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We introduce an axiomatic approach to group recommendations, in line of previous work on the
axiomatic treatment of trust-based recommendation systems, ranking systems, and other founda-
tional work on the axiomatic approach to internet mechanisms in social choice settings. In group
recommendations we wish to recommend to a group of agents, consisting of both opinionated and
undecided members, a joint choice that would be acceptable to them. Such a system has many ap-
plications, such as choosing a movie or a restaurant to go to with a group of friends, recommending
games for online game players, & other communal activities.

Our method utilizes a given social graph to extract information on the undecided, relying on the
agents influencing them. We first show that a set of fairly natural desired requirements (a.k.a axioms)
leads to an impossibility, rendering mutual satisfaction of them unreachable. However, we also show
a modified set of axioms that fully axiomatize a group variant of the random-walk recommendation
system, expanding a previous result from the individual recommendation case.

1 Introduction

Since the rise of the internet, we have seen reputation systems, ranking systems, trust systems, recom-
mendation systems, affiliate marketing in social networks, and more, flowering in its midst. This recent
wave of online social systems is typically associated with a large amount of data that is collected online
which leads to the “big data” approach to the utilization of such information. Quite surprisingly, how-
ever, the abundance of available data does not help system designers come up with the right design for
online systems in the first place. Indeed, available data is typically generated by the use of a particular
system, and mining the data generated by users while interacting with one system does not provide a
tool for exploring the overwhelmingly large design space. Interestingly, the main practical approach of
software and hardware design, the formal specification of clear system requirements and the implemen-
tation of a system satisfying these exact requirements, has not been used often. This classical approach,
when adapted to the context of multi-agent systems, coincides with extensions of a famous tool of social
choice theory and cooperative game theory, namely the axiomatic approach.

Perhaps the best known axiomatic theory in the social sciences is the theory of social choice [19]. In
that setting we have a set of voters and a set of alternatives, where each voter has a ranking over the set
of alternatives, and our aim is to find a good aggregation of the individual rankings into a global ranking.
Various properties of such aggregation functions have been considered and have led to various character-
izations of particular systems as well as impossibility results showing no system can satisfy certain sets
of properties all at once [6]. In the internet setting, the study of ranking and reputation systems, such as
page-ranking systems [2], defines a natural extension of classical social choice to the case where the set of
voters and the set of alternatives coincide. In such a setting the classical axioms of social choice become
less relevant, and are replaced with new axioms which lead to completely new theory. Further removed
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from direct extensions of social choice, one can find systems originating from personalized versions of
ranking and reputation systems [25]. In these we no longer consider the aggregation of preferences into
a global/shared ranking, but instead seek to provide personalized rankings or recommendations to each
agent. A fundamental challenge in this context is the search for effective trust-based recommendation
systems, in which – based on trust-relationships among the agents, and expressed opinions of a subset
of them about a service or a product – a recommendation about a service or a product is provided to
agents who did not evaluate it personally. The puzzling challenge of generating useful trust-based rec-
ommendation systems is amenable to an axiomatic treatment, beginning with an attempt to characterize
the systems satisfying different sets of desired properties.

In this paper we significantly expand the body of work on the axiomatic approach for internet settings
by initiating work on the axiomatic treatment of Group Recommendation Systems. We assume a trust-
graph as described above, where agents express who they trust, and information is provided about the
opinions of some of the agents about a product/service, but we care about providing recommendations
to a group of agents, rather than a single one (e.g., a party of friends, looking for a restaurant). Notice
in this case the group may include some agents who have experienced the service/product directly and
some who may have not. This can be viewed as a bridge between social choice (aggregating individual
preferences) and trust-based recommendation systems. In addition to its theoretical importance, the topic
of group recommendation systems is of great practical interest: from companies recommending a new
networked game to a group of players just finishing one, through recommending a TV show to watch as
a family[28], to a group of friends looking for a holiday destination.

While group trust-based recommendation systems are vastly different from (individual) trust-based
recommendation systems, for reasons of exposition we will do our best to connect to the literature on
the latter, adopting (and adapting) properties taken as axioms for individual trust-based recommendation
systems in earlier work, and adding to them properties reflecting the fact we deal with group recommen-
dations. Interestingly, putting these together lead to a powerful and illuminating impossibility result; the
axioms/properties are all essential for this impossibility, as removing each one of them leads to possibil-
ity. Given this impossibility, we replace our three group related axioms by three other properties; in a
second major result we show an extension of a random walk system satisfying all desired properties, and
moreover it is the only system satisfying these properties. Together, this provides rigorous foundations
to a theory of group recommendations.

Following the basic model definitions, we present an overview of the axioms considered and their
motivations. We re-emphasize that these axioms are either properties accepted in the foundational work
on individual trust-based recommendation systems, or minimal properties capturing our aim at group
recommendations. Then we present the general impossibility theorem. Finally, re-visiting the group
recommendations’ axioms, we show a full unique characterization of a group recommendations random
walk system.

2 Related Work

Most approaches to individual recommendation systems [20] (i.e., systems not attempting to recommend
to groups) have proposed a model based on their observations of recommendation dynamics in real life,
without setting out to achieve any particular mechanism behavior. Much work is devoted to collaborative
filtering, in which an agent receives recommendations based on the views of agents with similar proper-
ties – similar to the design of the Netflix challenge [8, 13]. Other work focuses on simulations and field
experiments [23, 21, 7]. Some models add a social graph to the recommendation system, supporting a
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different trust level for each agent. However, these works [26, 17, 14] use the social graph as a mechanism
which propagates true, objective information to the agents, and do not consider agents’ recommendations
as opinions which may depend on taste (and hence, have no fixed value of “trustworthiness”).

In the past few years, more research has been devoted to group recommendations, as the scenarios
where group recommendation are useful are more and more evident. Early work has simply aggregated
all members’ preferences [16, 10], but the common approach tries to implement a model which adds a
layer of complexity beyond agents’ approval of a choice, emphasizing the importance of the group itself
[27, 12], like adding also the measure of the rejection of a choice by each participant [4, 15, 11] or trying
to build a power relationship between participants [24]. Gartrell et al. [11] try using the social graph,
but ultimately the approach is limited as it is used only to propagate information, and not in the actual
recommendation system.

A different approach to recommendation systems is the axiomatic one, which seeks to first describe
the goals of a system, and then to find the systems that implement such goals. Such an approach has
been taken in ranking systems [1, 3], including detailed analysis of specific mechanisms [2] including
collaborative filtering [18]. More importantly, it has been applied to the individual recommendation
system problem, first in Andersen et al.[5], and following that, in additional papers complementing it [22,
9]. One of the key strengths of this research path is in its basic model, which incorporates the influence
of the social graph on agents’ behavior. Alas, these papers do not deal with group recommendations, and
hence with the particular needs and desired properties of this problem.

3 Preliminaries and Model Definitions

The basic model (adapted from [5, 22, 9]), deals with a graph that has opinionated nodes (or voters) over
some option – some are + nodes (agents which like the option), and some are− nodes (the agents which
did not like the option). The rest of the nodes are nonvoters, i.e., they have no predetermined opinion. A
directed edge (a,b) indicates that the agent b influences agent a’s opinion to some degree. We wish to
find a mechanism that takes any group of agents (both voters and nonvoters) and gives the members of
the group a single recommendation – +, −, or 0 (in case of inability to recommend). Formally:

Definition 1. A voting network is a directed graph G(N,V+,V−,E), where N are the nodes, V+ ⊆ N are
the nodes which vote +, V− ⊆ N are nodes which vote −, and E are directed edges, in which parallel
edges are allowed1, but not self loops. We say node b ∈ N influences node a ∈ N when there exists an
edge (a,b).

From this definition we can derive the group of voters – V+∪V− and nonvoters – N \ (V+∪V−).

Definition 2. A group recommendation system is a function RG : 2N →{+,−,0}, assigning a recom-
mendation to each subset of graph nodes in the graph G.

Before proceeding to the axioms’ definitions, we define a group random-walk recommendation sys-
tem variant. For this we first define an individual random walk recommendation system, which, basically,
assigns to each node the sign of the weighted average of all voters which are reachable from it.

Definition 3. An individual random walk recommendation system takes a voting network
G(N,V+,V−,E) and assigns each node a ∈ N a value ra: If a ∈ V+ (respectively, a ∈ V−), then ra = 1
(respectively,−1). If a is a nonvoter which does not have a path to any voter, ra = 0. If it does have paths

1Equivalent to using weights, but easier to analyze in our case. This means E is, in effect, a multiset.
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to other voters, we look at the group succa = {b|(a,b) ∈ E}, and define ra =
∑b∈succa rb
|succa| . Once calculated

ra (based on other ris), the recommendation system recommends sgn(ra) (i.e., sign of the number).2

Group random-walk, in a sense, calculates a value for each group member based on their individual
recommendations, and sums over all of the group members.

Definition 4. A group random walk recommendation system takes a group C⊆ N and for each c ∈C
assigns rc to be the value (not just the sign) of the same node under the individual recommendation
system (so −1≤ rc ≤ 1). It then returns sgn(∑c∈C sgn(rc)).

4 The Axioms and their Motivation

The axioms and their formulation are key to this paper, and therefore we expand on their motivation and
intuitive understanding. Formal definitions for each axiom appear following this explanation.

4.1 The Basic Axioms

These axioms were adapted from the individual recommendation case, and are quite basic, so that we
believe most general-use systems which rely on the social graph for their recommendations would seek
to implement them:

1. Anonymity – No node is special. Isomorphic graphs (including recommendation isomorphism –
+ and − vote symmetry) have isomorphic recommendations.

Axiom 1. Anonymity: Let G(N,V+,V−,E) be a voting network, and R a recommendation system. For
any permutation π : N → N and G′, the isomorphic voting network under it, for any C ⊆ N RG(C) =
RG′(π(C)). Furthermore, For G′′(N,V−,V+,E) and C ⊆ N, RG(C) =−RG′′(C).

It is natural that if a group gets a certain recommendation (w.l.o.g, +), and a + voter joins the group
or gets additional influence over it, the recommendation should not change.

2. Positive Response – Adding support for a recommendation cannot reverse it. A group recom-
mended + to which a + voter is added (or begins to influence its members) does not change its
recommendation. If a group is recommended 0, adding a + voter to the group changes the vote
to +. Furthermore, adding an unconnected + voter and a − voter (both not in the group), both
influencing the same node in the group does not change the recommendation.

Axiom 2. Positive Response: Let G(N,V+,V−,E) be a voting network, R a recommendation system,
C ⊂ N, and a ∈ V+ ∩{N \C} such that there is no edge (c,a) ∈ E for any c ∈ C . Then if RG(C) = +
or RG(C) = 0, then both RG(C∪{a}) = +, and if we define G′ as G with an added edge (c,a) for some
c ∈C, RG′(C) = +.

Furthermore, let b ∈ V− ∩ {N \C} such that there is no edge (v,b) ∈ E for any v ∈ N nor edges
(v,a)∈ E for any v∈N (i.e., a and b are isolated). For any c∈C define G′′(N,V+,V−,E∪{(c,a),(c,b)})
then RG(C) = RG′′(C).

As we are investigating members of a social graph, it makes sense to ignore nodes that are not in the
same connectivity group as members of the group, hence:

2That this is, indeed, a random walk, and ra is equal to the probability of reaching a vertex in V+ minus the probability of
reaching a vertex in V−, and that it is unique is shown in Section 3.1 of [5].
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3. Independence of Irrelevant Stuff (IIS) – Unrelated nodes do not affect recommendation. A
node’s recommendation is only dependent on the nodes that it can reach. Voters are not, of course,
influenced by any edges, as their opinion is already set, so removing their outgoing edges has no
effect.

Axiom 3. IIS: Let G(N,V+,V−,E) be a voting network, R a recommendation system, and C ⊂ N. If
d ∈ N is not reachable from C, then let Ed ⊆ E be the set of edges outgoing or incoming from d, and
define G′(N \d,V+ \d,V− \d,E \Ed), then RG(C) = RG′(C). Furthermore, if e ∈ E an edge (a,b) for a
voter a (i.e., a ∈V+∪V− and is being influenced by b), then for G′′(N,V+,V−,E \{e}), for every C ⊂ N,
RG(C) = RG′′(C).

4.2 Group Power Axioms

We now turn to axioms which try to portray the unique properties of a group recommendation system. In
such systems, we want the group members to have a larger influence on the decision than external agents,
though we do wish to allow external influence in some cases. In order to portray these two, somewhat
conflicting, desires, we define very limited, narrow, axioms, only on a particular structure of social graph
– star groups, which (as shown in Figure 1), are made of a certain type of voters in the group (w.l.o.g,
+), which influence all of the group’s nonvoters, with − voters influencing these nonvoters from outside
the group.

Definition 5. A group C with n voters {v1, . . . ,vn} and m nonvoters {u1, . . . ,um} is a star group (e.g.,
Figure 1) if:

• All voters v j ∈C have the same label (w.l.o.g., +).

• For every nonvoter ui ∈C and voter v j ∈C there exist an edge (ui,v j) (so each nonvoter is con-
nected to all voters in the group).

• Every nonvoter ui ∈C has an associated group, Di = {t| there is an edge (ui, t) for voter t /∈C}.
For every i, all Di members are labeled −, and for every i,h: Di∩Dh = /0,

• Nonvoters ui ∈C have no other edges.

Having defined star-groups, we now define a set of axioms which are narrow in scope – only applying
to star-groups:

4. α-centripetal – Members of a group have more influence over the recommendation than voters
outside it. If the star-group has k + voters, the recommendation will be + as long as each nonvoter
is connected to less than αk − voters (see Figure 1).

Axiom 4. α-centripetal: A recommendation system has some α ∈ R+, α ≥ 1, such that for every star
group (whose members vote, w.l.o.g., +) for which for every i, |Di| ≤ α ·n, the recommendation for the
group is +.

However, we do not want the group to be all powerful. When there are few + voters in the star-group,
and many nonvoters and − voters, we would like to see some influence of the outside agents. Thus:

5. (β ,r)-centrifugal – Agents outside the group may still influence it. If a star-group (whose members
vote, w.l.o.g., +) has k + voters, but even more nonvoters – more than r nonvoters for each + voter;
and each nonvoter is connected to many− voters – at least βk – the group recommendation would
be − (see Figure 2a).
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(b) For r > 1
11 , the (β ,r)-centrifugal axiom cannot be ap-

plied to this star group, regardless of the value of β .

Figure 2: (β ,r)-centrifugal examples

Axiom 5. (β ,r)-centrifugal: A recommendation system has some β ∈ R+, β ≥ 1 such that for every
star group for which m

n ≥ r (r ∈ R+) and for which for every i, |Di| ≥ β ·n, the group’s recommendation
is −.

Example 1. To illustrate the two axioms above, we first reiterate that they are extremely narrow, i.e.,
they do not apply to almost any graph, only to those constructed as a star group (as in Figure 1). Other
groups, whatever their makeup (e.g., the sub-groups in Figure 5, which are connected to a variety of +
and− nodes), are not impacted at all by these axioms, and any recommendation system is free recomend
as it sees fit in these cases. Moreover, some star groups do not fall under the purview of these axioms
either, if they do not fully comply with their conditions.

Illustrating α-centripetal, examine Figure 1. For α > 1.5, the recommendation for this group is
+. This is since for each of the nonvoters, the “influence” of the + nodes, which are in their group,
is greater than that of the − nodes, which are outside it. The α-centripetal axiom tries to capture this
greater influence of the the nodes inside the group over the ultimate recommendation for the group.

Now, taking a look at (β ,r)-centrifugal axiom. Let us first focus on the β part. Its role is to ensure that
if there is enough external influence, the external nodes will have some effect (otherwise, external nodes
could just be ignored). I.e., there is some (large) number, such that if enough − nodes are connected to
the nonvoters, they will sway the group towards −. In cases such as that in Figure 2a, for any β ≤ 6,
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there are more than β − nodes influencing each undecided node in the group vs. only a single + node in
the group, so the recommendation would be −.

Now turning look at r. This parameter is used to prevent cases as in Figure 2b, where even with
a sufficient β (suppose in this case, β ≤ 3), there are many + nodes in the group, far overwhelming
the number of nonvoters, so even if these undecided are heavily influenced towards some decision, it
should not have any effect on the group’s recommendation. If r > 1

10 , the (β ,r)-centrifugal axiom is not
applicable to Figure 2b, as the ratio of nonvoters to voters in the group is 1

11 (so any recommendation
system may choose to do whatever it wants in this case).

6. Internal consistency – If all of a group’s partitions have the same recommendation, that will be
recommendation of the whole. If all sub-groups in a disjoint partition of a group of agents, are
given the same (non-neutral) recommendation (and there are no contradicting unanimous, non-
neutral partitions), the whole group will have this recommendation as well.

Axiom 6. Internal consistency: In a recommendation system R, for every C ⊆ N, for some partition
C =C1∪· C2∪· . . .∪· Cn for which RG(C1) = RG(C2) = . . .= RG(Cn) 6= 0, and if all other similar partitions
C = C′1 ∪· C′2 ∪· . . .∪· C′n, for which RG(C′1) = RG(C′2) = . . . = RG(C′n) 6= 0 have RG(C1) = RG(C′1), then
RG(C) = RG(C1).

Ultimately, we will show the above six axioms are incompatible, and there exist no group recom-
mendation system that can accommodate them. We will now consider three additional axioms.

4.3 Influence Structure Axioms

The final three axioms, are, to a certain extent, a group-recommendation extension of axioms suggested
for the individual recommendation case [5]. They capture influence and the way it “moves” through the
social connections, such that influence can extend beyond an immediate node (so one may influence a
second person, and that person may, in turn, influence another).

7. Trust Propagation – Influence moves along the graph. If nonvoter b has k edges to nodes influ-
encing it, and node a is influenced by b with k edges, then the edges to b can be replaced by edges
to the nodes influencing b.

Axiom 7. Trust Propagation: Consider recommendation system R, voting network
G(N,V+,V−,E), group C⊆ N, and nonvoters u,v ∈ N for which the edges leaving v (beside (u,v))
are (v,w1) . . .(v,wk) for some k ≥ 1. Suppose E contains k copies of (u,v), and we construct
E ′ = (E ∪{(u,w1), . . .(u,wk)}\{(u,v) · k}) and G′(N,V+,V−,E ′), then RG(C) = RG′(C).

8. Scale Invariance – Influence does not care about units. Duplicating a node’s outgoing edges (i.e.,
edges to the nodes influencing it) does not change a recommendation.

Axiom 8. Scale Invariance: For a voting network G(N,V+,V−,E), and a nonvoter u, the rec-
ommendations are identical for G′(N,V+,V−,E ∪E ′) where E ′ contains k copies of each of u’s
outgoing edges.

9. Proportional Inclusiveness – An external influence can be described as a group-member influ-
ence. A voter outside a group, connected directly to a nonvoter inside it, has an influence over
the group recommendation in proportion to its weight of influence on the nonvoter, and the non-
voter’s influence in the group. Therefore, the recommendation for a group would be the same as
for a group that includes also the voters influencing a nonvoter in the original group (with a few
adjustments to maintain relative power of group members, see Figure 3).
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-+- +
+

u

Figure 3: Example of applying proportional inclusiveness on u: The − node is now inside the group, but
since its weight on u’s recommendation was half the total of influences on u, the other nodes in the group
are duplicated accordingly.

Axiom 9. Proportional Inclusiveness: For a voting network G(N,V+,V−,E), a group C ⊆ N, a
nonvoter u ∈ C and voters v1, . . . ,vm ∈ V \C and vm+1, . . . ,vt ∈ C which are influencing it (i.e.,
(u,vi) ∈ E) then the following transformation retains recommendations: Let there be ki copies
of (u,vi) in E, and s edges (u,∗) in E (i.e., s = ∑

t
i=1 ki). For 1 ≤ j ≤ s we define N j = N \ {u}

and define N′ = ∪s
j=1N j ∪{vm+1}km+1 ∪ . . .∪{vt}kt . For each 1 ≤ i ≤ m we choose ki nodes of

type vi (there are s copies of these in N′), and mark them v1
i , . . . ,v

ki
i . For each N j we define

C j = C \ {u} and E j = E \ {(∗,u),(u,∗)} (no edges ingoing or outgoing from u), and tweak it a
little: For each c∈C such that there is an edge (c,u)∈E, we multiply s times each edge (c,∗)∈E j,
and add ki edges (c,vi) for 1 ≤ i ≤ t (excluding self, of course). We define E ′ = ∪s

j=1E j, and

C′ = ∪s
j=1Ci∪m

h=1∪
kh
r=1vr

h.
Now, for G′(N′,V ′+,V

′
−,E

′), RG(C) = RG′(C).

These axioms will prove to uniquely characterize a group variant of the random walk recommenda-
tion algorithm.

Proposition 1. Axioms 1−6 and axioms 1−3,7−9 (the sets we deal with) are all independent of one
another.

Proof. We list some odd mechanisms that are consistent with each 5 of our axioms, demonstrating the
necessity of each (we present here the main points of the odd mechanism – the complete version can be
constructed by using the other axioms). First, we begin with axioms 1–6.

• Anonymity: A mechanism that recommends + for every singleton.

• Positive response: A system for which if the group contains a nonvoter which is influenced by
both + and − nodes from outside the group, it is recommended 0.

• IIS: Except for star groups, all nodes outside a group are considered to be influencing all nodes
inside it.

• α-centripetal: All star groups are always recommended the opposite of the nodes inside the group
(so recommended − even in star groups consisting of arbitrarily large M of + voters, and one
nonvoter connected to a sole − voter).

• (β ,r)-centrifugal: All star groups are always recommended as their internal nodes (so recom-
mended + even in star groups consisting of one + voter, arbitrarily large M1 of nonvoters, each
connected to arbitrarily large M2 − voters.
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Figure 4: Internal consistency problem

• Internal consistency: Taking 3 nonvoters, 3 + voters, and a single − voter. Connecting each
nonvoter to a single + voter, and two of the nonvoters are also connected to the − voter (see
Figure 4). Our groups are made of the pairs of + voters with the nonvoters connected to them.
When we take a single pair, one that is also connected to the − voter, the recommendation is +.
Adding another pair that is not connected to the − voter, the recommendation is now −.

We now continue with axioms 1–3 and 7–9:
All examples given in appendix 1 of [5] for axioms 1–3 work. Hence, we just need to show for 7–9:

• Trust propagation: A group is recommended by summing for each vertex over number of + and
− nodes it is directly connected to.

• Scale invariance: A group is recommended by a random walk from each vertex in the group, but
to the relative influence of each edge is added the number of outgoing edges from the influencing
vertex.

• Proportional inclusiveness: A group ignores all outside influences – performs simple majority
on + and − nodes inside it.

5 An Impossiblity Result

When looking at the axioms detailed above, it is clear that axioms 1− 3 are imperative for any basic
social graph based recommendation system, whether it is an individual or a group one. However, when
expanding to group recommendation, one appreciates the goal that the nodes inside a group will have
some different – stronger – effect than those outside it, but that this effect will not be unbounded, so
outside information will not be completely ignored. Axioms 4 and 5 distill this goal in a most clear-cut
way (on star groups), being intentionally narrow and non-sweeping. To that we add axiom 6, which is
an intuitive and desirable consistency requirement.

However, these requirements are not compatible:

Theorem 1. No recommendation system satisfies axioms 1−6, i.e., is anonymous, positive responsive,
IIS, is internally consistent and is α-centripetal and (β ,r)-centrifugal for 1 < α,β < ∞, 0 < r < ∞.

Proof. First, we note that if the (β ,r)-centrifugal axiom uses an r /∈ N, then we shall use as r := dre.
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Our proof is constructed using 3 steps in which we build a graph, find a specific group in it, and show
that the axioms require it to both be recommended + and −, creating a contradiction.

Step 1: Build a graph
Since α > 1, there is some ` ∈ N for which `α − (`+ 2) ≥ 0. We define k as d β−1

α−1e+ ` and s as
bkαc. We now build the following graph, consisting of a star group containing k + voters (v1, . . . ,vk)
and k ·r nonvoters (u1, . . . ,ukr), and outside the star group are s ·k ·r − voters (t1, . . . , tskr), with each non-
voter connected to s ·r− voters (i.e., every nonvoter ui has the edges (ui, th) for h∈N, i≤ h≤ (i−1)+s).

Step 2: Build an indivisible positive set
We now wish to construct a set C which has no partition for which each part is recommended +. We

call our star group C̃, (with k + voters and kr nonvoters). According to the α-centripetal axiom, since
s ≤ k ·α for each nonvoter, C̃’s recommendation is +. We now seek to find the minimal + part of C̃
– suppose C̃ has a partition for which every part is recommended +. In at least one of these parts the
number of nonvoters exceeds (or is equal to) r times its number of voters, and we call it C̃′, and continue
the process. This process ends with a set C with a nonvoters and b + voters (b≤ rb≤ a≤ rk), for which
the recommendation system recommends +. We shall now show that according to the (β ,r)-centrifugal
axiom and internal consistency, it needs to be recommended −, causing a contradiction.

Step 3: Build a contradictory partition
We need to show a partition which results in every part being recommended −, and show that there

is no partition for which each part get recommended +. The latter is trivial thanks to the previous
minimization process – if there is such a partition, then the process has not ended yet. However, we can
partition C into a sets of one + voter and r nonvoters (possibly, some nonvoters end without any voter to
group them with – they are grouped apart). We shall now show that these sets need to be recommended
−, causing the contradiction.

Since + voters in the set are more heavily weighted that outside it, we can focus our proof just for
sets with r nonvoters and one voter, and that will suffice for the case of a lone nonvoter. Note that in these
sets our nonvoter is connected to one + voter in its set, k− 1 + and s − voters outside it. According
to the positive response axiom (number 2), we can remove one + and one − voters (when both do not
belong to the set) from each nonvoter without changing the recommendation. We are left with one +
voter connected to the nonvoter in the set, and s− (k− 1) − voters connected to the nonvoter. we now
wish to prove that s− k+1≥ β .

Due to k’s definition, we know

β −1+ `α− `

α−1
≤ k ≤β −1+(`+1)α− (`+1)

α−1
=

=
β +(`+1)α− (`+2)

α−1

Similarly, we know

s≥ α
β −1+ `α− `

α−1
−1 =

βα + `α2− (`+2)α +1
α−1

Hence:
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Figure 5: Original group (noted by light line) & its partition

s− k+1≥
βα + `α2− (`+2)α +1−β − (`+1)α +(`+2)+α−1

α−1
=

=
βα + `α2− (2`+2)α−β + `+2

α−1
=

=
(α−1)(β + `α− (`+2))

α−1
= β + `α− (`+2)

Thanks to our definition of `, this means s− k+1≥ β , hence the set is recommended −, reaching a
contradiction.

Example 2. Showcasing the proof’s main parts: Group of friends are constructed as in Figure 5: John,
Paul, George, Ringo and Yoko want to go to a restaurant together. John and Yoko have been there and
were extremely satisfied with it. However, all the rest of Paul, George and Ringo’s acquaintances have a
very negative view about the place.

Suppose α = 2, β = 2.5 and r = 1. According to α-centripetality, the recommendation should be
to go the restaurant. However, we can subdivide it into 3 groups (shown in Figure 5), which – using
positive response (axiom 2) and (β ,r)-centrifugality (axiom 5) – should each be advised not to go to the
restaurant.

6 A Recommendation System that Works

Due to the impossibility result above, we must, of course, give up some of those axioms. We cannot
eliminate axioms 1− 3, as they are fundamental to any social graph based recommendation system.
However, we replace axioms 4−6 with axioms 7−9, which, while they do not allow us the full power
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of the previous axioms, allow us to show that there is only a single group recommendation system which
satisfies them, giving us a potential candidate for a useful, practical system that can be implemented in
real-world systems.

Theorem 2. The group random-walk recommendation system is the only one which satisfies axioms
1−3 and 7−9, i.e., is anonymous, positive responsive, IIS, has trust propagation, scale invariance and
proportional inclusiveness.

Proof. We shall prove the theorem by looking at a voting system G(N,V+,V−,E), and looking at a spe-
cific group C ⊆ N. We will show what the axioms would force its recommendation to be – and that the
same recommendation would be made by the group random-walk recommendation system.

Part 1: Using the axioms
Suppose there is an undecided voter u ∈ N \C which is influenced by v1, . . . ,vm ∈ N (possibly for

some i 6= j vi = v j) and influences w1, . . . ,wt (again, possibly for some i 6= j wi = w j). According to
scale invariance, recommendations do not change if wi multiplies his connections by m. Now, using trust
propagation, wi connects directly to v1, . . . ,vm, and is no longer connected at all to u. As we do this for
all w1, . . . ,wt , when we finish, node u no longer influences any other vertex.

Performing these steps for every undecided voter u∈N \C which is influencing and being influenced,
we end up with the nodes in the group C either directly connected by an edge – and being influenced – to
voters or nonvoter sinks (i.e., nonvoters which are not influenced by others). Thanks to the IIS axiom, we
can ignore all vertices which are not in the same connected component as C. Note that this axiom also
means we can ignore all voters or nonvoter sinks which do not directly influence (with a single edge) any
node in the group.

Now, using proportional inclusiveness, we eliminate from C all nonvoters which are influenced by
voters, leaving in the group, at most, nonvoter sinks (all other members are voters), i.e., there are now y−
voters for −, y+ voters for + and y◦ nonvoter sinks. Suppose y◦ = 0 – from anonymity axiom we know
if y− = y+, recommendation is 0, and hence from the positive response axiom, the recommendation is
type(max(y−,y+)) (from the same axiom, that is also the recommendation if y◦ > 0).

Part 2: Using the recommendation system
Now we need to show that the procedure described above reaches the same recommendation as a

group random walk would recommend. This recommendation system, in effect, gives all members of C
the same weight (say, 1), and while voters put all their weight on their vote, nonvoters divide their weight
according to the random walk. Therefore, we shall show that the contribution of each voter and nonvoter
to the final tally is maintained by the changes we do to C in the procedure described above using the
axioms.

Furthermore, we note that scale invariance and trust propagation do not affect the result of a random
walk, hence we can examine the graph as it looks following our multiple applications of these two
axioms (just before we begin to apply proportional inclusiveness). Therefore, we need to show that
applying proportional inclusiveness does not change the weight in the group. If we manage to show
proportional inclusiveness does not change the recommendation of the group random-walk, since the
axiom’s application leaves us with a group consisting of voters only (and un-influencable nonvoters) we
can conduct a simple plurality between the votes, as both group random-walk and the procedure above
indicate should happen.

Let the nonvoter we apply proportional inclusiveness to be u, which is connected to the voters
v1, . . . ,vm /∈ C and to the nodes vm+1, . . . ,vt ∈ C to each with ki connections (we define s = ∑

t
i=1 ki).
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Figure 6: a: Initial state; b: Applying scale invariance and trust propagation

There are also the nodes vt+1, . . . ,vr ∈ C which are not connected to u. Notice that u’s “vote” in the
group random-walk system gives ki

s weight to vi, for 1≤ i≤ t.
Following an application of proportional inclusiveness, we now have s copies of vt+1, . . . ,vr in the

new C, and s+ ki copies of vi, m < i ≤ t. We also have s copies of vi, 1 ≤ i ≤ m, of which ki copies
are in C′, and we have s copies of any nodes which are not vi (1 ≤ i ≤ r), i.e., any node which was not
connected to u and not in C.

Let us focus on nonvoters in C \{u}. Each copy of the nonvoter is connected to the same nodes as it
was before, except for those which were connected to u. Each nonvoter random-walk recommendation
before proportional inclusiveness was giving equal weight to each of its connection, so that if a nonvoter
had w outgoing edges., hence 1

w weight was given to each node connected to it, including u. Therefore,
ki
s

1
w weight for each vi 1 ≤ i ≤ t (the nodes connected to u). Following proportional inclusiveness, the

nonvoter has w · s outgoing edges, the weight of each node it is connected to is s
ws =

1
w , except the nodes

vi (1 ≤ i ≤ t), the weight of which is ki
ws . Hence the random-walk recommendation for each nonvoter

remains the same.
The recommendation for the group C remains the same – prior to the proportional inclusiveness each

node received a weight of 1
|C| . Following the application of the axiom, |C′| = s(|C|−1)+ s = s|C|, and

each node c ∈ C such that c 6= vi (m+ 1 ≤ i ≤ t) now has the s copies, and as each copy has the same
recommendation of each single one, it contributes the weight of s

s|C| =
1
|C| . Each node connected to

nonvoter u contributed ki
s

1
|C| , and now each vi /∈ C contributes ki

s|C| , as there are ki copies of vi in C′ for

1 ≤ i ≤ m. vi ∈ C now contribute s+ki
s|C| , which is the same of vi’s contribution as a node of C and as a

component of u’s recommendation.
Therefore, each node which in the group random-walk would have an influence over the recommen-

dation maintains that level of influence after applying proportional inclusiveness. Multiple applications
of this axiom leaves us with a group consisting of purely voters and nonvoter sinks, which according to
the axioms leads to a plurality votes among voters, which is exactly the procedure followed by the group
random-walk in this case as well.

Example 3. Showcasing the proof’s main parts: We alter our example, now discussing Peter, Paul and
Mary, which are influenced as in Figure 6a.
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Using scale invariance and trust propagation, Gerald is no longer connected to Mary. Instead, her
attachment to his other influences doubled, and two new connections have been struck (Figure 6b).

Using the algorithm for our example means Peter contributes 1, Mary contributes 0, and Paul con-
tributes −2

5 , meaning the total outcome is still positive, and the restaurant will be recommended.

7 Discussion and Conclusions

The challenge of group recommendations has been evident in various online systems as companies strug-
gle to find a way to harness the vast information on people’s preferences they accumulate, in order to
provide better product recommendations for their users. Most activity in recommendation systems re-
search focus on the individual case, in which a recommendation is given to a single agent. But in many
cases, that is not a sufficient response: for example, when a group wishes to decide on a movie or
restaurant, when playing a joint game online, coordinating purchases, etc.

The approach proposed in this paper takes a different track than the common one of finding users
which resemble those requesting a recommendation and recommending something they found interest-
ing. Rather, we wish to leverage the social information contained in the social network – including both
the knowledge of the influences inside a group, as well as the influence of elements outside it on the is-
sues its participants find interest in. This knowledge, we believe, is probably more highly correlated not
just with what the group might like, but with what the group would even consider as a relevant option.

In this paper we approached the challenge of group recommendation using the axiomatic approach,
enabling certain insight that is not immediately obvious using other methods. We showed that several
desirable properties cannot coexist in a group recommendation system, even when we take very narrow,
minimalistic, requirements. However, we have been able to show an axiomatization of a variant of a
random-walk algorithm that works well on group recommendations. This recommendation system, we
believe, is a useful one, and can be used in various real-life settings.

Obviously, we believe future research should focus on developing further methods which utilize the
social graph to give more relevant and practical recommendations. This, in our view, is the key to better
systems, and ignoring the social context in which groups are formed is to leave out a significant part
of the challenge of satisfying users. Naturally, such a progression will include more complex models
including, for example, more than 2 possible recommendations.

Furthermore, we believe axiomatization of other recommendation systems may enhance the insight
into these methods, allowing better comparisons between the pros and cons of each system. This will
enable designers of various online systems to better understand how their choice of mechanism affects
the quality of recommendations for the users. Moreover, thinking of additional desired properties for
group recommendation systems might lead to new and novel recommendation systems that strive to
implement these properties. Our axioms are, in this regard, only a starting point for the community to
discuss and consider what are the desirable features of group recommendations.

Finally we note that while some of our desirable axioms were found to be overly restrictive, we
believe there still might be a way to include at least part of these axioms in future systems. This will
entail replacing one of them – we tend to believe that internal consistency is the “easiest” to let go of
– by other, more lenient ones. This may potentially allow to characterize the family of “pretty good”
group recommendation systems, providing further foundation for the design and implementation of such
mechanisms.
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[17] Jordi Palau, Miquel Montaner, Beatriz López & Josep Lluı́s de la Rosa (2004): Collaboration Analysis in
Recommender Systems Using Social Networks. In: Proceedings of 8th Cooperative Information Agents
International Workshop (CIA), Lecture Notes in Computer Science 3191, Erfurt, Germany, pp. 137–151,
doi:10.1007/978-3-540-30104-2 11.

[18] David M. Pennock, Eric Horvitz & C. Lee Giles (2000): Social Choice Theory and Recommender Systems:
Analysis of the Axiomatic Foundations of Collaborative Filtering. In: Proceedings of the 17th National
Conference on Artificial Intelligence (AAAI), Austin, Texas, pp. 729–734.

[19] Charles R. Plott (1976): Axiomatic Social Choice Theory: An Overview and Interpretation. American Journal
of Political Science 20(3), pp. 511–596, doi:10.2307/2110686.

[20] Paul Resnick & Hal R. Varian (1997): Recommender systems. Communications of the ACM 40(3), pp.
56–58, doi:10.1145/245108.245121.

[21] Paul Resnick & Richard Zeckhauser (2002): Trust Among Strangers in Internet Transactions: Empirical
Analysis of eBay’s Reputation System. In Michael R. Baye, editor: The Economics of the Internet and E-
commerce (Advances in Applied Microeconomics), 11, Emerald Group Publishing Limited, pp. 127–157,
doi:10.1016/S0278-0984(02)11030-3.

[22] Ola Rozenfeld & Moshe Tennenholtz (2009): Consistent Continuous Trust-Based Recommendation Systems.
In: Proceedings of the 5th Workshop on Internet and Network Economics (WINE), Rome, Italy, pp. 113–124,
doi:10.1007/978-3-642-10841-9 12.

[23] J. Ben Schafer, Joseph Konstan & John Riedi (1999): Recommender Systems in E-Commerce. In: Pro-
ceedings of the 1st ACM conference on Electronic Commerce (EC), Denver, Colorado, pp. 158–166,
doi:10.1145/336992.337035.

[24] Shunichi Seko, Takashi Yagi, Manabu Motegi & Shinyo Muto (2011): Group recommendation using
feature space representing behavioral tendency and power balance among members. In: Proceed-
ings of the 5th ACM conference on Recommender systems (RecSys), Chicago, Illinois, pp. 101–108,
doi:10.1145/2043932.2043953.

[25] Moshe Tennenholtz (2004): Reputation systems: an axiomatic approach. In: Proceedings of the 20th con-
ference on Uncertainty in Artificial Intelligence (UAI), Banff, Canada, pp. 544–551.

[26] Frank Edward Walter, Stefano Battiston & Frank Schweitzer (2008): A model of a trust-based recommenda-
tion system on a social network. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 16(1),
pp. 57–74, doi:10.1007/s10458-007-9021-x.

[27] Quan Yuan, Gao Cong & Chin-Yew Lin (2014): COM: a generative model for group recommendation. In:
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD), New York City, New York, pp. 163–172, doi:10.1145/2623330.2623616.

[28] Cheng Zhang, Mike Gartrell, Thomas P. Minka, Yordan Zaykov & John Guiver (2015): GroupBox: A gener-
ative model for group recommendation. Technical Report MSR-TR–2015-61, Microsoft Research.

http://dx.doi.org/10.1016/j.ijinfomgt.2009.09.006
http://dx.doi.org/10.1007/0-306-48019-0_11
http://dx.doi.org/10.1007/978-3-540-30104-2_11
http://dx.doi.org/10.2307/2110686
http://dx.doi.org/10.1145/245108.245121
http://dx.doi.org/10.1016/S0278-0984(02)11030-3
http://dx.doi.org/10.1007/978-3-642-10841-9_12
http://dx.doi.org/10.1145/336992.337035
http://dx.doi.org/10.1145/2043932.2043953
http://dx.doi.org/10.1007/s10458-007-9021-x
http://dx.doi.org/10.1145/2623330.2623616

	1 Introduction
	2 Related Work
	3 Preliminaries and Model Definitions
	4 The Axioms and their Motivation
	4.1 The Basic Axioms
	4.2 Group Power Axioms
	4.3 Influence Structure Axioms

	5 An Impossiblity Result
	6 A Recommendation System that Works
	7 Discussion and Conclusions

