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The primary goal of this paper is to recast the semantics of modal logic, and dynamic epistemic

logic (DEL) in particular, in category-theoretic terms. We first review the category of relations and

categories of Kripke frames, with particular emphasis on the duality between relations and adjoint

homomorphisms. Using these categories, we then reformulate the semantics of DEL in a more

categorical and algebraic form. Several virtues of the new formulation will be demonstrated: The

DEL idea of updating a model into another is captured naturally by the categorical perspective—

which emphasizes a family of objects and structural relationships among them, as opposed to a single

object and structure on it. Also, the categorical semantics of DEL can be merged straightforwardly

with a standard categorical semantics for first-order logic, providing a semantics for first-order DEL.

1 Introduction

Dynamic epistemic logic (DEL) is a powerful tool at the core of “logical dynamics” [8], a logical ap-

proach to the dynamics of information and interaction. Its semantics is general, flexible, and applicable

to a wide range of informational processes in which rational agents update their knowledge and belief.

It is also malleable and admits a variety of extra structures—e.g. probabilities, preferences, questions,

awareness. It therefore forms a basis for logical studies of various aspects of agency in information and

interaction.

The primary goal of this paper is to reformulate the standard semantics of DEL in category-theoretic

terms.1 One central idea of that semantics is that, to interpret DEL, we need to consider not just a single

model but a family of models, in which one model is “updated” into another by a certain construction

that models a given type of informational process. This is, in fact, a kind of idea that is treated naturally

from the perspective of category theory. Category theory emphasizes a family of objects and structural

relationships among them, as opposed to a single object and structure on it. Moreover, it can compare

structural relationships at a “higher level” among different categories, e.g. between a category and an-

other that is obtained by adding extra structure to the former. All this makes category theory excellent at

capturing structural properties of a given family of models and constructions in a conceptually unifying

fashion. And this paper will show that the semantics of DEL is an instance of this.

Section 2 will lay out Kripke semantics for propositional classical modal logic from a categorical

perspective. Many of the concepts and facts covered in Section 2, such as subframes or duality results, are

found in standard expositions such as [12, 10]; yet we will put more emphasis on the categorical structure

of Kripke frames and on “higher” duality between relations and algebra operations. In Section 3 we will

use the categorical structure of Kripke frames to shed new, categorical light on the standard semantics of
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DEL. We are not to propose a new semantics in this section, and the facts that will be covered are already

known in literature (e.g. the standard exposition [16]). The point will instead be to use a categorical

formulation and thereby to highlight structural properties in the standard semantics of DEL, uncovering

the dual, algebraic ideas behind the semantics. Section 4 will give a demonstration of a virtue of our

categorical, structural perspective, by showing how to extend DEL to the first order with a new, “sheaf”

semantics.2 Clearly, our knowledge and belief and their update often involve quantified propositions,

and therefore can be subject to “first-order DEL”. It may nevertheless appear extremely complicated to

introduce gadgets for quantification to the DEL framework. The structural approach, however, enables

us to treat the DEL structure and the first-order structure as two modules to be simply combined. This

will make obvious the conceptual power of the approach. Section 5 will discuss connections between

our approach and some of the preceding categorical ones (such as the coalgebraic one). Then Section 6

will conclude the paper, referring to lines of future work.

This article adopts the following convention when displaying facts and results: Already known results

are called “Facts”, with references attached in footnotes. Results that have not been explicitly stated

before (to the best of the author’s knowledge) are called “Theorems” or “Corollaries” (the latter follow

from already known results immediately).3

2 A Categorical Look at Kripke Semantics

This preliminary section lays out a categorical perspective on Kripke semantics for propositional classical

modal logic. We mostly consider a single pair of unary modal operators � and ^, but everything extends

to a family of operator pairs (as we will see in the final paragraph of Subsection 2.3).

2.1 The Category of Relations

Let us first review basic facts about the category of binary relations. Given sets X and Y , we write

R : X →p Y to mean that R is a relation “from X to Y ”, i.e. R ⊆ X ×Y . Relations R1 : X →p Y and

R2 : Y →p Z, sharing the same Y , can be composed to form another R1;R2 : X →p Z, by defining wR1;R2u

iff wR1vR2u for some v ∈Y . The composition is also written R2 ◦ R1 (note the opposite orders of writing

R1 and R2). The identity relation w = v on X , written 1X , is the identity of this composition, meaning

that 1X ;R = R = R;1Y for every R : X →p Y . Then sets and binary relations form a category, Rel. This

category comes with some extra structures, of which the most relevant to this article are the following:4

• Rel is a “dagger category”: Each relation R : X →p Y has its opposite, R† : Y →p X , so that vR†w iff

wRv. This operation −† satisfies R†† = R and (R2 ◦ R1)
† = R1

† ◦ R2
†, and extends to a self-dual

functor −† : Relop → Rel by setting X† = X for each set X .5

• Rel is “locally posetal”: For each pair of sets X and Y , the set Rel(X ,Y ) of relations from X to Y

is a poset ordered by ⊆. That is, relations R1,R2 : X →p Y satisfy the “higher” relation R1 ⊆ R2 if

2A first-order extension of dynamic logic was given in [20]. The first attempt to extend DEL to the first order was [29],

which introduced terms that referred to epistemic agents (and hence had a different format of logic than in this paper). Both

of these extensions used constant domains for interpreting quantification. Constant domains can be seen as a (rather rigid)

subcase of sheaves (and less flexible than sheaves in general); their axiomatization requires the so-called Barcan formula and

other axioms be added to the simple union of modal logic and first-order logic (see Fact 5).
3We thank an anonymous reviewer for their suggestion of this convention.
4Categories with the following structures are studied e.g. in [33], where they are called “ordered categories with involution”.
5Rel admits an even stronger structure of “dagger compact (closed) category”, but this structure does not play an explicit

rôle in this article. See Subsection 3.4.2 of [15] for Rel as a dagger compact category.
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wR1v implies wR2v. Moreover, posets Rel(X ,Y ) and Rel(Y,Z) interact with each other in such a

way that if R1 ⊆ R2 in Rel(X ,Y ) and R3 ⊆ R4 in Rel(Y,Z) then R3 ◦ R1 ⊆ R4 ◦ R2.

• The two structures then interact in such a way that the functor † gives order isomorphisms † :

Rel(X ,Y )→ Rel(Y,X); i.e., R1 ⊆ R2 iff R1
† ⊆ R2

†.

The locally posetal structure makes Rel a higher category with objects (“0-cells”) X , arrows (“1-cells”)

R between objects, and higher arrows (“2-cells”) ⊆ between arrows (1-cells).6 In addition, Rel satisfies

1. the “law of modularity”: ((R2 ◦ R1)∩R3)⊆ R2 ◦ (R1∩ (R2
† ◦ R3)) (i.e., if wR1;R2u and wR3u then

there is v such that wR1v and vR2u and hence wR3;R2
†v).

Many properties of relations can be expressed with ⊆. E.g., R : X →p X is reflexive, i.e. w = v implies

wRv, iff 1X ⊆ R. In particular, a relation R : X →p Y is a function iff both 1X ⊆ R† ◦ R and R ◦ R† ⊆ 1Y . In

addition, a function f : X → Y is injective iff f † ◦ f = 1X and surjective iff f ◦ f † = 1Y . Functions are

thus a subcase of relations. Moreover, the composition R2 ◦ R1 of relations is just the usual composition

of functions when R1 and R2 are functions. So the category Sets of sets and functions is a subcategory

of Rel. On the other hand, Sets gives rise to Rel as follows. A pair of functions f : Z → X and g : Z →Y

from the same domain Z is called “jointly monic” if 〈 f ,g〉 : Z → X ×Y :: u 7→ ( f (u),g(u)) is injective

(or, equivalently, ( f † ◦ f )∩ (g† ◦ g) = 1Z). Then a relation R : X →p Y corresponds to a jointly monic

pair of functions, viz. the projections r1 : R → X :: (w,v) 7→ w and r2 : R → Y :: (w,v) 7→ v from the set

R ⊆ X ×Y , so that the pair (r1,r2) “tabulates” the relation R : X →p Y , meaning that R = r2 ◦ r1
†.7

2.2 Relation-Modality Biduality

Kripke semantics uses binary relations to interpret unary modal operators. A Kripke frame is a set X

paired with a binary relation R : X →p X , and a Kripke model is a Kripke frame (X ,R) equipped with an

assignment J−K of subsets JpK ⊆ X to propositional variables p. In fact we extend the notation to all

propositions ϕ , so that w ∈ JϕK ⊆ X means that ϕ is true at w. Now, given a relation R : X →p Y , define

two monotone maps ∃R,∀R : PX → PY by

∃R(S) = {v ∈Y | w ∈ S for some w ∈ X such that wRv},

∀R(S) = {v ∈Y | w ∈ S for all w ∈ X such that wRv}.

Then, for a relation R : X →p X on a set X , ∃R†,∀R† : PX → PX interpret the “possibility” operator ^

and the “necessity” operator �, respectively—i.e.

J^ϕK = ∃R†JϕK, J�ϕK = ∀R†JϕK. (2)

An important property of ∃− and ∀− is that every relation R gives an adjunction (or “Galois connec-

tion”) ∃R ⊣ ∀R† , meaning that ∃R(S1)⊆ S2 iff S1 ⊆∀R†(S2). (And it also gives ∃R† ⊣ ∀R via R†.) Therefore

left adjoints ∃R preserve arbitrary joins and right adjoints ∀R preserve arbitrary meets. It also needs not-

ing that a relation f : X →p Y is a function iff ∃ f † = ∀ f † , in which case ∃ f † = ∀ f † is the inverse-image map

6See Chapter XII of [36] for this type of higher categories, “bicategories”. Rel appears in Subsection 1.5 (i) of [32] as an

example of bicategory. A more general account of bicategories of relations is found in [11]. A similar approach, in terms of

categories called “allegories”, is taken in Chapter 2 of [17], which also gives a thorough account of ideas in this subsection.
7The correspondence mentioned here is not quite 1–1. For two jointly monic pairs of functions (r1 : Z → X ,r2 : Z →Y ) and

(r′1 : Z′ → X ,r′2 : Z′ →Y ), if there is a bijection f : Z → Z′ such that ri = r′i ◦ f for i = 1,2, then the two pairs correspond to the

same relation R ⊆ X ×Y . One can of course identify such isomorphic pairs of jointly monic pairs and force the correspondence

to be 1–1.
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f−1 : PY → PX . So, for every function f , the map f−1 = ∃ f † = ∀ f † preserves all joins and meets, and

moreover ∃ f ⊣ f−1 ⊣ ∀ f , which is one of the fundamental facts for categorical logic.8

One of the most fundamental categorical facts to the interpretation (2) is the equivalence of Rel and

categories of complete atomic Boolean algebras (CABAs). Let CABA∨ and CABA∧ be the categories

of CABAs with all-join-preserving maps and with all-meet-preserving maps, respectively, and then

Fact 1. ∃− :: R 7→ ∃R and ∀− :: R 7→ ∀R extend to equivalences of categories ∃− : Rel → CABA∨ and

∀− : Rel → CABA∧, both sending a set X to its powerset PX , while every CABA has the form PX .9

Putting this in “concrete” terms,

• The relations R : X →Y correspond 1-1 to the all-join-preserving maps ∃R : PX → PY , and also

1-1 to the all-meet-preserving maps ∀R : PX → PY . In other words, for every pair of sets X

and Y , each of ∃− and ∀− induces a bijection from Rel(X ,Y ) to the set C(PX ,PY ) of arrows of

C = CABA∨,CABA∧ from PX to PY .

In fact, higher versions of Fact 1 are relevant to modal logic. Recall that Rel is equipped with

higher arrows between arrows, i.e. the relations ⊆ among relations R1,R2 : X →p Y . Similarly, C =
CABA∨,CABA∧ are also equipped with the relation 6 among arrows h1,h2 : PX → PY , by setting

h1 6 h2 iff h1(S)⊆ h2(S) for all S ∈ PX , making C(PX ,PY ) a poset. Then

Fact 2. ∃− : Rel → CABA∨ is a (higher) equivalence,10 meaning that

• R1 ⊆ R2 iff ∃R1
6 ∃R2

,

i.e., each bijection ∃− : Rel(X ,Y )→ CABA∨(PX ,PY ) is an order isomorphism.

Yet there are more versions of this result that are less frequently mentioned but equally important.

Since Rel has two levels of arrows, R and ⊆, there are four types of (higher) functors F from Rel to

another higher category C, viz., F : Rel→C, with the direction of neither R nor ⊆ flipped; F : Relop →C,

with just R flipped; F : Relco → C, with just ⊆ flipped; F : Relcoop → C, with both R and ⊆ flipped.11

Therefore there can be four versions of equivalence (or duality).

Corollary 1. ∀− : Relco → CABA∧ is a “2-cell duality”, i.e. an equivalence flipping ⊆ (but not R).

Concretely put,

• R1 ⊆ R2 iff ∀R2
6 ∀R1

(note the reversed order),

i.e., each bijection ∀− : Rel(X ,Y )→ CABA∧(PX ,PY ) is an order-reversing isomorphism.

Moreover, composing ∃− and ∀− with the self-dual functor † : Relop → Rel, which is a “1-cell

duality”, i.e. an equivalence flipping R but not ⊆, we obtain

Corollary 2. ∃−† : Relop → CABA∨ is a 1-cell duality, and ∀−† : Relcoop → CABA∧ is a “biduality”, i.e.

an equivalence flipping both R and ⊆. Concretely put,

3. ∃(R2◦R1)† = ∃R1
† ◦ ∃R2

† and ∀(R2◦R1)† = ∀R1
† ◦ ∀R2

† (note the flipped orders of composition),

4. R1 ⊆ R2 iff ∃R1
† 6 ∃R2

† ,

8The idea that � and ^ are a relational generalization of ∀ f and ∃ f is laid out in [22] from a more general categorical

perspective of “bicategories of relations and spans”. As observed in [22], we can define modal operators _ and � that are

“opposite” to ^ and �, and interpret them with ∃R and ∀R; then we have adjunctions _ ⊣ � and ^ ⊣ �, which also appear in

[31]. These adjunctions are typical of the “past” and “future” modalities of temporal logic, as observed in [25].
9See, e.g., Exercise 5.2.5 in [23] for essentially the same fact.

10See Subsection 1.5 (i) of [32] for essentially the same fact.
11Relop, Relco, and Relcoop are Rel with just R flipped; with just ⊆ flipped; and with both R and ⊆ flipped. See Subsection

1.6 of [32].
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5. R1 ⊆ R2 iff ∀R2
† 6 ∀R1

† (note the reversed order),

i.e., ∃−† and ∀−† induce order-preserving isomorphisms ∃−† : Rel(Y,X) → CABA∨(PX ,PY ) and

order-reversing isomorphisms ∀−† : Rel(Y,X)→ CABA∧(PX ,PY ), respectively.

Thus, (2) means that the modal operators ^ and � are duals to the relations R : X →p X , in such a

“higher” way that the relation ⊆ among the latter corresponds to the relation 6 among the former (e.g.

the reflexivity of R, i.e. 1X ⊆ R, is equivalent by (4) to 1PX 6 ∃R† and by (5) to ∀R† 6 1PX , i.e. ϕ ⊢^ϕ

and �ϕ ⊢ ϕ).12 This higher duality plays a fundamental rôle in this article as well as in Kripke semantics

in general.

One more fact that will prove useful is the “Beck-Chevalley condition”:

Corollary 3. If the following diagram is a pullback in Sets, then p ◦ q† = f † ◦ g.13

Y ×X Z Z

Y X

q

f

p g (6)

2.3 Categories of Kripke Frames

Let us now consider categories of Kripke frames. A monotone map from a Kripke frame (X ,RX) to

another (Y,RY ) is a function f : X →Y that preserves relation, i.e. such that wRXv implies f (w)RY f (v).
Observe that this can equivalently be written as either of the following.

7. RX ⊆ f † ◦ RY ◦ f (i.e., wRXv implies w f w′RY v′ f †v for some w′,v′ ∈ Y ),

8. f ◦ RX ⊆ RY ◦ f (i.e., wRX v f v′ implies w f w′RY v′ for some w′ ∈ Y ).

The formulation (8) strengthens to f being a bounded morphism, i.e. satisfying both (8) and

9. RY ◦ f ⊆ f ◦ RX (i.e., w f w′RY v′ implies wRXv f v′ for some v ∈ X ),

i.e. satisfying

10. f ◦ RX = RY ◦ f .

Let us write Kr for the category of Kripke frames and monotone maps, and KrB for its subcategory of

bounded morphisms.

The duality observed in Subsection 2.2 immediately entails duality results between Kripke frames

and “CABAs with operators” (CABAOs), i.e. CABAs equipped with all-join-preserving operators ^.

The isomorphisms ∃−† : Rel(X ,X)→ CABA∨(PX ,PX) in Corollary 2 mean that the Kripke frames

(X ,R) correspond 1-1 to the CABAOs (PX ,^). Moreover, while the functions f : X →Y and the CABA

homomorphisms h : PY →PX are dual to each other, Corollary 2 further implies (by f−1 = ∃ f † = ∀ f †)

that (10) is equivalent to

11. ∃RX
† ◦ f−1 = f−1 ◦ ∃RY

† (or equivalently ∀RX
† ◦ f−1 = f−1 ◦ ∀RY

† ),

12See [27] for more on correspondence results via the higher dualities.
13Sets satisfies the Beck-Chevalley condition, meaning that the pullback entails ∃q ◦ p−1 = g−1 ◦ ∃ f . See Section IV.9 of

[37]. This implies (6) by Corollary 2.
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i.e., f−1 being a CABAO homomorphism, i.e. a CABA homomorphism that moreover preserves ^ (and

�), from (PY,∃RY
†) to (PX ,∃RX

†). Therefore the category KrB is dual to the category CABAO of

CABAOs and CABAO homomorphisms.14 In fact, let us call a CABA homomorphism h “continuous” if

it has ^ ◦ h 6 h ◦^, and then Corollary 2 implies that (7)–(8) are equivalent to

12. ∃RX
† 6 f−1 ◦ ∃RY

† ◦ ∃ f , or equivalently ∃RX
† ◦ f−1 6 f−1 ◦ ∃RY

† (or f−1 ◦ ∀RY
† ◦ ∀ f 6 ∀RX

† or

f−1 ◦ ∀RY
† 6 ∀RX

† ◦ f−1),

i.e. the continuity of f−1. Hence the category Kr is dual to the category CABAOC of CABAOs and

continuous CABA homomorphisms [19]. We should stress, however, that these duality results are merely

derivative, and that the dualities in Subsection 2.2 are more fundamental. It is the latter duality that we

will take essential advantage of throughout this article.

We have so far considered a single pair of operators � and ^, but in epistemic logic we often take

a set A of agents and consider a pair of operators [α ] (also written Kα , for “α knows that”) and 〈α〉
for each agent α ∈ A. To interpret this A-indexed set of operator pairs, a Kripke frame X needs to be

equipped with an A-indexed set of relations Rα : X →p X as well. Let us say that a function f : X → Y

from a Kripke frame (X ,Rα
X)α∈A to another (Y,Rα

Y )α∈A is monotone if it preserves every Rα
X by satisfying

(7)–(8) (with Rα
X in place of RX ), and a bounded morphism if it satisfies (7)–(10) for every Rα

X (in place

of RX ). Then the Kripke frames with A-many relations and their monotone maps or bounded morphisms

form categories KrA and KrBA, subsuming Kr and KrB above as just a special case with A a singleton.

The duality results in this section carry over straightforwardly to KrA and KrBA, with respect to CABAs

with A-many operators.

2.4 Topological Constructions for Kripke Frames

Having introduced two categories of Kripke frames, it may appear to be a natural question which of the

two we should adopt as “the” category of Kripke frames. The answer is, however, that we need both Kr

and KrB. The significance of KrB is fairly obvious and well studied. Bounded morphisms are dual to

homomorphisms preserving ^ and � as well as all the other connectives, and therefore closely connected

to the preservation of modal logic. Indeed, the bisimulations are precisely the “relations in KrB” (see the

final paragraph of Subsection 3.1). By the same token, in the coalgebraic approach to Kripke semantics,

the kind of homomorphisms considered are those corresponding to bounded morphisms, and hence the

considered category of coalgebras is equivalent to KrB (see Section 5 for more on the connection to the

coalgebraic approach). Quite arguably, KrB plays a more prominent rôle than Kr does, as long as the

“static” modal logic is concerned. Nevertheless, this statement no longer applies to the semantics of

dynamic epistemic logic (DEL). Many of the semantic constructions crucial for DEL take place in Kr

but not in KrB. Indeed, to let DEL show interesting behaviors, it is essential to use monotone maps and

not bounded morphisms.

The category Kr admits a wide range of constructions that are directly connected to ones in Sets

using sets and functions. They are due to

Fact 3. Kr is “topological over Sets”,15 meaning, concretely, the following. Given any family of func-

tions fi : X →Yi (i ∈ I) to Kripke frames (Yi,Ri), the relation

wRXv ⇐⇒ fi(w)Ri fi(v) for all i ∈ I, i.e. RX =
⋂

i∈I

( fi
† ◦ Ri ◦ fi),

14This duality was first shown in [40]. See also [10].
15See Section 21 of [1] for the definition and nice properties of topological categories. (It may need noting that [1] refers to

Kr as Rel.) This subsection refers to Definitions 21.1 and 21.7, Example 21.8, Propositions 21.30 and 21.31, Theorem 21.9,

and Proposition 21.15.
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is the (unique) “initial lift” of { fi}i∈I , i.e. the relation on X such that, given any function g : Z → X , all

fi ◦ g are monotone from a frame (Z,RZ) iff g is.

(In fact, Fact 3 holds of KrA in general, again with Rα
X in place of RX .) One may note that the relation

RX in Fact 3 is the largest relation on X preserved by all fi, since, for every relation R on X ,

R ⊆ RX ⇐⇒ R ⊆ fi
† ◦ Ri ◦ fi (i.e. fi preserves R) for all i ∈ I. (13)

It is easy to observe that initial lifts preserve many properties of relations such as reflexivity, transitivity,

and symmetry. Then the full subcategories of Kr given by those properties and combinations thereof,

such as Preord of the preorders (i.e. reflexive and transitive relations) and Equiv of the equivalence

relations, are said to be “initially closed”. It follows that these subcategories are also topological over

Sets, and that the inclusion functors have left-adjoints.16 E.g., the left adjoint F : Kr → Preord sends a

Kripke frame (X ,R) to (X ,R∗), where R∗ is the reflexive and transitive closure of R.

One consequence of Kr, or a subcategory such as Preord, being topological over Sets is that it also

has “final lifts”, dual to initial lifts of Fact 3. E.g., given a family of preorders (X ,Rα) (α ∈ A) on the

same set X , such as “epistemic” relations Rα of agents α ∈ A, consider an A-indexed family of identity

maps {1X}α∈A in Sets; then its final lift in Preord comes with the epistemic relation for the “common

knowledge” of the group A, i.e. (
⋃

α Rα)
∗.17

Another consequence, more relevant to this article, is that the forgetful functor U : Kr → Sets to

the complete and cocomplete category Sets lifts limits and colimits—meaning that, given any (small)

diagram D in Kr, its (co)limit exists on the (co)limit of U ◦ D in Sets. Most notably,

14. Given a family of Kripke frames (Yi,Ri) (i ∈ I), its product in Kr, (X ,RX), is defined on the

cartesian product X = ∏i∈I Yi by taking RX =
⋂

i∈I(pi
† ◦ Ri ◦ pi) for the projections pi : X →Yi.

15. Let i : S →֒ X be an inclusion map. Then (S,RS) is a subframe of a Kripke frame (X ,RX), i.e.

RS = i† ◦ RX ◦ i, iff i is a regular mono from (S,RS) to (X ,RX) in Kr.

These constructions, and their canonical maps pi and i, are crucial to the semantics of DEL, as we will

see in Section 3. Pullbacks in Kr will also play a key rôle later in Subsection 4.3. In particular, observe

Theorem 1. The pullback of a bounded morphism in Kr is a bounded morphism.18

Proof. Let (6) be a pullback in Kr, let RX be the relation on X , similarly for Y , Z, and Y ×X Z, and let g

be a bounded morphism. Then p satisfies (9) as follows, by (7) for f ; the commuting of (6); (10) for g;

Corollary 3; the law of modularity (1); and the definition of RY×X Z as the initial lift of p and q.

RY ◦ p ⊆ (RY ◦ p)∩ ( f † ◦ RX ◦ f ◦ p) = (RY ◦ p)∩ ( f † ◦ RX ◦ g ◦ q)

= (RY ◦ p)∩ ( f † ◦ g ◦ RZ ◦ q)

= (RY ◦ p)∩ (p ◦ q† ◦ RZ ◦ q)

⊆ p ◦ ((p† ◦ RY ◦ p)∩ (q† ◦ RZ ◦ q)) = p ◦ RY×X Z.

It needs stressing, however, that the canonical maps of “topological” constructions in this subsection

are not in general bounded morphisms, and hence do not live in KrB. Indeed, as we will see, they must

not be bounded morphisms for DEL to show interesting behaviors.

16There are properties that are not preserved by initial lifts. E.g., antisymmetry is not; in fact, the category of posets is not

topological over Sets.
17See Section 2.3 of [16], as well as [6, 7], for common knowledge. We do not treat its logic in this article.
18This is a straightforward analogue of the already known fact that, in the category of topological spaces, the pullback of an

open map is open. See Proposition 1 in Section V.4 of [24].
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3 A Categorical Look at Dynamic Epistemic Logic

This section shows how to use the categorical structure of Section 2 to reformulate the standard seman-

tics of dynamic epistemic logic (DEL) structurally. We will first review the simpler subcase of public

announcement logic (PAL) in Subsection 3.1, and then expand it to the general DEL in Subsection 3.2.

3.1 Public Announcement Logic

Regular monos i of Kr in (15) are used to interpret PAL. This logic has unary operators [σ !] and 〈σ !〉
for all of its propositions σ . The proposition [σ !]ϕ is intended to mean “ϕ will be the case after σ

is publicly and truthfully announced (or observed)”, and interpreted as follows: Given a Kripke model

(X ,RX ,J−KX) and a subset S = JσKX with inclusion i : S →֒ X , let (S,RS,J−KS) be the submodel on

S—which is defined by RS = i† ◦ RX ◦ i and JpKS = i−1JpKX for atomic p. Then

16. w ∈ J[σ !]ϕKX iff either w /∈ JσKX or w ∈ JϕKS (note the subscripts), i.e., iff v ∈ JϕKS for all v ∈ S

such that viw. In short, J[σ !]ϕKX = ∀iJϕKS.

Similarly (or De Morgan-dually),

17. w ∈ J〈σ !〉ϕKX iff both w ∈ JσKX and w ∈ JϕKS, i.e., iff v ∈ JϕKS for some v ∈ S such that viw. In

short, J〈σ !〉ϕKX = ∃iJϕKS.

One may contrast (16) and (17) to

∀i ◦ i−1JϕKX = Jσ ⇒ ϕKX , ∃i ◦ i−1JϕKX = Jσ ∧ϕKX . (18)

So, although generally JϕKS 6= i−1JϕKX , for atomic p we have JpKS = i−1JpKX by definition, and hence

have a “reduction axiom” [σ !]p ≡ (σ ⇒ p) by

J[σ !]pKX = ∀iJpKS = ∀i ◦ i−1JpKX = Jσ ⇒ pKX .

Reduction axioms, taken together for atomic sentences and for all the “static” connectives, completely

axiomatize PAL by reducing it to the static modal logic. Proofs for reduction axioms for connectives are:

19. Because ∀i preserves meets,

J[σ !](ϕ ∧ψ)KX = ∀i(JϕKS ∩ JψKS) = ∀iJϕKS ∩∀iJψKS = J[σ !]ϕ ∧ [σ !]ψKX .

20. A CABA homomorphism, i−1 preserves ¬. And i† ◦ i = 1S, or dually i−1 ◦ ∀i = 1P(S), since i is

an injection. Therefore ¬S = ¬S ◦ i−1 ◦ ∀i = i−1 ◦ ¬X ◦ ∀i. Hence

J[σ !]¬ϕKX = ∀i ◦ ¬SJϕKS = ∀i ◦ i−1 ◦ ¬X ◦ ∀iJϕKS = Jσ ⇒¬[σ !]ϕKX .

21. RS = i† ◦ RX ◦ i dually means ∀RS
† = i−1 ◦ ∀RX

† ◦ ∀i. Therefore

J[σ !]�ϕKX = ∀i ◦ ∀RS
†JϕKS = ∀i ◦ i−1 ◦ ∀RX

† ◦ ∀iJϕKS = Jσ ⇒ �[σ !]ϕKX .

These algebraic proofs are straightforward applications of properties of the duality ∀−† . In particular, it

should be noted that (21), the reduction via �, is simply a dual to the equality of relations RS ◦ i† = i† ◦
RX ◦ i ◦ i†.

A perspective on (16)–(17) that has been guiding the study of the semantics of PAL, and indeed

of DEL (see e.g. [6]), is that [σ !] and 〈σ !〉 are interpreted by ∀i and ∃i, and therefore are the modal
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operators of the relation i† (called a “transition relation” in [6]), similarly to � and ^ interpreted by ∀R†

and ∃R† of R as in (2). One difference is that, whereas R is a relation on the same set, i† is between

different sets. Thus PAL, and DEL in general, generalize Kripke semantics by using relations R : X →p Y

between different Kripke frames to interprete modal operators. In studying this general setting, it proves

helpful to use the relation-modality dualities of Subsection 2.2 (and not just the derivative dualities of

Subsection 2.3 between Kripke frames and CABAOs). It may also be interesting to note that σ ⇒− and

σ ∧− in (18), which play an essential rôle in reduction axioms, are modal operators, too, viz. those of

the relation i ◦ i† : X →p X . This is the reason the relation-modality duality ∀−† is applicable in (21).

A point of caution here for our categorical approach is that, in general, R : X →p Y is neither a structure

on a Kripke frame (an object of the category Kr) nor a monotone map (an arrow of Kr). So, to accom-

modate it in terms of Kr, we use the idea of tabulation from Subsection 2.1: A relation R : X →p Y corre-

sponds to the pair of projections r1 : R → X and r2 : R →Y from the set R ⊆ X ×Y , so that R = r2 ◦ r1
†.

Indeed, given Kripke frames on X and Y , Fact 3 gives a canonical Kripke frame on R ⊆ X ×Y from

which r1 and r2 are monotone. Then ∀R† = ∀r1
◦ r2

−1 and ∃R† = ∃r1
◦ r2

−1; hence ∀R† and ∃R† of all

relations R can be obtained by ∃ f ⊣ f−1 ⊣ ∀ f of monotone maps f . This trick, using monotone maps r1

and r2 of Kr, always works for any relation R ⊆ X ×Y . On the other hand, bounded morphisms of KrB

do not always work, since r1 and r2 are both bounded morphisms if and only if R is a bisimulation. (We

will see an even more crucial rôle of Kr at the end of Subsection 3.2.)

3.2 Dynamic Epistemic Logic

Let us now consider the Baltag-Moss-Solecki semantics of DEL [7] and observe how product update in

it can be treated categorically. Take two Kripke frames, (X ,RX) and (E,RE), and regard the former as

an “epistemic model” and the latter as an “event model”. So, let us assume that (X ,RX) is equipped with

an interpretation JPre(e)KX ⊆ X of the precondition Pre(e) of every event e ∈ E (or we can take a Kripke

model (X ,RX ,J−KX) on (X ,RX)); we write ie : JPre(e)KX →֒ X for the inclusion maps. Then the product

model of the two frames, obtained by “updating” (X ,RX) with (E,RE), is defined on the disjoint union

of ie, i.e. the subset

X ⊗E = ∑
e∈E

JPre(e)KX = {(w,e) ∈ X ×E | w ∈ JPre(e)KX } of X ×E = ∑
e∈E

X . (22)

The “epistemic” relation RX⊗E on X ⊗E is defined as the subframe of the product (X ×E,RX×E) of

(X ,RX) and (E,RE), using (14) and (15). This amounts to

(w1,e1)RX⊗E(w2,e2) ⇐⇒ w1RXw2 and e1REe2, i.e., RX⊗E = (pX
† ◦ RX ◦ pX )∩ (pE

† ◦ RE ◦ pE)

for the projections pX : X ⊗E → X :: (w,e) 7→ w and pE : X ⊗E → E :: (w,e) 7→ e. In short, it is the initial

lift of pX and pE . In addition, given a Kripke model J−KX on X , it induces an updated Kripke model on

X ⊗E by JpKX⊗E = pX
−1JpKX for atomic p.19

Let us analyze this construction a bit further, using the following diagram (for each e ∈ E).

∑e′∈E JPre(e′)KXX ⊗E = ∑e′∈E X = X ×E E

JPre(e)KX X

i p′E

ie

qe q′e p′X (23)

19This is the case without “factual change”. A version with factual change [9] can also be treated categorically.
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Here p′X and p′E are the obvious projections, so that pX = p′X ◦ i and pE = p′E ◦ i. And qe and q′e
are the “coproduct injections” w 7→ (w,e). The inclusion i : X ⊗E →֒ X ×E has i ◦ qe = q′e ◦ ie (by

its definition as i = ∑e′∈E ie′ ), while p′X ◦ q′e = 1X (since p′X equals the trivial “cotuple” [1X ]e′∈E ), and

therefore pX ◦ qe = p′X ◦ i ◦ qe = p′X ◦ q′e ◦ ie = ie.

Given this construction, for each e ∈ E the canonical functions ie and qe tabulate a relation Re =
qe ◦ ie

† : X →p X ⊗E; i.e., wRe(w
′,e′) iff w = w′ ∈ JPre(e)KX and e = e′, or wRev iff vpX w and vpE e.

Corollary 3 implies Re = qe ◦ ie
† = i† ◦ q′e since the square in (23) is a pullback. This relation, and its

duals ∀Re
† = ∀ie ◦ qe

−1 and ∃Re
† = ∃ie ◦ qe

−1, are then used to interpret the dynamic operators [E,e] and

〈E,e〉; the proposition [E,e]ϕ is supposed to mean “ϕ will be the case after the event e takes place”. The

interpretation, similar to (16)–(17), is as follows:

J[E,e]ϕKX = ∀Re
†JϕKX⊗E , J〈E,e〉ϕKX = ∃Re

†JϕKX⊗E . (24)

As in (18), relations pX ◦ Re = pX ◦ qe ◦ ie
† = ie ◦ ie

† give

∀ie ◦ ie
−1JϕKX = JPre(e)⇒ ϕKX , ∃ie ◦ ie

−1JϕKX = JPre(e)∧ϕKX , (25)

which we may call “static precondition modalities”, as the modal operators of ie ◦ ie
†. Then the reduction

axioms of DEL can be proven as follows. (The reduction via ∧ goes since ∀Re
† preserves meets, just the

same way as in (19); the case of ¬ is similar to (20), albeit more complicated.)

26. pX ◦ Re = ie ◦ ie
† implies the following for atomic p, by (25) and JpKX⊗E = pX

−1JpKX .

J[E,e]pKX = ∀Re
†JpKX⊗E = ∀Re

† ◦ pX
−1JpKX = ∀ie ◦ ie

−1JpKX = JPre(e)⇒ pKX .

27. For the case of �, first note that wRevpEe′ implies e = e′ since wRev implies vpEe whereas pE is a

function. In other words, wRevpEe′ iff wRev and e′ = e. This entails (∗) in the following:

wRe;RX⊗Ev ⇐⇒ wRev
′pX ;RX ; pX

†v and wRev′pE ;RE ; pE
†v for some v′ ∈ X ⊗E

(∗)
⇐⇒ wRe; pX ;RX ; pX

†v and eRE ; pE
†v

(†)
⇐⇒ wRe; pX ;RX ;Re′v for some e′ ∈ E such that eREe′,

where (†) holds since uRe′v iff vpX u and vpEe′, i.e. iff upX
†v and e′pE

†v. Thus,

RX⊗E ◦ Re = (
⋃

eRE e′

Re′) ◦ RX ◦ pX ◦ Re = (
⋃

eRE e′

Re′) ◦ RX ◦ ie ◦ ie
†.

Observe on the other hand that, for a family of relations Ri : X →p Y of the same type, we have

∀(
⋃

i Ri)† =
⋂

i ◦ ∀Ri
† . Therefore

J[E,e]�ϕKX = ∀Re
† ◦ ∀RX⊗E

†JϕKX⊗E

= ∀ie ◦ ie
−1 ◦ ∀RX

† ◦
⋂

eRE e′

◦ ∀Re′
†JϕKX⊗E = JPre(e)⇒ �

∧

eRE e′

[E,e′]ϕKX .

We conclude this section with a remark on the significance of using the category Kr. We reviewed

in this section that topological constructions (Subsection 2.4) and their canonical maps play essential

rôles in the semantics of PAL and DEL. These constructions take place in Kr as opposed to the category

KrB, and the canonical maps are monotone maps of Kr, and not bounded morphisms of KrB. Indeed, for
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DEL to show interesting behaviors, the canonical maps—in particular, pX : X⊗E →X , which amounts to

i : JσKX →֒ X in the case of PAL—must not be bounded moprphisms. For, if pX is a bounded morphism,

then JϕKX⊗E = pX
−1JϕKX for every ϕ and not just atomic p (this entails [E,e]ϕ ≡ Pre(e)⇒ ϕ the same

way as in (26))—this means that no event can teach agents anything. In other words, for events to teach

agents something, they must bring about some change logically, and therefore the maps f representing

them must not have logic-preserving duals f−1.

4 Application: Quantification

This section demonstrates a virtue of our categorical perspective, by showing how to extend DEL to the

first order. Our structural approach to DEL and the standard structural approach to first-order logic can

be integrated together, simply as two modules, using the methodology of category theory. We will first

review how to interpet classical first-order logic in Subsection 4.1, and how to add this first-order struc-

ture to Kripke semantics using “Kripke sheaves” in Subsection 4.2. We will then equip this semantics

with a DEL-type update in Subsection 4.3, obtaining a new sheaf semantics for first-order DEL.

4.1 Classical Semantics in a Slice Category

Here we review how the standard semantics for classical first-order logic goes in the category Sets/X , as

the non-modal basis of semantics in Subsection 4.2. See [39] for a more general and extensive account.

Let us first recall the definition of slice category. Given any category C, fix any object C. Then the

slice category C/C, “C over C”, consists of the following:

• Objects are any arrow f : D →C of C with the codomain C.

• Arrows from f : D →C to g : E →C are any arrow h : D → E of C such that g ◦ h = f .

In particular, given a set X , Sets/X is the category of “sets and functions over X”:

• Objects, “sets over X”, are functions π : D → X . For each w ∈ X we write Dw for the inverse image

π−1({w}), called the “fiber over w”.

• And arrows from π1 : D → X to π2 : E → X are functions f : D → E “over X”, meaning that

π2 ◦ f = π1, or equivalently that if a ∈ Dw then f (a) ∈ Ew for the same w.

We will also later consider a Kripke-structured version of Sets/X , viz. Kr/(X ,R) over a Kripke frame

(X ,R): Its objects and arrows are monotone maps and not just any functions.

Fixing any (nonempty) set X , the slice category Sets/X is used to interpret classical first-order logic

as follows. We fix an object π : D → X of Sets/X , and a surjection π in particular. We then regard X as a

set of worlds and D as a set of individuals. Each individual a∈D is assumed to live in a unique world, viz.

π(a) ∈ X . In this sense we may call π a “residence map”. For each world w ∈ X , the fiber Dw = π({w})
is the set of individuals living in w. In fact, for each n ∈ N, the cartesian product Dn

w = Dw ×·· ·×Dw is

the set of n-tuples of individuals living in w, and the disjoint union of Dn
w for all w ∈ X , i.e. the n-fold

“fibered product” of D over X ,

Dn
X = ∑

w∈X

Dn
w = {(a1, . . . ,an) ∈ D×·· ·×D | π(a1) = · · ·= π(an)},

is the set of n-tuples from the same world, with the projection

πn : Dn
X → X :: ā → π(ai)



364 Categories for Dynamic Epistemic Logic

mapping an n-tuple from the same world to that world. (As special cases, D1
X = D and D0

X = X , with

π1 = π : D → X and π0 = 1X : D → D.) Categorically speaking, this is to take the n-fold pullback of D

over X in Sets, or the n-fold product of π in Sets/X .

One important note regarding the semantics in Sets/X is that it interprets “formulas in contexts”. A

context is a (finite) sequence of variables that are all distinct. A formula ϕ can be in a context (x1, . . . ,xn)
if no other variables occur freely in ϕ . It is not assumed that all of x1, . . . , xn actually occur freely in ϕ ;

so, e.g., if ϕ can be in a context (x1, . . . ,xn) then it can also be in (x1, . . . ,xn,xn+1, . . .xm). A formula-

in-context is a pair of formula and a context it can be in; so, writing (x1, . . . ,xn | ϕ ) presupposes that ϕ

can be in (x1, . . . ,xn). Now, we semantically interpret formulas-in-contexts (x1, . . . ,xn | ϕ ) rather than

formulas ϕ : We regard (x1, . . . ,xn | ϕ ) as an n-ary predicate that may or may not be true of n-tuples of

individuals (a1, . . . ,an). Similarly, we interpret terms-in-contexts (x1, . . . ,xn | t ) as mappings of n-tuples

of individuals to individuals. We will write x̄ and ā for sequences (x1, . . . ,xn) and (a1, . . . ,an).
In propositional logic, we interpret a sentence σ with JσK ⊆ X , so that w ∈ JσK means that σ is

true at w. Similarly, in the semantics in Sets/X , we interpret a closed sentence σ in the empty context

with JσK ⊆ X . Yet, extending this, we interpret an n-ary formula-in-context ( x̄ | ϕ ) with J x̄ | ϕ K ⊆ Dn
X ,

so that ā ∈ J x̄ | ϕ K means that ϕ is true of individuals a1, . . . , an in place of x1, . . . , xn (at the world

π(ai)). The same formula ϕ in different contexts is true of different tuples: E.g. (a,b) ∈ Jx,y | ϕ K iff

(b,a) ∈ Jy,x | ϕ K iff (a,b,c) ∈ Jx,y,z | ϕ K (for any c ∈ D such that (a,b,c) ∈ D3
X ).

An interpretation J−K can be defined inductively, first for terms and then for formulas. In interpreting

terms in Sets/X , the core idea is to interpret an n-ary term-in-context ( x̄ | t ) with an arrow J x̄ | t K : Dn
X →

D in Sets/X , i.e. a function sending ā ∈ Dn
w to J x̄ | t K(ā) ∈ Dw. To each n-ary function symbol f , assign

an arrow J f K : Dn
X → D of Sets/X . (This includes JcK : X → D for a constant, i.e. 0-ary function symbol.)

Then, for the base case let J x̄ | f x̄K = J f K, whereas we also let J x̄ | xi K = pi : Dn
X → D :: ā 7→ ai for

each i 6 n. For inductive steps, define the substitution of terms as follows: Given a term-in-context

(x1, . . . ,xn | t ) and terms t1, . . . , tn, we write t[t1, . . . , tn/x1, . . . ,xn] for the result of substituting ti for all

the free occurrences of xi in t. Then, given J x̄ | t K and J ȳ | ti K for each i 6 n where ȳ = (y1, . . . ,ym), write

J ȳ | t̄ K = 〈J ȳ | t1 K, . . . ,J ȳ | tn K〉 : Dm
X → Dn

X :: b̄ 7→ (J ȳ | t1 K(b̄), . . . ,J ȳ | tn K(b̄)),

and we have

J ȳ | t[t1, . . . , tn/x1, . . . ,xn]K = J x̄ | t K ◦ J ȳ | t̄ K. (28)

Now, to each n-ary relation symbol F , assign any subset JFK⊆ Dn
X , and J x̄ | Fx̄K = JFK. Inductively,

J x̄ | ϕ ∧ψ K = J x̄ | ϕ K∩ J x̄ | ψ K, J x̄ | ¬ϕ K = ¬J x̄ | ϕ K = Dn
X \ J x̄ | ϕ K (29)

for Boolean operators. For quantifiers, take a projection p : Dn+1
X → Dn

X :: (ā,b) 7→ ā and let

J x̄ | ∀y.ϕ K = ∀pJ x̄,y | ϕ K, J x̄ | ∃y.ϕ K = ∃pJ x̄,y | ϕ K; (30)

the case of n = 0 is just p = π : D → X . Closely connected to quantification is the substitution of terms:

Write ϕ [t̄/x̄] for the result of substituting ti for xi in ϕ (this makes sense only if t is free for x in ϕ). Then

the substitution satisfies

J ȳ | ϕ [t1, . . . , tn/x1, . . . ,xn]K = J ȳ | t̄ K−1J x̄ | ϕ K. (31)

As an instance of this, given J x̄ | ϕ K we can add a vacuous variable to the context by

J x̄,y | ϕ K = p−1J x̄ | ϕ K (32)

for the same p :: (ā,b) 7→ ā as above; and other operations on contexts (e.g. permutation) can be inter-

preted in similarly obvious ways.
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4.2 Kripke-Sheaf Semantics

In this subsection we review “Kripke-sheaf semantics” for first-order modal logic. An extensive exposi-

tion of this semantics is in [18]. We use the notation and terminology from [26], however, to be consistent

with Subsection 4.1.20

As to syntax, we take a first-order language—with relation symbols, variables, function symbols and

constants—and add � and ^ to it as unary operators that behave just the same way ¬ does. By this

we mean in particular that �(ϕ [t/x]) (i.e. first substituting t and then applying �) and (�ϕ)[t/x] (first

applying � and then substituting t) are the same formula, just the same way ¬(ϕ [t/x]) and (¬ϕ)[t/x] are.

Now, enter

Definition 1. A bounded morphism π : (D,RD)→ (X ,RX) is called a Kripke sheaf over (X ,RX) if

33. aRDbπw and aRDb′πw imply b = b′. That is, (RD ◦ RD
†)∩ (π† ◦ π)⊆ 1D.

We fix one such map and, as we did in Subsection 4.1, regard it as a residence map from the individ-

uals D to the worlds X . Then, for each n ∈N, the set Dn
X of n-tuples from the same world comes with the

“epistemic” relation RDn
X

by Fact 3 or by (14) and (15). Categorically, this is to take the n-fold pullback

of (D,RD) over (X ,RX) in Kr, or equivalently the n-fold product of π in the slice category Kr/(X ,RX).
We interpret first-order modal logic with π and other structure in Kr/(X ,RX). The classical base of

the logic is interpreted with the underlying, non-Kripke structure in Sets/X , just as in Subsection 4.1.

The new, modal part is then added to the base using the Kripke structure, as follows: First we require

that, for each n-ary function symbol f , its interpretation J f K : (Dn
X ,RDn

X
)→ (D,RD) be monotone, so that

all interpretations J ȳ | t K of terms are monotone—i.e., they must be arrows of Kr/(X ,RX). Then we set

J x̄ | �ϕ K = ∀RDn
X

†J x̄ | ϕ K, J x̄ |^ϕ K = ∃RDn
X

†J x̄ | ϕ K. (34)

In this way, we adopt the following ideas for the semantics.

35. We use a family of Kripke models (Dn
X ,RDn

X
,J−K), where each (Dn

X ,RDn
X
) is the n-fold product of

π : (D,RD)→ (X ,RX) in Kr/(X ,RX).

36. Each dual (P(Dn
X ),∀RDn

X

† ,∃RDn
X

†) is a CABAO of n-ary properties governed by (29) and (34).

37. We interpret terms with arrows f of Kr/(X ,RX) between products (Dn
X ,RDn

X
).

38. The CABAOs interact with one another via cross-context operations, which are interpreted, as in

(30)–(31), with ∃ f ⊣ f−1 ⊣ ∀ f of arrows f of Kr/(X ,RX).

So, let us enter

Definition 2. By a Kripke-sheaf model we mean a Kripke sheaf π : (D,RD) → (X ,RX) paired with a

family of maps J−K that assigns

• an arrow J f K : Dn
X → D of Kr/(X ,RX) to each n-ary function symbol f ,

• J ȳ | t K : Dn
X → D to all terms-in-contexts ( ȳ | t ) by J x̄ | f x̄K = J f K, J x̄ | xi K :: ā 7→ ai, and (28),

• any subset JFK ⊆ Dn
X to each n-ary relation symbol F , and

• J x̄ | ϕ K ⊆ Dn
X to all formulas-in-contexts ( x̄ | ϕ ) by J x̄ | Fx̄K = JFK, (29)–(32) and (34).

20[26] provides a more general semantics using neighborhood structure, but Kripke-sheaf semantics is simply a special

case involving Kripke frames; see Section 3 of [26], in particular. It should be noted that the definitions of Kripke sheaf in

[18] (Definition 3.6.2) and in [26] (Definition 3.5) only agree for the limited case of reflexive and transitive Kripke frames.

Definition 1 in the following is the version in [26].
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Definition 2 requires π to be not just a monotone map but moreover a Kripke sheaf, whereas no

Kripke sheaves are mentioned in the ideas (35)–(38). The requirement is needed, however, precisely in

order for the interaction (38) to behave coherently. Given any JσK ⊆ D, observe that there are two ways

to obtain Jy | �σ K by applying (32) and (34), viz.

Jy | �σ K = ∀RD
†Jy | σ K = ∀RD

† ◦ π−1JσK, Jy | �σ K = π−1J�σK = π−1 ◦ ∀RX
†JσK.

So the well-definedness of J−K, along with (32) and (34), requires that ∀RD
† ◦ π−1 = π−1 ◦ ∀RX

† , or dually

π ◦ RD = RX ◦ π , i.e. that π be a bounded morphism. Indeed, any map J ȳ | t̄ K involved in (31) must be

a bounded morphism. Recall that our syntax has �(ϕ [t̄/x̄]) = (�ϕ)[t̄/x̄]. This means that, for J−K to be

well-defined, we need J ȳ | �(ϕ [t̄/x̄])K= J ȳ | (�ϕ)[t̄/x̄]K, both sides giving the same interpretation to the

same formula �ϕ [t̄/x̄]. So, given J x̄ | ϕ K ⊆ Dn
X and Jt̄K = J ȳ | t̄ K : Dm

X → Dn
X , (31) and (34) imply

∀RDm
X

† ◦ Jt̄K−1J x̄ | ϕ K = J ȳ | �(ϕ [t̄/x̄])K = J ȳ | (�ϕ)[t̄/x̄]K = Jt̄K−1 ◦ ∀RDn
X

†J x̄ | ϕ K.

Thus, the well-definedness of J−K, along with (31) and (34), again requires that Jt̄K be a bounded mor-

phism.21 Yet, all maps involved in Definition 2 are indeed guaranteed to be bounded morphisms, by

Fact 4. If π : D → X is a Kripke sheaf, then so is every πn : Dn
X → X . Moreover, given two Kripke

sheaves πD : D → X and πE : E → X , any monotone map f : D → E over X (i.e. satisfying πE ◦ f = πD)

is also a Kripke sheaf (and hence a bounded morphism). On the other hand, π is a Kripke sheaf iff both

π and the “diagonal map” ∆ : D → D2
X :: a 7→ (a,a) are bounded morphisms.22

In short, the simple combination of (28)–(32), for classical first-order logic, and (29) and (34), for

propositional modal logic, is made possible by Kripke sheaves and Fact 4. And this simple combination

makes the logic of Kripke-sheaf semantics the simple union of classical first-order logic and modal logic.

Fact 5. Let FOK be the first-order modal logic that consists of all the rules and axioms of classical first-

order logic, and the rules and axioms of propositional modal logic K. Then FOK is sound and complete

with respect to the Kripke-sheaf models. The same holds with S4 (or S5, respectively) in place of K,

with respect to the subclass of Kripke-sheaf models over preorders (or equivalence relations).23

4.3 First-Order Dynamic Epistemic Logic

In Subsection 4.2 we saw how the Kripke-sheaf structure extended the modal logic of a Kripke model

to the first order. We will now lay out how the same structure can extend the product update of Kripke

models to the first order.24 One remark is in order: We saw in Sections 2 and 3 that, whereas bounded

morphisms play a more prominent rôle than merely monotone maps in the semantics of static modal

logic, merely monotone maps are essential in the semantics of DEL. This theme recurs in this subsection.

21From a perspective of categorical logic, one often takes (31), for all ϕ , as part of the definition of a model, rather than a

derived fact about the model. It is from this perspective that we describe the situation as a matter of well-definedness of the

model. One could also see the same situation as a matter of deriving (31) from its atomic case using a property of bounded

morphisms; we acknowledge an anonymous reviewer for this perspective. One could of course choose to reject (31) or (34), or

even to use a syntax without �(ϕ[t/x]) = (�ϕ)[t/x]. (These options, needless to say, would make Fact 5 unavailable to one’s

semantics.) A notable case of rejecting (34) is the counterpart theory in [34], which restricts (34) to the case where all the

variables in x̄ actually occur freely in ϕ .
22See Facts 4.2, 4.4, and 4.6 in [26].
23See, e.g., Corollary 6.1.24 of [18].
24A sheaf semantics for first-order PAL was given (in a more general, neighborhood setting) in [27]. A first-order extension

of PAL was also given briefly in [35], which, however, used constant domains to interpret quantification. See footnote 2 as well.
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In Subsection 4.2, we reviewed the fact that static first-order modal logic needed Kripke sheaves to make

sure all the maps involved were bounded morphisms. In our new semantics for first-order DEL, however,

the structure of the category Kr of monotone maps will play a central rôle again.

Let (π : (D,RD) → (X ,RX),J−Kπ) be a Kripke-sheaf model, and (E,RE) be a Kripke frame. We

regard the latter as an event model, and assume that preconditions Pre(e) for e ∈ E are all (closed)

sentences, so that JPre(e)Kπ makes sense and JPre(e)Kπ ⊆ X . Then (X ,RX) is product-updated with

(E,RE) into (X ⊗E,RX⊗E). For the first-order structure, we moreover “pullback-update” (π,J−Kπ), by

pulling everything back along the projection pX : X ⊗E → X . Recall that (π,J−Kπ) uses the structure

of the slice category Kr/(X ,RX); hence pX induces a pullback functor pX
∗ : Kr/(X ,RX) → Kr/(X ⊗

E,RX⊗E). So we apply this to obtain an updated residence map πX⊗E = pX
∗π : DX⊗E → X ⊗E , and

to obtain J−KπX⊗E
from J f KπX⊗E

= pX
∗J f Kπ for function symbols f and JFKπX⊗E

= pX
∗JFKπ for relation

symbols F . We need to note that the structure of Kr is essential for the pullback update. Pullbacks are

taken in the category Kr of monotone maps in general as opposed to bounded morphisms, and along the

map pX : X ⊗E → X , which, as seen in Subsection 3.2, must not be a bounded morphism for DEL to

show interesting behaviors.

Here is an explicit description of the pullback update:

• Using the notation Dw = π−1({w}), the pullback of πn : Dn
X → X :: ā 7→ π(ai) along pX : X ⊗E →

X :: (w,e) 7→ w has the domain

∑
(w,e)∈X⊗E

Dn
w = {(ā,e) ∈ Dn

X ×E | πn(ā) ∈ JPre(e)Kπ },

for which we write Dn
X⊗E , and projections

πn
X⊗E = pX

∗πn : Dn
X⊗E → X ⊗E :: (ā,e) 7→ (πn(ā),e),

pDn
X

: Dn
X⊗E → Dn

X :: (ā,e) 7→ ā.

It also comes with another projection pE,n : Dn
X⊗E → E :: (ā,e) 7→ e. The “epistemic” relation

RDn
X⊗E

on Dn
X⊗E is an initial lift, viz.

RDn
X⊗E

= (pDn
X

† ◦ RDn
X
◦ pDn

X
)∩ (pE,n

† ◦ RE ◦ pE,n),

i.e. (ā,e1)RDn
X⊗E

(b̄,e2) ⇐⇒ a1RDb1, . . . , anRDbn and e1REe2.

• For an n-ary function symbol f , we have J f Kπ : Dn
X → D and then

J f KπX⊗E
= pX

∗J f Kπ : Dn
X⊗E → DX⊗E :: (ā,e) 7→ (J f Kπ(ā),e).

• For an n-ary relation symbol F , we have JFKπ ⊆ Dn
X and then

JFKπX⊗E
= pX

∗JFKπ = pDn
X

−1JFKπ = {(ā,e) ∈ Dn
X⊗E | ā ∈ JFKπ } ⊆ Dn

X⊗E.

The pullback update indeed updates a Kripke-sheaf model to another:

Theorem 2. Given a Kripke-sheaf model (π,J−Kπ), its pullback update (πX⊗E ,J−KπX⊗E
) along pX :

X ⊗E → X is a Kripke-sheaf model.

Proof. As in Fact 4, both π and the diagonal map ∆ of π are bounded morphisms, and hence Theorem 1

implies that both πX⊗E = pX
∗π and pX

∗∆ are bounded morphisms. Yet pX
∗∆ is the diagonal map of

πX⊗E , since the pullback functor pX
∗ preserves finite limits. Therefore πX⊗E is a Kripke sheaf by Fact 4.

Moreover, for each n ∈ N, pX
∗πn is the n-fold product of πX⊗E over X ⊗E , since pX

∗ preserves finite

limits.
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Now we have two Kripke-sheaf models, (π,J−Kπ) before update and (πX⊗E ,J−KπX⊗E
) after, and we

can use relations between them to interpret the DEL operators [E,e] and 〈E,e〉. Here is a key idea: As in

(35)–(36), each sheaf model has a Kripke model for n-ary properties, Dn
X and Dn

X⊗E ; so we treat Dn
X and

Dn
X⊗E as the product-update structure of Subsection 3.2 that interprets the application of [E,e] and 〈E,e〉

to n-ary formulas-in-contexts. Since J x̄ | Pre(e)Kπ = (πn)−1JPre(e)K, observe

Dn
X⊗E = ∑

e∈E

J x̄ | Pre(e)Kπ = {(ā,e) ∈ Dn
X ×E | ā ∈ J x̄ | Pre(e)Kπ }

and note the similarity to (22). We moreover have canonical maps as with (22), viz. the projection

pDn
X

: Dn
X⊗E → Dn

X above and, for each e ∈ E ,

• The inclusion map ine : J x̄ | Pre(e)Kπ →֒ Dn
X .

• The coproduct injection qn
e : J x̄ | Pre(e)Kπ → Dn

X⊗E :: ā 7→ (ā,e).

These maps tabulate a relation, Rn
e = qn

e ◦ ine
† : Dn

X →p Dn
X⊗E , which is dual to the two maps

∀Rn
e

† = ∀ine
◦ (qn

e)
−1,∃Rn

e
† = ∃ine

◦ (qn
e)

−1 : P(Dn
X⊗E)→ P(Dn

X).

These then interpret [E,e] and 〈E,e〉 applied to n-ary formulas-in-contexts ( x̄ | ϕ ), i.e.,

J x̄ | [E,e]ϕ Kπ = ∀Rn
e

†J x̄ | ϕ KπX⊗E
, J x̄ | 〈E,e〉ϕ Kπ = ∃Rn

e
†J x̄ | ϕ KπX⊗E

,

which is just an “in context” version of (24).

This defines our sheaf semantics for first-order DEL—but we need to check its well-definedness,

similarly to the remark following Definition 2. That is, we need

∀Rm
e

† ◦ Jt̄KπX⊗E

−1J x̄ | ϕ KπX⊗E
= J ȳ | [E,e](ϕ [t̄/x̄])Kπ

= J ȳ | ([E,e]ϕ)[t̄/x̄]Kπ = Jt̄Kπ
−1 ◦ ∀Rn

e
†J x̄ | ϕ KπX⊗E

,

and similarly for 〈E,e〉. Yet these are the case because Jt̄KπX⊗E
◦ Rm

e = Rn
e ◦ Jt̄Kπ by

Theorem 3. For any arrow f : Dm
X → Dn

X of Kr/(X ,RX),

pX
∗ f ◦ Rm

e = Rn
e ◦ f , (pX

∗ f )† ◦ Rn
e = Rm

e ◦ f †.

Proof. This follows from Corollary 3 since the following squares are both pullbacks in Sets.

Dm
X⊗E (πm)−1JPre(e)Kπ

Dm
X

Dn
X⊗E (πn)−1JPre(e)Kπ

Dn
X

qm
e ime

qn
e ine

pX
∗ f f

Now, the semantics validates all the reduction axioms of propositional DEL, simply because Dn
X×E

is just the product update of Dn
X with (E,RE). One more reduction axiom is needed, however—viz. for

quantifiers. And here it is:

[E,e]∀y.ϕ ≡ ∀y. [E,e]ϕ . (39)
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Proof. We show the validity of (39). Let p : Dn+1
X →Dn

X :: (ā,b) 7→ ā. Then Theorem 3 implies (pX
∗p)† ◦

Rn
e = Rn+1

e ◦ p†, and dually ∀Rn
e

† ◦ ∀pX
∗p = ∀p ◦ ∀Rn+1

e
† . Therefore

J x̄ | [E,e]∀y.ϕ Kπ = ∀Rn
e

† ◦ ∀pX
∗pJ x̄,y | ϕ KπX⊗E

= ∀p ◦ ∀Rn+1
e

†J x̄,y | ϕ KπX⊗E
= J x̄ | ∀y. [E,e]ϕ Kπ .

This now gives a completeness result extending Fact 5 by the standard method of reduction.

Theorem 4. Let FODEL-K be the first-order modal logic that consists of FOK, all the reduction axioms

of propositional DEL, and (39). Then FODEL-K is sound and complete with respect to the Kripke-sheaf

models with pullback updates. The versions with S4 and S5 in place of K hold with respect to the obvious

subclasses of Kripke-sheaf models.

5 Connections to Preceding Approaches

There have been approaches to modal logic and DEL that take advantage of concepts and methods of

category theory in different ways from our approach. This section discusses connections between some

of these approaches and ours.25

Semantics of modal logic S4 shows various categorical structures. A Kripke frame (X ,-) for S4 is

a preorder, and hence itself a category. Also, the family OX of --upward closed subsets of X forms a

topology on X , and hence a category. Moreover, the interior operation int : PX → OX of this topology

is right adjoint to the inclusion i : OX →֒PX , so that �= i ◦ int is the comonad of the adjunction.26 The

notion of (Kripke) sheaf lifts all these structures to the first order: A Kripke sheaf over a preorder (X ,-) is

equivalently a “presheaf” on the category (X ,-), an “étale space” over the space (X ,OX), and a “sheaf”

on the category OX .27 Moreover, the adjunction i ⊣ int is lifted to a “geometric morphism” i∗ ⊣ i∗ from

Sets/X to the “topos” of sheaves over OX , so that its comonad i∗ ◦ i∗ induces � : PD → PD for every

Kripke sheaf π : (D,-D)→ (X ,-).28 Not all these categorical structures carry over to the general (i.e.

non-S4) Kripke semantics. It will be interesting, however, to investigate how to integrate them with DEL

updates, given that epistemic relations are normally assumed to be preorders. In fact, given a monotone

map f : (X ,-X)→ (Y,-Y ) of preorders, the pullback functor f ∗ (which plays a key rôle in the pullback

update of Subsection 4.3) has a right adjoint f∗, and f ∗ ⊣ f∗ is a typical example of geometric morphism,

from the topos of Kripke sheaves over (X ,-X) to those over (Y,-Y ).
A categorical approach that covers the entire Kripke semantics (for static modal logic) is given by

coalgebras (see, e.g., [38, 13, 30, 23]). The category Rel of relations is the “Kleisli category” of the “pow-

erset monad” P : Sets→ Sets, meaning, among other things, that the relations R : X →p Y correspond 1–1

to the functions r : X → PY .29 Indeed, the powerset monad is precisely the duality ∃− : Rel → CABA∨

restricted to Sets (and followed by the forgetful U : CABA∨ → Sets). The correspondence implies that

the Kripke frames (X ,R : X →p X) are exactly the coalgebras r : X → PX for the endofunctor P . Their

homomorphisms, from rX : X → PX to rY : Y → PY , are normally defined as functions f : X →Y sat-

isfying ∃ f ◦ rX = rY ◦ f , which amounts to (10), f ◦ RX = RY ◦ f , for the corresponding relations RX and

25We thank anonymous reviewers for references, and for their suggestions that the connections should be discussed.
26See Section 10.4 of [3] and Subsection 5.1.1 of [23] for comonads. In fact, instead of a poset PX one can take a general

category C and a comonad � on C to interpret S4 (perhaps with a non-modal base weaker than classical); see e.g. [2].
27See Chapters I through III of [37] for these concepts.
28See Chapter VII of [37] for geometric morphisms in general, and Section 5.2 of [4] for the geometric-morphism interpre-

tation of FOS4.
29This correspondence can also be described as between R : X ×Y → 2 and r : X → (Y → 2). See Chapter VI of [36], Chapter

10 of [3], and Chapter 5 of [23] for monads and their Kleisli categories, and P and Rel as an example. Fact 1 can then be read

as stating that ∃− is a “comparison functor” that presents Rel as the category CABA∨ of free algebras of P .
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RY . Therefore, in the coalgebraic approach to Kripke semantics, Coalg(P), the category of coalgebras

and their homomorphisms normally considered, is—like the category CABAO of CABAOs and their

homomorphisms—equivalent to the category KrB of bounded morphisms. In this article, on the other

hand, we emphasized the significance of the topological category Kr of monotone maps for DEL.30

There have in fact been algebraic [31] and coalgebraic [5, 14] approaches to DEL. In particular, the

algebraic approach by Kurz and Palmigiano [31] uses ideas closely related to those in Section 3 of this

article: They observe that the product update X ⊗E is a subframe of the coproduct X ×E = ∑e∈E X , and

study the dual structure, i.e. a quotient of the product ∏e∈E P(X).31 Kurz and Palmigiano are well aware

that these constructions do not take place in KrB or CABAO but rather in Kr and CABAOC. They stop

short, however, of studying Kr or CABAOC, saying that “for these dual characterizations to be defined,

an a priori specification of the fully fledged category-theoretic environment in which these constructions

are taken is actually not needed” ([31], 2). We, in contrast, work under the philosophy that, when one

finds a good heuritstics that leads to a new result, they should study the heuritstics itself and shape it

into a theory that yields more results systematically. The point of Section 4 was to demonstrate how to

put to use more structures in Kr. It should also be stressed that we use one more category, viz. Rel, and

take essential advantage of the fundamental relation-modality dualities of Subsection 2.2, and not just

the derivative dualities of Subsection 2.3 between Kripke frames and CABAOs.

6 Conclusion and Future Work

In this paper we have recast the standard semantics of dynamic epistemic logic (DEL) in categorical

terms and shed new structural light on it. It should be clear by now how conceptually powerful the new

way of applying categorical method is: As demonstrated by our new semantics for first-order DEL, our

categorical, structural perspective tightly connects what we want (or need) logically or syntactically and

what we need (or want) semantically.

Our new application of the categorical methodology promises to be helpful on multiple fronts of

the study of DEL. Naturally expected future work is to extend our approach to more vocabulary (e.g.

common knowledge or µ-calculus), more types of logic (e.g. higher-order DEL or typed DEL), more

structures (e.g. probability), and more general settings (e.g. intuitionistic or constructive modal logic).

Various updates can be expressed as functors between categories of models, and these expressions are

expected to help characterize properties of updates such as the preservation of constructions or the ad-

mitting of reduction axioms. As mentioned in Section 5, the case of S4 can be formulated in terms of

toposes. Or our structural, topological ideas on the category Kr of monotone maps for DEL can be used

30One can of course express Kr with coalgebras, by defining a weaker notion of homomorphism, corresponding to monotone

maps—i.e., a function f : X → Y is “continuous” from rX : X → PX to rY : Y → PY if ∃ f ◦ rX 6 rY ◦ f (i.e. ∃ f ◦ rX (x) ⊆
rY ◦ f (x) for all x ∈ X). On the other hand, Kripke sheaves can be defined within Coalg(P). One can rewrite (33) as a

homomorphism π : D → X from rD : D → PD to rX : X → PX satisfying

• for each a ∈ D, the restriction of π to rD(a) is an injection.

Or it may be better to use the characterization in Fact 4—i.e., π is a Kripke sheaf iff both π and ∆ are homomorphisms. See

Fact 4.2 of [26]. The latter definition can indeed be extended to more kinds of coalgebras and not just Kripke frames.
31It is therefore the maps i and q′e in (23) that play a central rôle in [31]. In contrast, we put more emphasis on qe and ie,

though Re = qe ◦ ie
† = i† ◦ q′e as noted on p. 362. Also, in our treatment, the characterization of X ×E as a product plays a key

role as well, since the Kripke frame on X ×E is the product of X and E, but not the coproduct of (X)e∈E , in Kr. Moreover,

we treat Pre(e)⇒− and Pre(e)∧− as the modal operators of ie ◦ ie
†, a perspective that then enables us to prove the reduction

axioms (21) and (27) directly by the relation-modality duality ∀−† . This should be contrasted to the treatment of Pre(e)⇒−
and Pre(e)∧− in proofs in Section 7 of [31].
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to augment the coalgebraic generalization of the subcategory KrB of bounded morphisms. One may also

find, e.g., (39) too strong for their purpose, and hence need to replace the pullback update with a more

flexible idea. Furthermore, although we formulated a categorical semantics, we did not mention a crucial

aspect of categorical logic—viz. an interpretation J−K as a homomorphism. To cover this aspect we need

to define a “syntactic category” for DEL; this will then lead to a new theory of duality.
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