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We present the logical induction criterion for computable algorithms that assign probabilities to every

logical statement in a given formal language, and refine those probabilities over time. The criterion

is motivated by a series of stock trading analogies. Roughly speaking, each logical sentence φ is

associated with a stock that is worth $1 per share if φ is true and nothing otherwise, and we interpret

the belief-state of a logically uncertain reasoner as a set of market prices, where Pn(φ) = 50% means

that on day n, shares of φ may be bought or sold from the reasoner for 50¢. A market is then called

a logical inductor if (very roughly) there is no polynomial-time computable trading strategy with

finite risk tolerance that earns unbounded profits in that market over time. We then describe how this

single criterion implies a number of desirable properties of bounded reasoners; for example, logical

inductors outpace their underlying deductive process, perform universal empirical induction given

enough time to think, and place strong trust in their own reasoning process.

1 Introduction

Every student of mathematics has experienced uncertainty about conjectures for which there is “quite

a bit of evidence”, such as the Riemann hypothesis or the twin prime conjecture. Indeed, when Zhang

[51] proved a bound on the gap between primes, we were tempted to increase our credence in the twin

prime conjecture. But how much evidence does this bound provide for the twin prime conjecture? Can

we quantify the degree to which it should increase our confidence?

The natural impulse is to appeal to probability theory in general and Bayes’ theorem in particular.

Bayes’ theorem gives rules for how to use observations to update empirical uncertainty about unknown

events in the physical world.

However, probability theory lacks the tools to manage logical non-omniscience: probability-theoretic

reasoners cannot possess uncertainty about logical facts so long as their beliefs respect basic logical

constraints. For example, let φ stand for the claim that the 87,653rd digit of π is a 7. If this claim is true,

then (1+ 1 = 2) ⇒ φ . But the laws of probability theory say that if A ⇒ B then Pr(A) ≤ Pr(B). Thus,

a perfect Bayesian must be at least as sure of φ as they are that 1+ 1 = 2! Recognition of this problem

dates at least back to [23].

Many have proposed methods for relaxing the criterion Pr(A) ≤ Pr(B) until such a time as the im-

plication has been proven (see, e.g., the work of [26, 7]). But this leaves open the question of how

probabilities should be assigned before the implication is proven, and this brings us back to the search

for a principled method for managing uncertainty about logical facts when relationships between them

are suspected but unproven.

In this paper we describe what we call the logical induction criterion for reasoning under logical

uncertainty. Our solution works, more or less, by treating a reasoner’s beliefs as prices in a market
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that fluctuate over time, and requiring that those prices not be exploitable indefinitely by any sequence

of trades constructed by an efficient (polynomial-time) algorithm. The logical induction criterion can

be seen as a weakening of the “no Dutch book” criteria that Ramsey [42], de Finetti [14], Teller [48],

and Lewis [36] used to support standard probability theory, which is analogous to the “no Dutch book”

criteria that von Neumann and Morgenstern [40] and Joyce [33] used to support expected utility theory.

Because of the analogy, and the variety of desirable properties that follow immediately from this one

criterion, we believe that the logical induction criterion captures a portion of what it means to do good

reasoning about logical facts in the face of deductive limitations.

Section 2 lists desiderata for reasoning under logical uncertainty.

Section 3 lists further related work.

Section 4 presents an overview of the logical induction framework.

Section 5 discusses a collection of properties satisfied by logical inductors.

Section 6 gives concluding remarks.

Note on abridgement: Due to space considerations, this paper does not include proofs of claims, and

describes some results only at a high level. The formal details of our definitions and theorems, additional

properties of logical inductors, proofs of properties, a construction of a logical inductor, and further

discussion can be found in [18].

2 Desiderata for Reasoning under Logical Uncertainty

For historical context, and to further reify the problem, we now review a number of desiderata that have

been proposed in the literature as desirable features of “good reasoning” in the face of logical uncertainty.

Desideratum 1 (Computable Approximability). The method for assigning probabilities to logical claims

(and refining them over time) should be computable.

Desideratum 2 (Coherence in the Limit). The belief state that the reasoner is approximating better and

better over time should be logically consistent.

(Discussed in Section 5.2.)

Desideratum 3 (Approximate Coherence). The belief states of the reasoner over time should be approx-

imately logically consistent.

(Discussed in Section 5.3.)

Desideratum 3 dates back to at least Good [23], who proposes a weakening of the condition of coherence

that could apply to the belief states of limited reasoners. Hacking [26] proposes an alternative weakening,

as do Garrabrant et al. [19].

Desideratum 4 (Learning of Statistical Patterns). In lieu of knowledge that bears on a logical fact,

a good reasoner should assign probabilities to that fact in accordance with the rate at which similar

claims are true.

For example, a good reasoner should assign probability ≈ 10% to the claim “the nth digit of π is a 7” for

large n (assuming there is no efficient way for a reasoner to guess the digits of π for large n); see [44].

Desideratum 5 (Calibration). Good reasoners should be well-calibrated. That is, among events that a

reasoner says should occur with probability p, they should in fact occur about p proportion of the time.

Desideratum 6 (Non-Dogmatism). A good reasoner should not have extreme beliefs about mathematical

facts, unless those beliefs have a basis in proof.

(Discussed in Section 5.2.)
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In the domain of logical uncertainty, Desideratum 6 can be traced back to Carnap [6, Sec. 53], and has

been demanded by many, including Gaifman[16] and Hutter [31].

Desideratum 7 (Uniform Non-Dogmatism). A good reasoner should assign a non-zero probability to

any computably enumerable consistent theory (viewed as a limit of finite conjunctions).

(Discussed in Section 5.2.)

The first formal statement of Desideratum 7 that we know of is given by Demski [9], though it is implicitly

assumed whenever asking for a set of beliefs that can reason accurately about arbitrary arithmetical

claims (as is done by, e.g., Savage [44] and Hacking [26]).

Desideratum 8 (Universal Inductivity). Given enough time to think, the beliefs of a good reasoner should

dominate any (lower semicomputable) semimeasure.

(Discussed in Section 5.2.)

Desideratum 9 (Approximate Bayesianism). The reasoner’s beliefs should admit of some notion of

conditional probabilities, which approximately satisfy both Bayes’ theorem and the other desiderata

listed here.

Desideratum 10 (Self-knowledge). If a good reasoner knows something, she should also know that she

knows it. (Discussed in Section 5.4.)

Proposed by Hintikka [30], Desideratum 10 is popular among epistemic logicians. This desideratum has

been formalized in many different ways; see [8, 5] for a sample.

Desideratum 11 (Self-Trust). A good reasoner thinking about a hard problem should expect that, in the

future, her beliefs about the problem will be more accurate than her current beliefs. (Discussed in

Section 5.5.)

Desideratum 12 (Approximate Inexploitability). It should not be possible to run a Dutch book against

a good reasoner in practice. (See Section 4 for our proposal.)

As noted by Eells [10], the Dutch book constraints used by von Neumann and Morgenstern [40] and de

Finetti [14] are implausibly strong: all it takes to run a Dutch book according to de Finetti’s formulation

is for the bookie to know a logical fact that the reasoner does not know. Thus, to avoid being Dutch

booked by de Finetti’s formulation, a reasoner must be logically omniscient.

Hacking [26] and Eells [10] call for weakenings of the Dutch book constraints, in the hopes that

reasoners that are approximately inexploitable would do good approximate reasoning. This idea is the

cornerstone of our framework—we consider reasoners that cannot be exploited by betting strategies that

can be constructed by a polynomial-time machine.

Logical inductors satisfy desiderata 1 through 12. In fact, logical inductors are designed to meet

only Desideratum 1 (computable approximability) and Desideratum 12 (approximate inexploitability),

from which 2-11 all follow (see [18]).

3 Additional Related Work

The study of logical uncertainty is an old topic. It can be traced all the way back to Bernoulli, who

laid the foundations of statistics, and later Boole [4], who was interested in the unification of logic with

probability from the start. Refer to [27] for a historical account. Our algorithm assigns probabilities to

sentences of logic directly; this thread can be traced back through Łoś [38] and later Gaifman [15], who

developed the notion of coherence that we use in this paper.
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When it comes to the problem of developing formal tools for manipulating uncertainty, our meth-

ods are heavily inspired by Bayesian probability theory, and so can be traced back to Pascal, who was

followed by Bayes, Laplace, Kolmogorov [34], Savage [43], Carnap [6], Jaynes [32], and many others.

Polya [41] was among the first in the literature to explicitly study the way that mathematicians engage in

plausible reasoning, which is tightly related to the object of our study.

In addition to Good [23], Savage [44], and Hacking [26], the flaw in Bayesian probability theory was

also highlighted by Glymour [21], and dubbed the “problem of old evidence” by Garber [17] in response

to Glymor’s criticism. Eells [10] gave a lucid discussion of the problem, revealed flaws in Garber’s

arguments and in Hacking’s solution, and named a number of other desiderata which our algorithm

manages to satisfy; see [53] and [47]. Adams [2] uses logical deduction to reason about an unknown

probability distribution that satisfies certain logical axioms. Our approach works in precisely the opposite

direction: we use probabilistic methods to create an approximate distribution where logical facts are the

subject.

Some work in epistemic logic has been directed at modeling the dynamics of belief updating in

non-omniscient agents; see for example [35, 50, 3]. Our approach differs in that we use first-order

logic, and therefore use the recursion theorem to make reflective statements instead of using explicit

knowledge or belief operators; the potential paradoxes of self-reference are circumvented by allowing

beliefs to be probabilistic. The mechanism used by our logical inductor to update its beliefs is not very

transparent, leaving open the possibility of a more principled understanding of the local mechanics of

updating probabilities on logical or inductive inferences.

Straddling the boundary between philosophy and computer science, Aaronson [1] has made a com-

pelling case that computational complexity must play a role in answering questions about logical uncer-

tainty. Fagin and Halpern [12] also straddled this boundary with early discussions of algorithms that

manage uncertainty in the face of resource limitations. (See also their discussions of uncertainty and

knowledge. [13, 28])

4 The Logical Induction Criterion

We propose a partial solution to the problem of logical non-omniscience, which we call logical induction.

Roughly speaking, a logical inductor is a computable reasoning process that is not exploitable by any

polynomial-time computable strategy for making trades against it, using its probabilities as the prices

of shares. In this section we give a high-level overview of the criterion and the main result (details

are in [18]), before giving precise statements in Section 5 of some of the properties satisfied by logical

inductors.

Very roughly, our setup works as follows. We consider reasoners that assign probabilities to sentences

S written in some formal language L .

Definition 4.0.1 (Pricing). A pricing is a computable rational function P : S →Q∩ [0,1].

Here P(φ) is interpreted as the probability of φ . We can visualize a pricing as a list of (φ , p) pairs, where

the φ are unique sentences and the p are rational-number probabilities, and P(φ) is defined to be p if

(φ , p) occurs in the list, and 0 otherwise. (In this way we can represent belief states of reasoners that can

be written down explicitly in a finite amount of space.) The output of a reasoner is then nothing but a

sequence of pricings:

Definition 4.0.2 (Market). A market P = (P1,P2, . . .) is a computable sequence of pricings Pi : S →
Q∩ [0,1].
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The pricings (P1,P2, . . .) represent the belief states of a reasoner progressively refining their opinions

about the logical statements in S . In the background, there is some process producing progressively

larger sets of trusted statements:

Definition 4.0.3 (Deductive Process). A deductive process D : N+ → Fin(S ) is a computable nested

sequence D1 ⊆ D2 ⊆ D3 . . . of finite sets of sentences.

The deductive process D can be thought of as a theorem prover for some trusted logical theory Γ in the

language L . Indeed, we will henceforth assume that Γ =
⋃

n Dn. Thus the goal of our reasoner P is to

anticipate which statements will be proven or disproven by Γ, well before the rote proof-search D decides

those statements.

As in classical Dutch book arguments for probability theory, in addition to seeing P(φ) = p as an

assignment of subjective credence to φ , we also view P(φ) as a stance with respect to which bets are

desirable or not. That is, we interpret P(φ) = p to mean that the price of a φ -share according to P is

p, where (roughly speaking) a φ -share is worth $1 if φ is true. This allows us to set up Dutch book

arguments against a reasoner using computable bookies:

Definition 4.0.4 (Trader). A trader is a sequence (T1,T2, . . .) where each Tn is a trading strategy for day

n.

Without belaboring the details, a trading strategy for day n is a strategy for responding to the day’s market

prices Pn with buy orders and sell orders for shares in sentences from S . (Formally, it is a continuous

function from pricings to linear combinations of sentences, expressed in some computable language.)

Over time, a trader accumulates cash and stock holdings from the trades it makes against P.

The logical induction criterion then demands of market prices P that no efficiently computable trader

can reliably make money by trading against the market prices (P1,P2, . . .):

Definition 4.0.5 (The Logical Induction Criterion). A market P is said to satisfy the logical in-

duction criterion relative to a deductive process D if there is no efficiently computable trader that

exploits P relative to D. A market P meeting this criterion is called a logical inductor over D.

Again glossing over details, a trader is said to exploit P relative to D if the possible values of the trader’s

holdings from trading against P are unboundedly high over time, without being unboundedly low, where

holdings are evaluated by what truth assignments to S are propositionally consistent with Dn at time n.

Here, “efficiently computable” (abbreviated e.c.) can be taken to mean computable in time polynomial

in n, but this is not crucial to the definition. Given the assumption that Γ =
⋃

n Dn, we also say that P is a

logical inductor over Γ.

Our key theorem is that this criterion, while gratifyingly strong, is also feasible:

Theorem 4.0.6. For any deductive process D, there exists a computable belief sequence P satisfying

the logical induction criterion relative to D.

5 Properties of Logical Inductors

Here is an intuitive argument that logical inductors perform good reasoning under logical uncertainty:
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Consider any polynomial-time method for efficiently identifying patterns in logic. If the

market prices don’t learn to reflect that pattern, a clever trader can use that pattern to exploit

the market. Thus, a logical inductor must learn to identify those patterns.

This section will substantiate this argument by stating a number of properties satisfied by logical induc-

tors, corresponding to some of the desiderata discussed in Section 2. Proofs of Theorem 4.0.6 and the

theorems in this section can be found in [18].

5.1 Notation

Throughout, we assume that P is a logical inductor over the theory Γ. We also assume that Γ represents

computations in the technical sense, i.e. we can write terms in L that stand for computations, and Γ

proves that those terms evaluate to their correct value (and no other value).

We will enclose sentences in quotation marks when they are used as syntactic objects. An underlined

symbol should be replaced by the expression it stands for. For example, f (n) stands for a program that

computes the function f given input n, whereas f (n) stands for the numeral f (n) evaluates to.

We use an overline to denote sequences of sentences, probabilities, and other objects, as in P and D;

for example, φ is the sequence of sentences (φ1,φ2, . . . ). A sequence x is efficiently computable (e.c.) if

and only if there exists a computable function n 7→ xn with runtime polynomial in n. Given any sequences

x and y, we write

xn hn yn for lim
n→∞

xn − yn = 0, and

xn &n yn for liminf
n→∞

xn − yn ≥ 0.

5.2 Properties of the limit

Firstly, the market prices of a logical inductor converge:

Theorem 5.2.1 (Convergence). The limit P∞ : S → [0,1] defined by

P∞(φ) := lim
n→∞

Pn(φ)

exists for all φ .

Proof sketch.

Roughly speaking, if P never makes up its mind about φ , then it can be exploited by a trader

arbitraging shares of φ across different days. That is, suppose by way of contradiction that

Pn(φ) never settles down, but rather oscillates by a substantial amount infinitely often. Then

there is a trader that repeatedly buys a share in φ when the price is low, and sells it back

when the price is high. This trader accumulates unbounded wealth, thereby exploiting P,

which contradicts that P is a logical inductor; therefore the limit P∞(φ) must in fact exist.

This sketch showcases the main intuition for the convergence of P, but elides a number of crucial details;

see [18].

Next, the limiting beliefs of a logical inductor represent a coherent probability distribution:

Theorem 5.2.2 (Limit Coherence). P∞ is coherent, i.e., it gives rise to an internally consistent probability

measure Pr on the set of all consistent completions Γ′ : S → B of Γ, defined by the formula

Pr(Γ′(φ) = 1) := P∞(φ).
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First formalized by Gaifman [15], coherence says that beliefs should satisfy probabilistic versions of

logical consistency; for example, the reasoner should assign Pr(φ)≤ Pr(ψ) if φ ⇒ ψ , etc. This theorem

is proven using methods analogous to standard Dutch book arguments for coherent beliefs, translated

into the language of traders.

Convergence and coherence together justify that a logical inductor P approximates a belief state that

is consistent with the background theory Γ. What else is there to say about the limiting beliefs P∞ of a

logical inductor?

For starters, P learns not to assign extreme probabilities to sentences that are independent from Γ:

Theorem 5.2.3 (Non-Dogmatism). If Γ 0 φ then P∞(φ)< 1, and if Γ 0 ¬φ then P∞(φ)> 0.

Non-dogmatism can be viewed as an inductive property: non-dogmatic beliefs can be easily conditioned

on events (sentences) that haven’t already been observed (proved or disproved), producing a coherent

conditional belief state, whereas conditioning dogmatic beliefs can cause problems.

We can push the idea of inductive reasoning much further, following the work of Solomonoff [45, 46],

Zvonik and Levin [52] and Li and Vitányi [37] on empirical sequence prediction. They describe an

inductive process (known as a universal semimeasure) that predicts as well or better than any computable

predictor, modulo a constant amount of error. Although universal semimeasures are uncomputable, we

can ask logically uncertain reasoners to copy those successes given enough time to think:

Theorem 5.2.4 (Domination of the Universal Semimeasure). Let (b1,b2, . . .) be a sequence of zero-arity

predicate symbols in L not mentioned in Γ, and let σ≤n = (σ1, . . . ,σn) be any finite bitstring. Define

P∞(σ≤n) := P∞(“(b1 ↔ σ1 = 1)∧ . . .∧ (bn ↔ σn = 1)”),

such that, for example, P∞(01101) = P∞(“¬b1 ∧ b2 ∧ b3 ∧¬b4 ∧ b5”). Let M be a universal continuous

semimeasure. Then there is some positive constant C such that for any finite bitstring σ≤n,

P∞(σ≤n)≥C ·M(σ≤n).

In other words, logical inductors are a computable approximation to a normalized probability distribution

that dominates any lower semicomputable semimeasure. In fact, this dominance is strict: P∞ will e.g.,

assign positive probability to sequences that encode completions of Peano arithmetic, which the universal

semimeasure does not do.1

5.3 Outpacing deduction

It is not too difficult to define a reasoner that assigns probability 1 to all (and only) the provable sentences,

in the limit: simply assign probability 0 to all sentences, and then enumerate all logical proofs, and assign

probability 1 to the proven sentences. The real trick is to recognize patterns in a timely manner, well

before the sentences can be proven by slow deduction.

Theorem 5.3.1 (Provability Induction). Let φ be an e.c. sequence of theorems. Then

Pn(φn)hn 1.

Furthermore, let ψ be an e.c. sequence of disprovable sentences. Then

Pn(ψn)hn 0.

1This does not contradict the universality of M, as P∞ is higher in the arithmetical hierarchy than M.
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Proof sketch.

Suppose not. Then there is a trader that buys a share in φn whenever the price is too far

below $1, and then waits for φn to appear in the deductive process D, repeating this process

indefinitely. This trader would exploit P, a contradiction.

In other words, P will learn to start believing φn by day n at the latest, despite the fact that φn won’t

be deductively confirmed until day f (n), which is potentially much later. In colloquial terms, if φ is a

sequence of facts that can be generated efficiently, then P inductively learns the pattern, and its belief in

φ becomes accurate faster than D can computationally verify the individual sentences.

Analogy: Ramanujan and Hardy. Imagine that the statements φ are being output by

an algorithm that uses heuristics to generate mathematical facts without proofs, playing a

role similar to the famously brilliant, often-unrigorous mathematician Srinivasa Ramanujan.

Then P plays the historical role of the beliefs of the rigorous G.H. Hardy who tries to verify

those results according to a slow deductive process (D). After Hardy (P) verifies enough of

Ramanujan’s claims (φ≤n), he begins to trust Ramanujan, even if the proofs of Ramanujan’s

later conjectures are incredibly long, putting them ever-further beyond Hardy’s current abil-

ities to rigorously verify them. In this story, Hardy’s inductive reasoning (and Ramanujan’s

also) outpaces his deductive reasoning.

To further emphasize the meaning of Theorem 5.3.1 (Provability Induction), consider the famous halting

problem of Turning [49]. Turing proved that there is no general algorithm for determining whether or

not an arbitrary computation halts. Let’s examine what happens when we confront logical inductors with

the halting problem.

Theorem 5.3.2 (Learning of Halting Patterns). Let m be an e.c. sequence of Turing machines, and x be

an e.c. sequence of bitstrings, such that mn halts on input xn for all n. Then

Pn(“mn halts on input xn”)hn 1.

Of course, this is not so hard on its own—a function that assigns probability 1 to everything also satisfies

this property. The real trick is separating the halting machines from the non-halting ones.

By undecidability, there are Turing machines q that fail to halt on input y, but such that Γ is not

strong enough to prove this fact. In this case, P∞’s probability of q halting on input y is positive, by

Theorem 5.2.3 (Non-Dogmatism). Nevertheless, P still learns to stop expecting that those machines will

halt after any reasonable amount of time:

Theorem 5.3.3 (Learning not to Anticipate Halting). Let q be an e.c. sequence of Turing machines, and

let y be an e.c. sequence of bitstrings, such that qn does not halt on input yn for any n. Let f be any

computable function. Then

Pn(“qn halts on input yn within f (n) steps”)hn 0.

These theorems can be interpreted as justifying the intuitions that many computer scientists have long

held towards the halting problem: It is impossible to tell whether or not a Turing machine halts in full

generality, but for large classes of well-behaved computer programs (such as e.c. sequences of halting

programs and provably non-halting programs) it’s quite possible to develop reasonable and accurate

beliefs. The boundary between machines that compute fast-growing functions and machines that never

halt is difficult to distinguish, but even in those cases, it’s easy to learn to stop expecting those machines

to halt within any reasonable amount of time.
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As a consequence of of Theorem 5.3.3 (Learning not to Anticipate Halting), a logical inductor will

trust their (computable) underlying deductive process D to remain consistent for arbitrarily long specified

periods of time, if in fact D is consistent. In other words, a logical inductor over the theory Γ will learn

trust in the finitary consistency of Γ.

One possible objection here is that the crux of the halting problem (and of the Γ-trust problem) is not

about making good predictions, it is about handling diagonalization and paradoxes of self-reference. So

let us turn to the topic of P’s beliefs about P itself.

5.4 Self-knowledge

Because we’re assuming Γ can represent computable functions, we can write sentences describing the

beliefs of P at different times. What happens when we ask P about sentences that refer to itself?

Theorem 5.4.1 (Self-knowledge). Let φ be an e.c. sequence of sentences, let a, b be e.c. sequences of

probabilities. Then, for any e.c. sequence of positive rationals δ → 0, there exists a sequence of positive

rationals ε → 0 such that for all n:

1. if Pn(φn) ∈ (an +δn,bn −δn), then

Pn(“an < Pn(φn)< bn”)> 1− εn,

2. if Pn(φn) /∈ (an −δn,bn +δn), then

Pn(“an < Pn(φn)< bn”)< εn.

In other words, for any pattern in P’s beliefs that can be efficiently written down (such as “P’s probabili-

ties on φ are between a and b on these days”), P learns to believe the pattern if it’s true, and to disbelieve

it if it’s false (with vanishing error). (Recall that the underlines indicate that the underlined expression

should be expanded to the appropriate logical formula or term, representing e.g., the source code of an

algorithm implementing P.)

At a first glance, this sort of self-reflection may seem to make logical inductors vulnerable to paradox.

For example, consider the sequence of sentences χ0.5 defined using the diagonal lemma by

χ0.5
n := “Pn(χ

0.5
n )< 0.5”

such that χ0.5
n is true iff P assigns it a probability less than 50% on day n. Such a sequence can be defined

by Gödel’s diagonal lemma. These sentences are probabilistic versions of the classic “liar sentence”,

which has caused quite a ruckus in the setting of formal logic [24, 39, 20, 25, 11]. Because our setting

is probabilistic, it’s perhaps most closely related to the “unexpected hanging” paradox—χ0.5
n is true iff P

thinks it is unlikely on day n. How do logical inductors handle this sort of paradox?

Theorem 5.4.2 (Paradox Resistance). Fix a rational p ∈ (0,1), and define an e.c. sequence of “paradox-

ical sentences” χ p satisfying

Γ ⊢ χ p
n ↔

(

Pn(χ
p
n )< p

)

for all n. Then

lim
n→∞

Pn(χ
p
n ) = p.
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In words, a logical inductor responds to paradoxical sentences χ p by assigning them probabilities that

converge on p.

To understand why this is desirable, imagine that your friend owns a high-precision brain-scanner and

can read off your beliefs. Imagine they ask you what probability you assign to the claim “you will assign

probability <80% to this claim at precisely 10am tomorrow”. As 10am approaches, what happens to your

belief in this claim? If you become extremely confident that it’s going to be true, then your confidence

should drop. But if you become fairly confident it’s going to be false, then your confidence should spike.

Thus, your probabilities should oscillate, pushing your belief so close to 80% that you’re not quite sure

which way the brain scanner will actually call the claim, and you think the scanner is roughly 80% likely

to call it true. In response to a paradoxical claim, this is exactly how P behaves, once it’s learned how

the paradoxical sentences work.

5.5 Self-Trust

We’ve seen that logical inductors can, without paradox, have accurate beliefs about their own current

beliefs. Next, we turn our attention to the question of what a logical inductor believes about its future

beliefs.

The coherence conditions of classical probability theory guarantee that, though a probabilistic rea-

soner expects their future beliefs to change in response to new empirical observations, they don’t e.g.,

believe that their future credence in φ is, in net expectation, lower than their current credence in φ . For

example, if a reasoner Pr(−) knows that tomorrow they’ll see some evidence e that will convince them

that Miss Scarlet was the murderer, then they already believe that she was the murderer today:

Pr(Scarlet) = Pr(Scarlet | e)Pr(e)+Pr(Scarlet | ¬e)Pr(¬e).

In colloquial terms, this says “my current beliefs are already a mixture of my expected future beliefs,

weighted by the probability of the evidence that I expect to see.”

Logical inductors obey similar coherence conditions with respect to their future beliefs, with the

difference being that a logical inductor updates its belief by gaining more knowledge about logical facts,

both by observing an ongoing process of deduction and by thinking for longer periods of time.

To refer to P’s expectations about its future self, we need a notion of logically uncertain variables. To

avoid needless detail, suffice it to say that logically determined quantities, such as the output of a given

computer program, can be represented and manipulated analogously to random variables in probability

theory. We can write these variables as terms representing their value; for example, the variable written

“Pn(φ )” represents the probability assigned to φ by P on day n. Using the beliefs Pn of P about X on day

n, we can define the (approximate) expectation En(X).
We also need to know which future self our logical inductor will defer to:

Definition 5.5.1 (Deferral Function). A function f : N+ → N+ is called a deferral function if

1. f (n)> n for all n, and

2. as a function of n, f (n) can be computed in time polynomial in f (n).

Now we can state the sense in which logical inductors don’t expect, on net, their future beliefs to be

wrong in any particular direction.

Theorem 5.5.2 (No Expected Net Update). Let f be a deferral function, and let φ be an e.c. sequence of

sentences. Then

Pn(φn)hn En(“P f (n)(φn)”).
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This theorem only says that Pn doesn’t expect the beliefs of P f (n) about φ to err in a particular direction.

A priori, it is possible that Pn nevertheless believes its future beliefs P f (n) will be grossly misguided. For

example, suppose that Pn is very confident that P f (n) will have sufficient time to compute the truth of φ ,

but will react insanely to this information:

Pn(“P f (n)(φ) = 0” | φ) = 1

and

Pn(“P f (n)(φ ) = 1” | ¬φ) = 1.

This is a priori consistent with Theorem 5.5.2 so long as Pn assigns Pn(φ) = 0.5, but it clearly indicates

that Pn does not trust its future beliefs.

To instead formalize the idea of a reasoner Pr that trusts their own reasoning process, let us first

consider a self-trust property in the setting of deductive logic:

⊢�φ → φ .

This property of deductive systems says that the system proves “If I prove φ at some point, then it is

true”. However, any sufficiently strong reasoner that satisfies this property for the statement φ = ⊥ is

inconsistent by Gödel’s second incompleteness theorem! The search for logics that place confidence in

their own machinery dates at least back to Hilbert [29]. While Gödel et al. [22] dashed these hopes, it

is still desirable for reasoners to trust their reasoning process relatively well, most of the time (which

humans seem to do).

As discussed in Section 5.3, logical inductors trust their underlying deductive process D in a slightly

weaker, finitary sense. More interestingly, it turns out that logical inductors also trust their own reasoning

process as a whole, including their inductive conclusions, in a manner that we now formalize.

Instead of ⊢ �φ → φ , we can replace provability with high confidence, and then ask for something

like

Prnow(φ | Prlater(φ)> p)& p.

Colloquially, this says that if we tell Pr that in the future they will place more than p credence in φ , then

they update their current beliefs to place at least p credence. In short, Pr trusts that the outputs of their

own ongoing reasoning process will be accurate.

Now, in fact property 5.5 is not quite desirable as stated (and logical inductors do not satisfy it).

Indeed, consider the liar sentence χ p defined by

χ p := “Prlater(χ
p)< p”.

A good reasoner will then satisfy

Prnow(χ
p | Prlater(χ

p)> p)h 0,

contradicting equation 5.5. The issue is that if we give Prnow high-precision access to the probabilities as-

signed by Prlater—for example by conditioning on them—then Prnow can outperform the (unconditioned)

beliefs of Prlater, in this case by having correct opinions about the liar sentence for Prlater.

Instead, we have the following self-trust property, which only gives Pn limited-precision access to

the beliefs of P f (n):
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Theorem 5.5.3 (Self-Trust). Let f be a deferral function, φ be an e.c. sequence of sentences, δ be an e.c.

sequence of positive rational numbers, and p be an e.c. sequence of rational probabilities. Then

En

(

“1(φn) · Indδn

(

P f (n)(φn)> pn

)

”
)

&n pn ·En

(

“Indδn

(

P f (n)(φn)> pn

)

”
)

.

The indicator variable 1(φ) represents 1 if φ is true and 0 if φ is false. The continuous indicator variable

Indδ (X > p) is an ordinary indicator of the event X > p, except that instead of a discontinuity at X = p,

the value is linear in X on a region of length δ . Thus the self-trust property gives Pn only continuous

(limited precision) access to the beliefs of P f (n); except for this subtlety, we could have written the more

recognizable (but false and undesirable!) statement

Pn

(

“φn ∧
(

P f (n)(φn)> pn

)

”
)

&n pn ·Pn

(

“P f (n)(φn)> pn”
)

,

where the conditional Pn

(

“φn | P f (n)(φn)> pn”
)

has been rearranged to avoid a potential division by 0.

6 Discussion

We have proposed the logical induction criterion as a criterion on the beliefs of deductively limited rea-

soners, and we have described how reasoners who satisfy this criterion (logical inductors) possess many

desirable properties when it comes to developing beliefs about logical statements (including statements

about mathematical facts, long-running computations, and the reasoner themself).

That said, there are clear drawbacks to the logical inductor we describe in [18]: it does not use its

resources efficiently; it is not a decision-making algorithm (i.e., it does not “think about what to think

about”); and the properties above hold either asymptotically (with poor convergence bounds) or in the

limit. Further, it is unclear whether logical inductors have good beliefs about counterpossibilities, and

whether they take advantage of old evidence. These are enticing directions for further research.

The authors are particularly interested in tools that help AI scientists attain novel statistical guarantees

in settings where robustness and reliability guarantees are currently difficult to come by. For example,

consider the task of designing an AI system that reasons about the behavior of computer programs, or that

reasons about its own beliefs and its own effects on the world. While practical algorithms for achieving

these feats are sure to make use of heuristics and approximations, we believe scientists will have an

easier time designing robust and reliable systems if they have some way to relate those approximations to

theoretical algorithms that are known to behave well in principle. Modern models of rational behavior are

not up to this task: formal logic is inadequate when it comes to modeling self-reference, and probability

theory is inadequate when it comes to modeling logical uncertainty. We see logical induction as a first

step towards models of rational behavior that work in settings where agents must reason about themselves,

while deductively limited.
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