)); -- unset loaded when dropping
7 G (lift = NIL -> next (spec_loaded) = spec_loaded); -- preserve value

Listing 4: Definition of the auxiliary variable spec loaded

64 Synthesizing a Lego Forklift Controller in GR(1):A Case Study

1 ASSUMPTION -- find station to drop when forwarding (unless backing or stopping)
2 Globally (forwarding & spec_loaded) leads to
3 ((station & cargo=CLEAR) | backing | stopping));
4

5 ASSUMPTION -- find station and cargo when forwarding (unless backing or stopping)
6 Globally (forwarding & !spec_loaded) leads to
7 ((station & cargo=BLOCKED) | backing | stopping));
8

9 GUARANTEE -- do not lift again when cargo is loaded
10 G (spec_loaded -> !lifting);

Listing 5: An assumption and a guarantee of variant V1.Delay using the auxiliary variable spec -
loaded introduced in Listing 3

1 GUARANTEE -- emergency stop
2 G (emgOff -> (stopping & lift=NIL));
3

4 GUARANTEE -- main goal to always eventually deliver cargo
5 G F ((lift = DROP) | emgOff | lowObstacle);

Listing 6: More guarantees of variant V1.Delay: the emergency stop feature and the main justice
constraint of the forklift

V2.Continuous: Assumptions and Guarantees

We now describe the differences between the specification of the first variant V1.Delay and the second
variant V2.Continuous of the forklift specifications. The second variant applies a method inspired by
Raman et al. [20] for continuous control. The main idea is to add a new variable for every action which
signals completion of the action. In our case study this method is only necessary for the completion
of lifting and dropping cargo. The environment variable liftAck is added (see Listing 1) to signal
completion of the actions of component LiftMotor (see Figure 1).

The specification document for variant V2.Continuous contains 9 assumptions, 14 guarantees, and
2 auxiliary variable definitions. None of the assumptions or guarantees of V1.Delay were removed, two
assumptions were added, and two guarantees were added.

Of the 2 added assumptions, 1 is a safety constraint, and 1 is an instance of pattern P26. The auxiliary
variable spec waitingForLifting is declared and completely defined in Listing 7, ll. 9-15 in the
same way as spec loaded. The variable is true iff a lifting command was issued and completion
has not been acknowledged yet. The assumption in Listing 8, ll. 1-2 expresses that an acknowledgment
liftAck will eventually follow every waiting. A second assumption ensures that acknowledgments are
only sent if spec waitingForLifting is true. The assignment of variable spec loaded has
been modified. The assignment now depends on the previous value of the variable and the new input
liftAck (see Listing 7, ll. 1-7).

Both added guarantees are safety constraints, as shown in Listing 9. The first expresses that the
forklift stops when it waits for the completion of a lifting action (see Listing 9, ll. 1-2), and the second
expresses that it does not issue new lifting commands when waiting for completion (see Listing 9, ll. 4-5).

3.2 Synthesis Times and Controller Sizes

For both variants a controller that implements the specification can be synthesized in a few seconds us-
ing the Java-based BDD engine that comes with JTLV [19]. The sizes of both specification variants are

S. Maoz & J.O. Ringert 65

1 VAR
2 spec_loaded : boolean;
3 GUARANTEE -- updated assignments of var spec_loaded
4 !spec_loaded;
5 G (liftAck & !spec_loaded -> next(spec_loaded));
6 G (liftAck & spec_loaded -> next(!spec_loaded));
7 G (!liftAck -> spec_loaded = next(spec_loaded));
8

9 VAR -- variable to keep track of waiting for lifting
10 spec_waitingForLifting : boolean;
11 GUARANTEE
12 !spec_waitingForLifting;
13 G ((lift=LIFT | lift=DROP) -> next(spec_waitingForLifting));
14 G (liftAck -> ((lift=LIFT | lift=DROP) | next(!spec_waitingForLifting)));
15 G (!((lift=LIFT | lift=DROP) | liftAck) -> spec_waitingForLifting = next(

spec_waitingForLifting));

Listing 7: Auxiliary variable definitions in V2.Continuous: the assignments of spec loaded were
modified and variable spec waitingForLifting was added

1 ASSUMPTION -- always eventually complete lifting
2 Globally (spec_waitingForLifting) leads to (liftAck);
3

4 ASSUMPTION -- only acknowledge if waiting for it
5 G (next(liftAck) -> (spec_waitingForLifting & !liftAck));

Listing 8: New assumptions added in variant V2.Continuous about acknowledgments of executing the
LIFT and DROP commands

1 GUARANTEE -- while lift performs action stop
2 G (spec_waitingForLifting -> stopping);
3

4 GUARANTEE -- do not send another request when waiting for completion
5 G (spec_waitingForLifting -> lift=NIL);

Listing 9: Added guarantees of variant V2.Continuous

66 Synthesizing a Lego Forklift Controller in GR(1):A Case Study

V1.Delay V2.Continuous
Assumptions 1 safety, 2 safety,
(patterns) 5 times P26, P15 6 times P26, P15
Guarantees 1 initial, 8 safety, 1 justice, 1 initial, 10 safety, 1 justice,
(patterns) P09, P20 P09, P20
Boolean Variables 4 environment, 6 system, 5 environment, 6 system,
(auxiliary) 1 manual, 12 pattern 2 manual, 13 pattern
Checking Realizability 0.2 sec 0.7 sec
Controller Construction 1.8 sec 1.3 sec
States of Controller 3412 2888

Table 1: For both variants we report the size of the specification, times for checking realizability and
controller construction in seconds, and the size of a synthesized controller

summarized in the upper half of Table 1. We report the assumption and guarantee constraints, the total
number of variables including auxiliary variables (the state space referred to as N in the time complexity
O(nmN2) of GR(1) synthesis is 2 to the power of the number of Boolean variables required to repre-
sent environment, system, and auxiliary variables). Environment and system variables amount to 210 in
V1.Delay and to 211 in V2.Continuous. For the specifications of variant V1.Delay and V2.Continuous
developed in this case study 13 and 15 auxiliary variables were automatically (and implicitly) added to
support specification patterns or explicitly added as auxiliary variables in the specification. The GR(1)
synthesis problem after the translation of patterns to GR(1), via the templates described in [12], had 6
environment and 3 system justice goals in variant V1.Delay and 7 environment and 3 system justice
goals in variant V2.Continuous.

In the lower half of Table 1 we report the time it took the synthesis algorithm to decide realizability
and the additional time consumed by the controller construction phase, in seconds. Times are shown as
reported by JTLV running on an ordinary laptop with Java 7, Windows 7 64bit, 8GB RAM, and an Intel
i7 CPU with 3.0 GHz. Synthesis times for all intermediate versions during specification development
confirmed that synthesis is conveniently fast.

3.3 Running Synthesized Controllers on the Forklift

We used code generators implemented in our group for the NXJ LeJOS platform3 to generate code and
directly deploy the software components shown in Figure 1 (b) to the LEGO NXT forklift shown in
Figure 1 (a). The components StationSensor (light value measured on the ground), Distance-
Sensor (ultrasonic distance sensor), and Button (touch sensor) have generic implementations in Java
that wrap the LeJOS sensor API. The components Motor and LiftMotor have generic implementa-
tions that wrap the LeJOS motor API.

To execute the synthesized controller of variant V1.Delay on the forklift we had to adapt a set of
platform specific parameters: number of degrees motors mLeft and mRight rotate backward and for-
ward, number of degrees the lifting motor rotates, distance to obstacles detected by distSense, and
distance to cargo detected by cargoSense. In the second variant V2.Continuous the motors mLeft
and mRight do not rotate a fixed amount of degrees but move continuously.

The components on the robot are executed in execution cycles. Every execution cycle starts with

3Website of LeJOS NXJ: http://www.lejos.org/nxj.php

http://www.lejos.org/nxj.php

S. Maoz & J.O. Ringert 67

reading all sensor values, executes the controller, and ends with executing all actuators. In variant
V1.Delay we added a fixed delay of 2000ms after the execution of the actuators to allow the forklift
finishing all actions. In variant V2.Continuous a delay was not added and the execution time of one
cycle on the robot was around 50ms.

We observed that variant V1.Delay provided more reliable sensor readings than V2.Continuous
because it measured values after completing its actions in a resting position. For variant V2.Continuous
erroneous sensor readings had serious effects. As one example, when the station sensor falsely detected
a station the forklift stopped to drop cargo. A second reading when stopped did not report the station and
thus caused a violation of an environment assumption (Listing 2, ll. 5-6), and so the forklift went into an
infinite loop of stopping. As another example, unstable readings of the ultrasonic sensor led to detecting
and not detecting obstacles at the sensor’s threshold level. This happened when the forklift was not at a
station and led to a violation of the assumption that at most two obstacles occur (Listing 2, ll. 8-9). In
this case the forklift kept going forward in an infinite loop not stopping at obstacles anymore.

Some works have addressed the challenge of synthesizing controllers which are more robust to as-
sumption violations, e.g., Ehlers and Topcu [6] suggested an approach where the synthesized controller
allows violations of safety assumptions up to some constant number of times.

4 Observations and Challenges

We now report some of our observations and challenges faced during specification development.

O1: Differences between V1.Delay and V2.Continuous

The way that the synthesized controllers of variants V1.Delay and V2.Continuous are executed and
interact with their environment is fundamentally different. Thus, we found it surprising that their GR(1)
specifications are still very similar. Only two assumptions and two guarantees were added. One reason
for the similarity is that V2.Continuous is based on V1.Delay. It is still interesting that most existing
assumptions and guarantees also remain valid for the second variant, although it is based on a continuous
execution scheduling, without delays. The main reason we did not have to adapt many assumptions
seems to be the use of the response patterns already in V1.Delay (five instances) instead of explicitly
referring to immediate successor states.

O2: Manually adding auxiliary variables helpful

During the development of the two specifications we found it very helpful to add auxiliary variables, as
they assisted us in making relevant states explicit. As an example, the auxiliary variable spec loaded
(Listing 4) is defined to be true iff the forklift has loaded cargo. This information is derived and not
provided as a sensor input. The variable spec loaded appears in two assumptions and two guarantees.
The past LTL formula

PREV (lift!=DROP SINCE lift=LIFT)

could replace the auxiliary variable but we believe that it helps readability of the formulas to make the
property explicit with a new name.

Technically, adding an auxiliary variable to the specification requires that its value is determined
by complete and deterministic safety constraints. This mechanism is discussed by Bloem et al. [3] for
supporting past LTL in GR(1) synthesis.

68 Synthesizing a Lego Forklift Controller in GR(1):A Case Study

O3: Support for patterns helpful

LTL specification patterns [5] allow one to express high-level temporal patterns in a convenient way that
are otherwise complicated and error-prone to express in LTL. In the limited fragment of GR(1) correctly
expressing these behaviors becomes even more complicated due to the limitation of available operators
and no nesting. We provide GR(1) templates for 52 of the 55 LTL specification patterns [12].

During the case study we found that using patterns is very helpful for expressing more complicated
temporal properties. Moreover, using patterns gave us better confidence that the specification matches
our intention.

A specifically useful pattern in assumptions was the response pattern P26. Instances of this pattern
appeared as 5 out of 7 assumptions in V1.Delay (6 out of 9 in V2.Continuous). This pattern seems to
be well suited for describing robotic systems where one should assume that some actions of actuators
eventually have an impact on sensor values.

It is important to note that the addition of patterns comes at a price. Most patterns cannot be expressed
without the addition of auxiliary variables. In both variants of our case study more than half of the
Boolean variables encoding the statespace were auxiliary variables, implicitly added in the translation
of the patterns to the GR(1) form based on our templates. The resulting synthesis problems of the case
study are however still solved in a few seconds.

C1: Environment vs. real environment

During the case study it turned out that it is difficult to use assumptions to describe realistic environments.
A very simple example that appeared early during development of V1.Delay is the assumption that
turning of the robot will make the distance sensor signal clear:

G (turning -> next(sense=CLEAR));

Our inspection of the synthesized controller concluded positively. When deploying the controller to the
forklift it turned and stopped in a corner of the room. The assumption was too strong for the forklift’s
real environment. In a corner, turning 90 degrees leaves the robot facing another wall. The response pat-
tern Globally (turning) leads to (sense=CLEAR) would solve this particular problem
but the expressed assumption is still too strong and we observed another undesired behavior: after being
blocked the forklift turned once but then stopped and waited for the obstacle to disappear. A corrected
version (also handling driving backwards) is shown in Listing 2, ll. 1-3.

A different challenge appeared when adding a guarantee that the robot should pick up cargo and not
drop it between stations:

Globally (lift!=DROP SINCE lift=LIFT)

after (!atStation) until (atStation);

The addition of this guarantee made the specification unrealizable. The past time formula lift!=DROP
SINCE lift=LIFT embedded in the specification pattern requires that the forklift leaves a station only
when cargo has been picked up. We decided that it might be reasonable to assume that at every station
the forklift may pick up cargo. It turned out too complicated for us to formulate this assumption in
GR(1). A possible assumption might require encoding the area of each station and valid navigation of
the forklift to allow it to explore the station for cargo. Finally, we weakened the above guarantee to the
one in Listing 3, ll. 4-5. The modified version allows the forklift to leave stations without cargo.

S. Maoz & J.O. Ringert 69

To summarize, in the case study we faced both the challenge of formulating assumptions that are too
strong for the real environment of the forklift and the challenge of not being able to formulate reasonable
assumptions due to difficulties in expressing them. Both cases are not easy to address. Specifically the
first can lead to successful synthesis of a controller that fails in a real environment.

C2: Undesired realizable case: system forces environment to violate assumptions

When the system can force the environment to violate its assumptions the controller often does not act
as the engineer would have expected it to act. Consider the following two assumptions from an early
version of V1.Delay. The first assumption is that if the forklift does not move the station sensor value
will not change. The second assumption is that the forklift will eventually leave a station if it moves
forward.

G (stopping -> station = next(station));

Globally (forwarding) leads to (!station);

We synthesized a controller and in some cases the forklift running the controller stopped and did
not continue to move. To understand this behavior in the example above we enabled our synthesis
tool to annotate every transition with one of three reasons for it to be included in the controller. The
possible reasons are [3]: satisfying a justice constraint, working towards satisfying a justice constraint,
or preventing a justice constraint of the environment. The annotation of each transition of the controller
includes the justice constraint from the specification (see [16] for more details about traceability). Using
this traceability information, which links transitions in the controller to elements of the specification,
we learned the reasons for the synthesized strategy of the controller. We found out that in the example
above, the forklift goes forward on a station. If it is still on the station in the next step it stops forever
and thus prevents the environment from satisfying the justice constraint of the response pattern.

In this simple example with a controller of 80 states we were able to find an explanation we could
trace to the specification and modify the response pattern as shown in Listing 5, ll. 5-7. It would have
been helpful to automatically find cases where the system forces the environment to violate assumptions
for an engineer to decide whether this behavior is desired or not. Towards the end of our specification
development process synthesized controllers simply became too large for manual inspection.

Klein and Pnueli [8] defined environments where the system cannot force a violation as well-separated.
They suggest a modified GR(1) game to check whether an environment is well-separated. This may be a
direction towards addressing this challenge.

C3: Unrealizable case

In many cases adding a new feature expressed as a set of assumptions and guarantees led to an unre-
alizable specification. In some cases we were able to find mistakes quickly in the added assumptions
and guarantees. Many times we initially forgot to add alternatives in safety constraints leading to their
unsatisfiability by the system. In more complicated cases we asked our tool to synthesize a counter strat-
egy that represents an environment forcing all system strategies to lose. We (interactively, as described
in [16, 15]) executed moves of our intended system and learned where our strategy loses against the
environment. This often led to better understanding of the reasons for unrealizability.

In some cases it was however very difficult to understand the reason for unrealizability, trace it back
to the specification, and fix it. As an example, consider the introduction of the new environment variable

70 Synthesizing a Lego Forklift Controller in GR(1):A Case Study

liftAck and the auxiliary variable spec waitingForLifting (see Listing 7). We added the
assumption that lifting can only be acknowledged if the controller is expecting it:

G (next(liftAck) -> spec waitingForLifting);

The specification of variant V2.Continuous with the above assumption is unrealizable. A synthe-
sized counter strategy has 3735 states. The Java code generated by our synthesis tool for interactive
exploration of the counter strategy failed to compile due to its size. Printing the counter strategy includ-
ing information on successors disabled by safety properties ran out of memory. It was not easily possible
to reduce the synthesis problem by removing irrelevant parts from the specification. Lifting of cargo
is related to movement of the motors and the cargo sensor. The movement of motors is related to the
distance sensor.

We manually executed the counter strategy by inspecting the generated text output. Many steps
were repetitive (long chains of apparently similar states) as we were working towards forcing the envi-
ronment to present a station with cargo, and after lifting forcing it to acknowledge lifting. Right after
acknowledging lifting the environment acknowledged lifting again. The double acknowledgment set
and immediately afterwards disabled the variable spec loaded (see Listing 7, ll. 5-6). The double
acknowledgment was possible because liftAck disables spec waitingForLifting only in the
next step (see Listing 7, ll. 14). We adapted the above assumption as shown in Listing 8, l. 5.

While counter strategies help understanding reasons of unrealizability their handling by our tools
turned out to be insufficient for larger specifications. In the future we plan to examine how recent work
by others, e.g., [1, 9], may help in addressing the unrealizability challenge.

5 Conclusion

We have presented a case study of the development of a software controller for a forklift robot using
GR(1) synthesis tools. Rather than examining how to write most elegant and efficient specifications we
focused on challenges for software engineers in the process of specification development. We showed the
specifications of two variants of the controller. On the one hand, our observations are that extensions of
the specification language with auxiliary variables and higher-level specification patterns support writing
specifications with better confidence. On the other hand, with growing specification size, understanding
reasons for synthesized behavior and for unrealizability turned out to be major challenges.

This case study is part of our larger project on bridging the gap between the theory and algorithms
of reactive synthesis on the one hand and software engineering practice on the other. In many aspects it
demonstrates the different challenges awaiting us.

Acknowledgments The authors thank the anonymous reviewers of the SYNT 2015 workshop for their
helpful comments. Jan O. Ringert acknowledges support from a postdoctoral Minerva Fellowship,
funded by the German Federal Ministry for Education and Research. This project has received fund-
ing from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 638049, SYNTECH).

References
[1] Rajeev Alur, Salar Moarref & Ufuk Topcu (2013): Counter-strategy guided refinement of GR(1) temporal

logic specifications. In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,

S. Maoz & J.O. Ringert 71

October 20-23, 2013, IEEE, pp. 26–33. Available at http://dx.doi.org/10.1109/FMCAD.2013.
6679387.

[2] Roderick Bloem, Swen Jacobs & Ayrat Khalimov (2014): Parameterized Synthesis Case Study: AMBA AHB.
In Krishnendu Chatterjee, Rüdiger Ehlers & Susmit Jha, editors: Proceedings 3rd Workshop on Synthesis,
SYNT 2014, Vienna, Austria, July 23-24, 2014., EPTCS 157, pp. 68–83. Available at http://dx.doi.
org/10.4204/EPTCS.157.9.

[3] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli & Yaniv Sa’ar (2012): Synthesis of Re-
active(1) Designs. J. Comput. Syst. Sci. 78(3), pp. 911–938. Available at http://dx.doi.org/10.
1016/j.jcss.2011.08.007.

[4] Nicolás D’Ippolito, Vı́ctor A. Braberman, Nir Piterman & Sebastián Uchitel (2013): Synthesizing nonanoma-
lous event-based controllers for liveness goals. ACM Trans. Softw. Eng. Methodol. 22(1), p. 9. Available at
http://doi.acm.org/10.1145/2430536.2430543.

[5] Matthew B. Dwyer, George S. Avrunin & James C. Corbett (1999): Patterns in Property Specifications for
Finite-State Verification. In: ICSE, ACM, pp. 411–420. Available at http://doi.acm.org/10.1145/
302405.302672.

[6] Rüdiger Ehlers & Ufuk Topcu (2014): Resilience to intermittent assumption violations in reactive synthesis.
In Martin Fränzle & John Lygeros, editors: 17th International Conference on Hybrid Systems: Computa-
tion and Control (part of CPS Week), HSCC’14, Berlin, Germany, April 15-17, 2014, ACM, pp. 203–212.
Available at http://doi.acm.org/10.1145/2562059.2562128.

[7] Yashdeep Godhal, Krishnendu Chatterjee & Thomas A. Henzinger (2013): Synthesis of AMBA AHB from
formal specification: a case study. STTT 15(5-6), pp. 585–601. Available at http://dx.doi.org/10.
1007/s10009-011-0207-9.

[8] Uri Klein & Amir Pnueli (2010): Revisiting Synthesis of GR(1) Specifications. In Sharon Barner, Ian G.
Harris, Daniel Kroening & Orna Raz, editors: Hardware and Software: Verification and Testing - 6th
International Haifa Verification Conference, HVC 2010, Haifa, Israel, October 4-7, 2010. Revised Se-
lected Papers, Lecture Notes in Computer Science 6504, Springer, pp. 161–181. Available at http:
//dx.doi.org/10.1007/978-3-642-19583-9_16.

[9] Robert Könighofer, Georg Hofferek & Roderick Bloem (2013): Debugging formal specifications: a practical
approach using model-based diagnosis and counterstrategies. STTT 15(5-6), pp. 563–583. Available at
http://dx.doi.org/10.1007/s10009-011-0221-y.

[10] Hadas Kress-Gazit, Georgios E. Fainekos & George J. Pappas (2007): Where’s Waldo? Sensor-Based Tem-
poral Logic Motion Planning. In: 2007 IEEE International Conference on Robotics and Automation, ICRA
2007, 10-14 April 2007, Roma, Italy, IEEE, pp. 3116–3121. Available at http://dx.doi.org/10.
1109/ROBOT.2007.363946.

[11] Hadas Kress-Gazit, Georgios E. Fainekos & George J. Pappas (2009): Temporal-Logic-Based Reactive Mis-
sion and Motion Planning. IEEE Trans. Robotics 25(6), pp. 1370–1381. Available at http://dx.doi.
org/10.1109/TRO.2009.2030225.

[12] Shahar Maoz & Jan Oliver Ringert (2015): GR(1) Synthesis for LTL Specification Patterns. In: ESEC/FSE,
ACM, pp. 96–106. Available at http://dx.doi.org/10.1145/2786805.2786824. http://
smlab.cs.tau.ac.il/syntech/patterns/.

[13] Shahar Maoz & Yaniv Sa’ar (2011): AspectLTL: an aspect language for LTL specifications. In Paulo Borba
& Shigeru Chiba, editors: AOSD, ACM, pp. 19–30. Available at http://doi.acm.org/10.1145/
1960275.1960280.

[14] Shahar Maoz & Yaniv Sa’ar (2012): Assume-Guarantee Scenarios: Semantics and Synthesis. In:
MODELS, LNCS 7590, Springer, pp. 335–351. Available at http://dx.doi.org/10.1007/
978-3-642-33666-9_22.

http://dx.doi.org/10.1109/FMCAD.2013.6679387
http://dx.doi.org/10.1109/FMCAD.2013.6679387
http://dx.doi.org/10.4204/EPTCS.157.9
http://dx.doi.org/10.4204/EPTCS.157.9
http://dx.doi.org/10.1016/j.jcss.2011.08.007
http://dx.doi.org/10.1016/j.jcss.2011.08.007
http://doi.acm.org/10.1145/2430536.2430543
http://doi.acm.org/10.1145/302405.302672
http://doi.acm.org/10.1145/302405.302672
http://doi.acm.org/10.1145/2562059.2562128
http://dx.doi.org/10.1007/s10009-011-0207-9
http://dx.doi.org/10.1007/s10009-011-0207-9
http://dx.doi.org/10.1007/978-3-642-19583-9_16
http://dx.doi.org/10.1007/978-3-642-19583-9_16
http://dx.doi.org/10.1007/s10009-011-0221-y
http://dx.doi.org/10.1109/ROBOT.2007.363946
http://dx.doi.org/10.1109/ROBOT.2007.363946
http://dx.doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1145/2786805.2786824
http://smlab.cs.tau.ac.il/syntech/patterns/
http://smlab.cs.tau.ac.il/syntech/patterns/
http://doi.acm.org/10.1145/1960275.1960280
http://doi.acm.org/10.1145/1960275.1960280
http://dx.doi.org/10.1007/978-3-642-33666-9_22
http://dx.doi.org/10.1007/978-3-642-33666-9_22

72 Synthesizing a Lego Forklift Controller in GR(1):A Case Study

[15] Shahar Maoz & Yaniv Sa’ar (2013): Counter play-out: executing unrealizable scenario-based specifica-
tions. In: ICSE, IEEE / ACM, pp. 242–251. Available at http://dl.acm.org/citation.cfm?id=
2486821.

[16] Shahar Maoz & Yaniv Sa’ar (2013): Two-Way Traceability and Conflict Debugging for AspectLTL Pro-
grams. T. Aspect-Oriented Software Development 10, pp. 39–72. Available at http://dx.doi.org/
10.1007/978-3-642-36964-3_2.

[17] Nir Piterman, Amir Pnueli & Yaniv Sa’ar (2006): Synthesis of Reactive(1) Designs. In: VMCAI, LNCS
3855, Springer, pp. 364–380. Available at http://dx.doi.org/10.1007/11609773_24.

[18] Amir Pnueli & Roni Rosner (1989): On the Synthesis of a Reactive Module. In: POPL, ACM Press, pp.
179–190. Available at http://doi.acm.org/10.1145/75277.75293.

[19] Amir Pnueli, Yaniv Sa’ar & Lenore D. Zuck (2010): JTLV: A Framework for Developing Verification Algo-
rithms. In: CAV, LNCS 6174, Springer, pp. 171–174. Available at http://dx.doi.org/10.1007/
978-3-642-14295-6_18.

[20] Vasumathi Raman, Nir Piterman & Hadas Kress-Gazit (2013): Provably correct continuous control for high-
level robot behaviors with actions of arbitrary execution durations. In: 2013 IEEE International Conference
on Robotics and Automation, Karlsruhe, Germany, May 6-10, 2013, IEEE, pp. 4075–4081. Available at
http://dx.doi.org/10.1109/ICRA.2013.6631152.

[21] Jan Oliver Ringert, Bernhard Rumpe & Andreas Wortmann (2014): Architecture and Behavior Modeling of
Cyber-Physical Systems with MontiArcAutomaton. Aachener Informatik-Berichte, Software Engineering 20,
Shaker Verlag.

[22] SYNTECH forklift website. http://smlab.cs.tau.ac.il/syntech/forklift/.
[23] SYNTECH GR(1) patterns website. http://smlab.cs.tau.ac.il/syntech/patterns/.

http://dl.acm.org/citation.cfm?id=2486821
http://dl.acm.org/citation.cfm?id=2486821
http://dx.doi.org/10.1007/978-3-642-36964-3_2
http://dx.doi.org/10.1007/978-3-642-36964-3_2
http://dx.doi.org/10.1007/11609773_24
http://doi.acm.org/10.1145/75277.75293
http://dx.doi.org/10.1007/978-3-642-14295-6_18
http://dx.doi.org/10.1007/978-3-642-14295-6_18
http://dx.doi.org/10.1109/ICRA.2013.6631152
http://smlab.cs.tau.ac.il/syntech/forklift/
http://smlab.cs.tau.ac.il/syntech/patterns/

	1 Motivation and Context
	2 Case Design and Variant
	3 Resulting Specifications
	3.1 Specifications
	3.2 Synthesis Times and Controller Sizes
	3.3 Running Synthesized Controllers on the Forklift

	4 Observations and Challenges
	5 Conclusion

