
J. Lang (Ed.): TARK 2017
EPTCS 251, 2017, pp. 398–414, doi:10.4204/EPTCS.251.29

Optimizing Epistemic Model Checking Using Conditional
Independence (Extended Abstract) ∗

Ron van der Meyden
UNSW Sydney, Australia

meyden@cse.unsw.edu.au

This paper shows that conditional independence reasoning can be applied to optimize epistemic
model checking, in which one verifies that a model for a number of agents operating with imperfect
information satisfies a formula expressed in a modal multi-agent logic of knowledge. The optimiza-
tion has been implemented in the epistemic model checker MCK. The paper reports experimental
results demonstrating that it can yield multiple orders of magnitude performance improvements.

1 Introduction

Epistemic model checking [12] is a technique for the verification of information theoretic properties,
stated in terms of a modal logic of knowledge, in systems in which multiple agents operate with imperfect
information of their environment. It has been applied to settings that include diagnosis [6], and reasoning
in game-like settings [13, 14, 10], concurrent hardware protocols [3] and security protocols [1, 5, 21].

The contribution of the present paper is to demonstrate that conditional independence techniques
from the Bayesian Net literature [17, 23, 8] can be applied in the context of epistemic model checking.
We develop a generalization of these techniques for a multi-agent modal logic of knowledge, that enables
model checking computations for this logic to be optimized by reducing the number of variables that need
to be included in data structures used by the computation.

We have implemented the technique in the epistemic model checker MCK [12]. The technique de-
veloped can be applied for other semantics and algorithms, but we focus here on agents with synchronous
perfect recall and model check the reduced representation using binary decision diagram techniques. The
synchronous perfect recall semantics presents the most significant challenges to the computational cost
of epistemic model checking, since it leads to a rapid blowup in the number of variables that need to be
handled by the symbolic model checking algorithms.

The paper presents experimental results that demonstrate that the conditional independence opti-
mization yields very significant gains in the performance of epistemic model checking. Depending on
the example, the optimization yields a speedup as large as four orders of magnitude. Indeed, it can yield
linear growth rates in computation time on examples that otherwise display an exponential growth rate.
It adds significantly to the scale of the examples that can be analyzed in reasonable time, increasing both
the number of agents that can be handled, the length of their protocols, and the size of messages they
communicate.
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extended version of this paper with proofs and additional information is available at https://arxiv.org/abs/1610.03935.
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2 Background: Epistemic Logic

We begin by recalling some basic definitions from epistemic logic and epistemic model checking. We use
epistemic variable structures, a particular concrete representation of Kripke structures (it can be shown
that there is no loss of generality). We show how these structures arise in a multi-agent setting in which
each agent’s behaviour is described by a program.

Let V be a set of atomic propositions, which we also call variables. An assignment for a set of
variables V is a mapping α : V →{0,1}. We write assgt(V ) for the set of all assignments to variables V .
We denote the restriction of a function f : S→ T to a subset R of the domain S by f � R.

The syntax of epistemic logic for a set Agts of agents is given by the grammar

φ ::= p | ¬φ | φ ∧φ | Kiφ

where p ∈ V and i ∈ Agts. That is, the language is a modal propositional logic with a set of modalities
Ki, such that Kiφ means, intuitively, that the agent i knows that φ . We freely use common abbreviations
from propositional logic, e.g., we write φ1∨φ2 for ¬(¬φ1∧¬φ2) and φ1⇒ φ2 for ¬φ1∨φ2 and φ1⇔ φ2
for (φ1⇒ φ2)∧ (φ2⇒ φ1). We write vars(φ) for the set of variables occurring in the formula φ .

Define an epistemic variable structure over a set of variables V to be a tuple M = (A,O,V ) where
A ⊆ assgt(V ) and O = {Oi}i∈Agts is a collection of sets of variables Oi ⊆ V , one for each agent i. Intu-
itively, such a structure is an alternate representation of an epistemic Kripke structure, where the indis-
tinguishability relation for an agent is specified by means of a set of variables observable to the agent.
The elements of A correspond to the worlds of this Kripke structure. The relation ∼i on worlds for agent
i is defined by u∼i v when u � Oi = v � Oi.

The semantics of epistemic logic is given by a ternary relation M ,w |= φ , where M = (A,O,V )
is an epistemic variable structure, w ∈ A is a world of M , and φ is a formula. The definition is given
recursively, by

1. M ,w |= p if w(p) = 1, for p ∈V ,

2. M ,w |= ¬φ if not M ,w |= φ ,

3. M ,w |= φ1∧φ2 if M ,w |= φ1 and M ,w |= φ2,

4. M ,w |= Kiφ if M ,u |= φ for all worlds u ∈ A with w∼i u.

Intuitively, the clause for the operator Ki says that Kiφ holds when φ is true at all worlds that the agent
considers to be possible. We write M |= φ when M,w |= φ for all worlds w ∈W .

In the context of model checking, one is interested in analyzing a model represented as a program.
We now show how programs generate a Kripke structure that serves as their semantics. We work with a
very simple straightline programming language in which a multi-agent scenario is represented by each
of the agents running a protocol in the context of an environment. The syntax and operational semantics
of this language is shown in Figure 1.

Intuitively, all variables (represented by non-terminal v) in this fragment are boolean, and e represents
a boolean expression. Code C consists of a sequence of assignments and randomization statements
rand(v), which assign a random value to v. (In a probabilistic interpretation, the random value would
be drawn from a uniform distribution, but for our purposes in epistemic model checking, we interpret
this operation as nondeterministically selecting a value of either 0 or 1.) Non-terminal a represents
an atomic action, either the skip statement skip, or an atomic statement 〈C〉 consisting of code C that
executes without interference from code of other agents. An agent protocol P consists of a sequence of
atomic actions: protocol ε represents termination, and is treated as equivalent to skip;ε to capture that a
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e ::= v | ¬v | v∧ v | v∨ v | . . .
C ::= ε | v := e;C | rand(v);C
a ::= 〈C〉 | skip
P ::= ε | a;P
J ::= P || ... || P ∆ C

(s,v := e;C)→0 (s[e(s)/v],C) (s,skip;C)→0 (s,C)

(s,rand(v);C)→0 (s[0/v],C) (s,rand(v);C)→0 (s[1/v],C)

a1 = 〈C1〉 . . . an = 〈Cn〉 C =C1; . . . ;Cn;CE (s,C)→∗0 (t,ε)
(s, a1;P1 || . . . || an;Pn ∆ CE)→1 (t, P1 || . . . || Pn ∆ CE)

Figure 1: Syntax and Operational Semantics of Programs

terminated agent does nothing while other agents are still running. A joint protocol J, is represented by a
statement of the form P1 || . . . || Pn ∆ CE , and consists of a number of agent protocols P1, . . . ,Pn, running
in the context of an environment represented by code CE .

There are two relations in the operational semantics. States s are assignments of boolean variables to
boolean values, and we write e(s) for the value of boolean expression expression e in state s. The binary
relation→0 on configurations of type (s,C) represents zero-time state transitions, which do not change
the system clock. The binary relation →1 on configurations of type (s,J) represents state transitions
corresponding to a single clock tick. Thus, C→∗0 ε represents that code C runs to termination in time
0. In a single tick transition represented by→1, we take the next atomic action ai = 〈Ci〉 from each of
the agents, and compose the code Ci in these actions with the code from the environment CE to form
the code C =C1; . . .Cn;CE . The single step transition is obtained as the result of running this code C to
termination in zero-time.

A system is represented using this programming language by means of a tuple I = (J, I,Q), where
J is a joint protocol for n agents, I is a boolean formula expressing the initial condition, and Q is a tuple
of n sets of variables, with Qi representing the variables observable to agent i.

Given a maximum running time n, a system I = (J, I,Q) is associated to an epistemic variable
structure Mn(I ) = 〈A,O,V 〉 as follows. A run of length n of the system is a sequence of states r =
s0,s2, . . . ,sn, where s0 satisfies the initial condition I and (s0,J)→1 (s1,J1)→1 . . .→1 (sn,Jn) for some
J1, . . . ,Jn. If U is the set of variables appearing in J, we define V to be the set of timed variables, i.e., the
set of variables vt where 0≤ t ≤ n. We take A to be the set of assignments αr to variables V derived from
runs r by αr(vt) = st(v) when v ∈U and 0≤ t ≤ n. For the perfect recall semantics, which is our focus
in this paper, we define the observable variables Oi for agent i to be the set of timed variables vt where
v ∈ Qi and 0≤ t ≤ n.

3 Example: Dining Cryptographers

We illustrate epistemic model checking and the optimizations developed in this paper using Chaum’s
Dining Cryptographers Protocol [7], a security protocol whose aim is to achieve an anonymous broadcast.
This protocol, both in its basic form, as well as an extension that is more generally applicable, has
previously been analysed using epistemic model checking [21, 2]. Chaum introduces the protocol with
the following story:
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Three cryptographers are sitting down to dinner at their favourite restaurant. Their waiter
informs them that arrangements have been made with the maitre d’hotel for the bill to be
paid anonymously. One of the cryptographers might be paying for the dinner, or it might
have been NSA (U.S. National Security Agency). The three cryptographers respect each
other’s right to make an anonymous payment, but they wonder if NSA is paying. They
resolve their uncertainty fairly by carrying out the following protocol:
Each cryptographer flips an unbiased coin behind his menu, between him and the cryptogra-
pher on his right, so that only the two of them can see the outcome. Each cryptographer then
states aloud whether the two coins he can see–the one he flipped and the one his left-hand
neighbor flipped–fell on the same side or on different sides. If one of the cryptographers is
the payer, he states the opposite of what he sees. An odd number of differences uttered at the
table indicates that a cryptographer is paying; an even number indicates that NSA is paying
(assuming that the dinner was paid for only once). Yet if a cryptographer is paying, neither
of the other two learns anything from the utterances about which cryptographer it is.

The solution generalizes to any number n of cryptographers C0, . . . ,Cn−1 at the table. We may rep-
resent the protocol by means of the following program for cryptographer i, who is assumed to have
a boolean variable paidi that indicates whether (s)he is the payer. (The program starts running from
an initial state in which the constraint

∨
0≤i< j≤n−1¬(paidi ∧ paid j) is satisfied.) We write ⊕ for the

exclusive-or.

Ci:
Observed variables: paidi, coini, lefti, say0, . . . ,sayn−1
Protocol:

rand(coini) ;
lefti+1 mod n := coini ;
sayi := paidi⊕ coini⊕ lefti

All variables take boolean values. Each cryptographer is associated with a set of variables, whose values
they are able to observe at each moment of time. Note that a cryptographer may write to a variable that
they are not able to observe. In particular, Ci writes to the variable lefti+1 mod n that is observed only by
Ci+1 mod n.

We will work with dependency networks that show how the values of variables change over time.
The DC protocol runs for 4 ticks of the clock, (time 0 plus one tick for each step in the protocol), so we
have instances v0 . . .v3 of each variable v. Figure 2 shows the dependencies between these instances. The
figure is to be understood as follows: a variable vt takes a value that directly depends on the values of
the variables ut−1

1 . . .ut−1
n such that there is an edge from ut−1

j to vt . Additionally, there is a dependency
between the initial values paid0

i captured using a special variable pinit . (We give a more formal presen-
tation of such dependency structures below.) The observable variables for agent C0 have been indicated
by rectangles: timed variables inside these rectangles are observable to C0.

4 Valuation Algebra

Shenoy and Shafer [25, 27] have developed a general axiomatic formalism that captures the key proper-
ties that underpin the correctness of optimization methods used for a variety of uncertainty formalisms.
In particular, it has been shown that this formalism allows for a general explanation of variable elimina-
tion algorithms and the notion of conditional independence used in the Bayesian Network literature [17],
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Figure 2: Timed-variable dependency graph after program unfolding

and applies also in other contexts such as Spohn’s theory of ordinal conditional functions [28]. There is a
close connection also to ideas in database query optimization [20] and operations research [4]. We show
here that Shenoy and Shafer’s general axiomatic framework applies to epistemic model checking. This
will enable us to apply the variable elimination algorithm to derive techniques for optimizing epistemic
model checking.

We begin by presenting Shenoy and Shafer’s framework, following [16]. Let Vars be a set of vari-
ables, with each v ∈ Vars taking values in a set Ωv. For a set X of variables, the set ΩX = Πx∈X Ωx is
called the frame of X . Elements of ΩX are called configurations of X . In case X = /0, the set ΩX is
interpreted as {〈〉}, i.e., the set containing just the empty tuple. We write D for P(Vars).

A valuation algebra is a tuple 〈Φ,dom,e,⊗,↓〉, with components as follows. A state of information
is represented in valuation algebra by a primitive notion called a valuation. Component Φ is a set, the
set of all valuations, and dom is function from Φ to D. Intuitively, for each valuation s ∈ Φ, the domain
dom(s) is the set of variables that the information is about. For a set of variables X , we write ΦX for the
set of valuations s with dom(s) = X . Component e gives an element eX ∈ΦX for each X ∈D. A valuation
algebra also has two operations⊗ : Φ×Φ→Φ (combination) and ↓: Φ×D→Φ (marginalization), with
⊗, intuitively, representing the combination of two pieces of information, and ↓ used to restrict a piece of
information to a given set of variables. Both are written as infix operators. From marginalization, another
operator − : Φ×Vars→Φ called variable elimination can be defined, by s−x = s ↓ (dom(s)\{x}).

These operations are required to satisfy the following conditions:

VA1. Semigroup. ⊗ is associative and commutative. For all X ∈ D and all s ∈ ΦX , we have s⊗ eX =
eX ⊗ s = s.
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VA2. Domain of combination. For all s, t ∈Φ, dom(s⊗ t) = dom(s)∪dom(t).

VA3. Marginalization. For s ∈Φ and X ,Y ∈ D, the following hold:
s ↓ X = s ↓ X ∩dom(s) dom(s ↓ X) = X ∩dom(s) s ↓ dom(s) = s .

VA4. Transitivity of marginalization. For s ∈Φ, and X ⊆ Y ⊆ Vars,
(s ↓ Y ) ↓ X = s ↓ X .

VA5. Distributivity of marginalization over combination. For s, t ∈Φ, with dom(s)=X , we have (s⊗t) ↓
X = s⊗ (t ↓ X) .

VA6. Neutrality. For X ,Y ∈ D, eX ⊗ eY = eX∪Y .

A key result that follows from these axioms, called the Fusion Algorithm [26], exploits Distributivity
of Elimination over Combination to give a way of computing the result of a marginalization operation
applied to a sequence of combinations, by pushing in variable eliminations over elements of the combi-
nation that do not contain the variable.

For a finite set S = {s1,s2, . . . ,sk} ⊆Φ, write ⊗S for s1⊗ s2⊗ . . .⊗ sk. We define the fusion of S via
x ∈ Vars to be the set Fusx(S) = {(⊗S+)−x}∪S− where we have partitioned S as S+∪S−, such that S+
is the set of s ∈ S with x ∈ dom(s), and S− is the set of s ∈ S with x 6∈ dom(s). That is, in the fusion of the
set S with respect to x, we combine all the valuations with x in their domain, and then eliminate x, and
preserve all valuations with x not in their domain.

Suppose we are interested in computing (⊗S) ↓ X , for S a finite set of valuations, and X ⊆ Vars. The
Fusion Algorithm achieves this by repeatedly applying the fusion operation, using some ordering of the
variables in X . We write dom(S) for dom(⊗S) =

⋃
{dom(s) | s ∈ S}

Theorem 1 ([26]) Let S be a finite set of valuations, and X ⊆Vars. Suppose dom(S)\X = {x1,x2, . . . ,xn}.
Then (⊗S) ↓ X =⊗Fusxn(. . .(Fusx1(S))) .

Each ordering of the variables x1 . . .xn gives a different way to compute (⊗S) ↓ X . A well chosen
order can yield a significant optimization of the computation, by keeping the domains of the intermediate
valuations in the sequence of fusions small. Finding an optimal order may be computationally complex,
but there exist heuristics that produce good orders in practice [22, 18].

We now show that the relational structures that underly Kripke structures are associated with alge-
braic operations that satisfy the conditions VA1-VA6. It will follow from this that the Fusion algorithm
can be applied to these structures.

Let V be the set of all variables. Values in the algebra will be relational structures of the form
s = (A,V ), where V ⊆ V and A ⊆ assgt(V ). The domain of a relational structure is defined to be its
set of variables, i.e. if s = (A,V ) then dom(s) = V . We define the identities eX and operations ⊗ of
combination and ↓ of marginalization as follows. Let s1 = (A1,V1) and s2 = (A2,V2) and X ⊆ V . Then

• eX = (assgt(X),X),

• s1⊗ s2 = (A,V ) where V = V1 ∪V2, and A ⊆ assgt(V ) is defined by α ∈ A iff α � V1 ∈ A1 and
α �V2 ∈ A2.

• s1 ↓ X = (A,V ) where V =V1∩X , and A = {α � X | α ∈ A1}.
To use terminology from relational databases, s1⊗ s2 is the join of relations and s ↓ X is the projection of
the relation s onto attributes X . The following result is straightforward; these properties are well-known
for relational algebra.

Proposition 1 The algebra of relational structures satisfies axioms VA1-VA6.
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We may extend the operation of marginalization in this valuation algebra to epistemic variable struc-
tures as follows. If M = (A,O,V ) is an epistemic variable structure and X ⊆ V , we define M ↓ X =
(A′,O′,V ′) where A′ = {α � X | α ∈ A} and O′i = Oi ∩X for all i ∈ Agts and V ′ = V ∩X . In general,
this operation results in agents losing information, since their knowledge is based on the observation of
fewer variables. Below, we identify conditions where knowledge is preserved by this operation.

5 Conditional Independence and Directed Graphs

Let X ,Y,Z ⊆ V be sets of variables. The notion of conditional independence expresses a generalized
type of independency relation. Variables X are said to be conditionally independent of Y , given Z, if,
intuitively, once the values of Z are known, the values of Y are unrelated to the values of X , so that neither
X not Y gives any information about the other. This intuition can be formalized for both probabilistic
and discrete models. The following definition gives a discrete interpretation, related to the notion of
embedded multivalued dependencies from database theory [11].

Definition 1 Let A ⊆ assgt(V ) be a set of assignments over variables V and let X ,Y,Z ⊆ V . We say
that A satisfies the conditional independency X⊥Y |Z, and write A |= X⊥Y |Z, if for every pair of worlds
u,v ∈ A with u � Z = v � Z, there exists w ∈ A with w � X ∪Z = u � X ∪Z and w � Y ∪Z = v � Y ∪Z. For
an epistemic variable structure M = (A,O,V ), we write M |= X⊥Y |Z if A |= X⊥Y |Z.

Conditional independencies can be deduced from graphical representations of models. Such rep-
resentations have been used in the literature on Bayesian Nets [23, 17], and have also been applied in
propositional reasoning [8, 9]. The following presentation is similar to [8] except that we work with
relations over arbitrary domains rather than propositional formulas.

The notion of d-separation [23] provides a way to derive a set of independency statements from
a directed graph G. We present here an equivalent formulation from [19], that uses the notion of the
moralized graph Gm of a directed graph G. The graph Gm is defined to be the undirected graph obtained
from G by first adding an edge u− v for each pair u,v of vertices that have a common child (i.e. such
that there exists w with u→ w and v→ w), and then replacing all directed edges with undirected edges.
The set of parents of a node u is defined to be the set pa(v) = {u ∈ V | u→ v}. For a set of vertices X
of the directed graph G, we write An(X) for the set of all vertices v that are ancestors of some vertex x in
X (i.e., such that there exists a directed path from v to x). For a subset X of the set of vertices of graph
G = (V,E), we define the restriction of G to X to be the graph GX = (V ∩X ,{(u,v) ∈ E | u,v ∈ X}).
For disjoint sets X ,Y,Z, we then have that X is d-separated from Y by Z if all paths from X to Y in
(GAn(X∪Y∪Z))

m include a vertex in Z.
A structured model for a valuation algebra 〈Φ,dom,e,⊗,↓〉 over variables Vars, is a tuple M =

〈V,E,S 〉 where V ⊆ Vars is a set of variables, component E is a binary relation on V such that GM =
(V,E) is a dag, and S = {sv}v∈V is a collection of values in Φ such that for each variable v ∈V , we have

• dom(sv) = {v}∪pa(v), i.e. the domain of sv consists of v and its parents in the dag,

• sv ↓ pa(v) = epa(v).

Intuitively, the second constraint says that the relation sv does not constrain the parents of v: for each
assignment of values to the parents of v, there is at least one value of v that is consistent.

The following is a consequence of results in [23, 19, 29].

Proposition 2 Suppose that M = 〈V,E,S 〉 is a structured model and X ,Y,Z are disjoint subsets of the
vertices V of the directed graph G = (V,E). If X is d-separated from Y by Z, then ⊗S |= X⊥Y |Z.
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Structured models have an additional property that provides an optimization when eliminating vari-
ables: if a leaf node is one of the variables eliminated from the combination of the nodes of the graph,
then it can be removed from the model without changing the result. This is captured in the following
result.

Proposition 3 Suppose that M = 〈V,E,S 〉 is a structured model, let X ⊆V and let v ∈V \X be a leaf
node. Then ⊗S ↓ X =⊗(S \{sv}) ↓ X.

To apply these results for structured models to model checking epistemic logic, we use the following
definition. We say that a structured model M = 〈V,E,S 〉 represents the worlds of an epistemic variable
structure M = (A,O,U) if V = U and A = ⊗S . That is, the structured model captures the set of
assignments making up the epistemic variable structure.

Consider the following formulation of the model checking problem: for an epistemic formula φ , we
wish to verify M |= φ where M = (A,O,V ) is an epistemic variable structure with observable variables
O, with worlds represented by a structured model M = 〈V,E,S 〉.

A first idea for how to optimize this verification problem is to reduce the structure M to the set
of variables vars(φ), together with the sets Oi for any operator Ki in φ . In fact, using the notion of
conditional dependence, it is often possible to identify a smaller set of variables that suffices to verify
the formula. The intuition for this is that some of the observed variables in Oi may be independent of
the variables in the formula, and moreover, information may be redundantly encoded in the observable
variables. The following definitions strengthen the idea of restricting to vars(φ)∪O by exploiting a
sufficient condition for the removal of observable variables.

Say that κ is a relevance function for a formula φ with respect to an epistemic variable structure
M = (A,O,V ) if it maps subformulas of φ to subsets of the set of variables V , and satisfies the following
conditions:

1. κ(p) = {p} for p ∈V ,

2. κ(φ1∧φ2) = κ(φ1)∪κ(φ2),

3. κ(¬φ1) = κ(φ1), and

4. κ(Kiφ1) =Ui∪κ(φ1), for some Ui ⊆Oi with κ(φ1)∩Oi ⊆Ui and M |= (κ(φ1)\Ui)⊥(Oi \Ui)|Ui.

In the final condition, Ui can be any set. We note that a set Ui satisfying the condition can always be
found. For, if we take Ui =Oi, then the condition states that κ(φ1)∩Oi⊆Oi and M |= (κ(φ1)\Oi)⊥ /0|Oi.
Both parts of this statement are trivially true. In practice, we will want to choose Ui to be as small as
possible, since this will lead to stronger optimizations.1

Note that φ is a subformula of itself, so in the domain of κ . The following result says that satisfaction
of φ is preserved when we marginalize to a superset of κ(φ) for a relevance function κ .

Theorem 2 Suppose that κ is a relevance function for φ with respect to epistemic variable structure
M and that X is a set of variables with κ(φ) ⊆ X ⊆ dom(M ). Then for all worlds w of M , we have
M ,w |= φ iff M ↓ X ,w � X |= φ .

Computing κ(φ): The definition of κ provides a recursive definition by which κ(φ) can be calcu-
lated, with the exception that the case κ(Ki(φ)) =Ui∪κ(φ) allows for a choice of the set Ui, subject to
the conditions κ(φ)∩Oi ⊆Ui and M |= (κ(φ) \Ui)⊥(Oi \Ui)|Ui. When the worlds of M are repre-
sented by a structured relational model M, we show how to construct the minimal set Ui satisfying the

1Since (A\C)⊥(B\C)|C is equivalent to A⊥B|C, the independence condition could be more simply stated as κ(φ1)⊥Oi|Ui.
We work with the more complicated version because the algorithm for d-separation assumes disjoint sets.
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stronger conditions that κ(φ)∩Oi ⊆Ui and Ui d-separates κ(φ)\Ui from Oi \Ui in the directed graph G
associated with M.

Note (κ(φ)\Ui)∪ (Oi \Ui)∪Ui = κ(φ)∪Oi for any set Ui. Thus, the d-separation properties we are
interested in are computed in the moralized graph H = (GAn(Oi∪κ(φ)))

m, which is independent of Ui. Let
U be the set of vertices v ∈ Oi such that there exists a path in H from a vertex u ∈ κ(φ) \Oi to v, with
v the first vertex on that path that is in Oi. The set U can be constructed in linear time by a depth first
search from κ(φ)\Oi. Take W =U ∪ (κ(φ)∩Oi).

Proposition 4 W is the smallest set satisfying the strengthened conditions for Ui.

Unfolding a program into a structured model tends to create a large number of timed variable in-
stances whose associated value represents an equality between two variables. Such instances can be
eliminated by a simple transformation of the structured model.

For an assignment α with domain V , define α[y/x] to be the assignment α ′ with domain (V \{x})∪
{y}with α(y) =α ′(x) and α � (dom(s)\{x}) =α ′ � (dom(s)\{x}). For a relational value s and variables
x,y with x ∈ dom(s) and y 6∈ dom(s), define s[y/x] to be the relational value t with dom(t) = (dom(s) \
{x})∪{y}, consisting of all assignments α[y/x] for α ∈ s. Intuitively, this is simply the relation s with
variable x renamed to y.

We extend this definition to structured relational models M = (V,E,S ) with x,y ∈ V , by defining
M[y/x] = (V ′,E ′,S ′) with V ′ = V \ {x}, and E ′ = E ∩ (V ′×V ′), and S = {s′v | v ∈ V ′}, where s′v =
sv[y/x]. In the following result, we write δx,y for the set of assignments α with domain {x,y} and
α(x) = α(y).

Proposition 5 Suppose that M = (V,E,S ) is a structured relational model with x,y ∈V , and Ωx = Ωy,
and pa(y) = {x} and sy = δx,y. Let M[y/x] = (V ′,E ′,S ′). Then ⊗S ′ = (⊗S ) ↓V ′.

The definition furthermore extends to epistemic models M = (A,O,V ) with worlds represented by a
structured relational model M = (V,E,S ). Let M[y/x] = (V ′,E ′,S ′). We define M [x/y] = (A′,O′,V ′)
where O′ = {O′i}i∈Agts where O′i = Oi ∪{y | x ∈ Oi} for each i ∈ Agts, and A′ = ⊗S ′. Note that O′i
additionally makes variable y visible to agent i if x was visible to i, in case this variable was not originally
visible.

Proposition 6 If Ωx = Ωy, and pa(y) = {x} and sy = {(x : a,y : a) | a ∈ Ωx} then M ,α |= φ iff
M [y/x],α[y/x] |= φ [y/x].

The overall optimized procedure for model checking that we obtain from the above results uses the
following steps:

1. We first unfold a program representation of the model into a structured relational model with
symbolically represented values and transform the query into a form that uses the timed instances
variables in place of the original variables. This can be done in a way that builds in the equality
optimization.

2. We compute κ(φ) using the algorithm above.

3. We compute a symbolic representation of M � κ(φ), using the leaf node elimination optimization.

4. We compute M � κ(φ) |= φ in this representation using a symbolic model checking algorithm.
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Figure 3: Dining Cryptographers dependency graph after optimization

6 Example

In the present section, we illustrate this procedure on the Dining cryptographers protocol. We consider
the formula

φ = (¬paid0⇒ K0(¬paid1∧¬paid2)∨ (K0(paid1∨paid1)∧¬K0paid1∧¬K0paid2)

evaluated at time 3. The dependency graph for the protocol was given above in Figure 2. Figure 3
indicates the dependency graph that remains after we have applied the optimization procedure. The
resulting formula is

φ2 = (¬paid0
0⇒ K0(¬paid0

1∧¬paid0
2)∨ (K0(paid0

1∨paid0
1)∧¬K0paid0

1∧¬K0paid0
2)

From the point of model checking complexity, we expect that the simplification of the dependency
graph will result in significant improved performance of the model checking computation. For n cryp-
tographers, the initial dependency graph (Figure 2 for n = 3) has 16n variables, i.e., 48 variables in case
n = 3. The algorithm of van der Meyden and Su [21] would construct a BDD with over 12+ 4n vari-
ables in general, and, as show in Figure 4, with 24 variables in case n = 3. However, the algorithm uses
an intermediate BDD representation of the transition relation of the protocol that requires 8n variables.
Instead, the optimization approach developed here computes a BDD over just 9 variables in case n = 3
and 3n variables in general. The actual model checking computation combines BDD’s associated with
each node to construct a BDD over the same number of variables. Since in practice, BDD algorithms
work for numbers of variables in the order of 100-200, these reductions of the constant factor can have a
significant impact on the scale of the problems that can be solved.

7 Experimental Results

In the present section, we describe the results of a number of experiments designed to evaluate the per-
formance of epistemic model checking using the conditional independence optimization, in comparison
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Figure 4: Timed-variables used in algorithm of van der Meyden and Su.

with the existing implementation in MCK. (Since MCK remains the only symbolic epistemic model
checker that deals with perfect recall knowledge, there are no other systems to compare to.) All experi-
ments were conducted on an Intel 2.8 GHz Intel Core i5 processor with 8 GB 1600 MHz DDR3 memory
running Mac OSX 10.10.

Except where indicated, the unoptimized model checking algorithm against which we compare is that
invoked by the construct spec_spr_xn in the MCK scripting language, which implements the algorithm
of van der Meyden and Su [21]. (We refer to this algorithm as xn in legends, and the algorithm using
conditional independence optimization is referenced as ci.) The results demonstrate both significant
speedups of as large as four orders of magnitude, as well as a significant increase in the scale of problem
that can be handled in a given amount of time.

Dining Cryptographers: Our first example is the Dining Cryptographers protocol [7], discussed
above. It was first model checked using epistemic logic in [21]. This example scales by the number n
of agents; the number of state variables is O(n), and the protocol runs for 3 steps. The initial condition
needs to say that at most one of the agents paid – this is done by means of a formula of size O(n2). The
rest of the script scales linearly. The formula in all instances states that at time 3, agent C0 either knows
that no agent pays, knows that C0 is the payer, or knows that one of the other agents is the payer, but
does not know which. This involves O(n) atomic propositions, and is of linear size in n.

Performance results for model checking the Dining Cryptographers protocol running on a ring with
n agents are shown in Figure 5(a). There is a rapid blowup as the number of agents is increased: 12
agents already takes over 46 minutes (2775 seconds). By contrast, applying the conditional independence
optimization, model checking is significantly more efficient, as shown by the plot in Figure 5(b). The
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(a)
n 3 4 5 6 7 8 9 10 11 12

xn 0.1 0.16 0.37 0.65 1.34 2.52 37.92 33.5 846.19 2775.4

(b)

Figure 5: Dining Cryptographers experiments, (a) unoptimized running times (s) and (b) optimized
running times (s)

case of 12 agents is handled in 0.05 seconds, and 100 agents are handled in 9.69 seconds.
One-time Pad: The next example concerns message transmission using one-time pad encryption in

the presence of an eavesdropper. Each instance has three agents (Alice, who sends an encrypted message
to Bob, and Eve, who taps the wire). We scale the example by the length of the message, which is sent
one bit at a time. For a message of length n, states have O(n) variables. The protocol runs 2n steps,
two for each bit. The formula is evaluated at time 2n, and says that Eve does not learn the value of the
first bit. For this example, we found that the best performance for the unoptimized version was obtained
using MCK version 0.5.1, which used a different symbolic encoding of the transition relation from more
recent versions. Performance of model checking is shown in Table 1.

The running times for the optimized version grow very slowly. Intuitively, the conditional indepen-
dence optimization detects in this example that the first bit and the others are independent, and uses this
to optimize the model checking computation. This means that for all n, the ultimate BDD model check-
ing computation is performed on the same model for all n, and the primary running time cost lies in the
generation of the dependence graph, and its analysis, that precedes the BDD computation. On the other
hand, the unoptimized (xn) model checking running times show significant growth, with a large spike
towards the end, where the speedup obtained from the optimization is over 10,000 times.

Oblivious Transfer: The next example concerns an oblivious transfer protocol due to Rivest [24],
which allows Bob to learn exactly one of Alice’s two messages m0,m1, of his choice, without Alice
knowing which message was chosen by Bob. Each instance has two agents, and we scale by the length
of the message. For a message of length n, states have O(n) variables. We consider two formulas for this
protocol. Both are evaluated at time 3 in all instances.

The first formula says that if Bob chose to receive message m1, then he does not learn the first bit
of m0. The running times for model checking this formula are given in Table 2(a). In this example,
the conditional independence optimization gives a significant speedup, in the range of one to two orders
of magnitude (more precisely, 12 to 221) improvement on the inputs considered, and increasing as the
scale of the problem increases. Running just the optimized version on larger instances, we find that the
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n ci (s) xn (s) xn/ci
11 0.02 1.25 63
12 0.02 1.38 69
13 0.02 2.04 102
14 0.02 2.19 110
15 0.02 3.98 199
16 0.03 5.50 183
17 0.03 5.01 167
18 0.03 5.47 182
19 0.03 7.24 241
20 0.04 9.71 243

n ci (s) xn (s) xn/ci
21 0.04 8.42 211
22 0.04 8.82 221
23 0.04 11.10 278
24 0.04 17.88 447
25 0.04 36.68 917
26 0.04 33.26 832
27 0.05 23.60 472
28 0.05 34.88 698
29 0.05 99.50 1990
30 0.05 50.10 1002

n ci (s) xn (s) xn/ci
31 0.05 75.13 1503
32 0.05 67.37 1347
33 0.06 97.23 1621
34 0.06 184.19 3070
35 0.06 89.47 1491
36 0.07 131.74 1882
37 0.07 164.76 2354
38 0.07 259.48 3707
39 0.07 275.87 3941
40 0.07 749.88 10713

Table 1: One-time pad protocol, optimized and unoptimized running times, and speedup ratio, “single-
bit” formula

optimization allows us to handle significantly larger instances: up to 97 agents can be handled in under
200 seconds, compared with 19 agents in 170 seconds unoptimized.

An example in which the optimization does not always yield a performance improvement arises
when we change the formula model checked in this example to one that states that if Bob chose to
receive m1, then he does not learn the value of any bit of m0. The running times are shown in Table 2(b).
Here, the optimization initially gives a speedup of roughly one order of magnitude, but on the three
largest examples, the performance of the unoptimized algorithm is better by a factor of two. The lower
size of the initial speedup, compared to the first formula, can be explained from the fact that there are
obviously fewer variables that are independent of the second formula, since the formula itself contains
more variables. (The “all bits” formula contains O(n) rather than just one variable explicitly, but recall
that knowledge operators implicitly introduce more variables, so the “first bit” formula implicitly has
O(n) variables.) It is not immediately clear exactly what accounts for the switchover.

Message Transmission: The next example concerns the transmission of a single bit message across
a channel that is guaranteed to deliver it, but with uncertain delay. This example has two agents Alice
and Bob , and runs for n+ 1 steps, where n is the maximum delay. States have O(n) variables. The
formula considered asserts at time n+1 that Alice knows that Bob knows ... (nested five levels) that the
message has arrived. Because of the nesting, the algorithm used in the unoptimized case is that invoked
by the MCK construct spec_spr_nested – this essentially performs BDD-based model checking in a
structure in which the worlds are runs of length equal to the maximum time relevant to the formula.

Table 3(a) compares the performance of the conditional independence optimization with this algo-
rithm. The degree of optimization obtained is significant, increasing to over four orders of magnitude.
Running just the optimization for larger instances, we find that the optimization enables significantly
larger instances to be handled in a given amount of time: as many as 65 agents in 342 seconds, compared
to just 16 agents in 360 seconds for the unoptimized version.

Chaum’s two-phase protocol: The final example we consider is Chaum’s two-phase protocol [7],
a protocol for anonymous broadcast that uses multiple rounds of the Dining Cryptographers protocol.
Model checking of this protocol has previously been addressed in [1]. This example scales by both the
number of agents and the number of steps of the protocol: with n agents, the protocol runs for O(n)
steps, and each state is comprised of O(n) variables. We check a formula with O(n) variables that says
that the first agent has a bit rcvd1 set to true at the end of the protocol iff it knows that some other agent
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n ci (s) xn (s) xn/ci
3 0.02 0.24 12
4 0.03 0.52 17
5 0.05 0.90 18
6 0.07 1.80 26
7 0.11 2.24 20
8 0.14 3.54 25
9 0.15 4.97 33
10 0.16 7.20 45
11 0.21 13.08 62
12 0.26 16.68 64
13 0.32 32.72 102
14 0.39 62.08 159
15 0.43 50.95 118
16 0.50 36.73 73
17 0.60 38.36 64
18 0.71 69.27 98
19 0.77 170.16 221
20 1.09 148.56 136

n ci (s) xn (s) xn/ci
3 0.03 0.25 8.3
4 0.05 0.51 10.2
5 0.12 0.86 7.2
6 0.15 1.58 10.5
7 0.25 2.84 11.4
8 0.42 3.52 8.4
9 0.50 5.11 10.2

10 0.55 7.79 14.2
11 1.18 13.07 11.1
12 3.72 14.63 3.9
13 5.20 39.74 7.6
14 7.13 48.64 6.8
15 4.91 56.62 11.5
16 20.16 38.09 1.9
17 32.95 42.40 1.3
18 174.96 86.81 0.5
19 229.85 96.86 0.4
20 342.40 184.08 0.5

(a) (b)

Table 2: Rivest’s Oblivious Transfer Protocol, (a) “single-bit” formula, (b) “all bits” formula

n ci (s) nested(s) nested/ci
3 0.01 0.02 2
4 0.01 0.03 3
5 0.01 0.04 4
6 0.01 0.06 6
7 0.01 0.11 11
8 0.02 0.20 10
9 0.03 0.46 15
10 0.03 1.05 35
11 0.05 2.44 49
12 0.07 5.69 81
13 0.09 14.5 161
14 0.12 34.77 290
15 0.16 89.31 558
16 0.20 360.3 1802
17 0.27 1597.91 5918

n ci (s) xn (s)
3 0.04 0.79
4 0.11 96.47
5 0.49 > 2 hrs
6 2.46 -
7 12.93 -
8 155.41 -
9 > 2hrs -

(a) (b)

Table 3: (a) Message Transmission Protocol, (b) Chaum’s two-phase protocol.
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is trying to send bit 1. The protocol is more complex than the others considered above. An initial set of
n “booking” rounds of the Dining Cryptographers protocol is used to anonymously attempt to book one
of n slots, and this is followed by n “slot” rounds of the Dining Cryptographers protocol, in which an
agent who has booked a slot without detecting a collision with another agent’s booking, uses that slot to
attempt to broadcast a message. Because undetected booking collisions remain possible, collisions might
also be detected in the second phase. Because of the complexity of the protocol, this example can only
be model checked on small instances in reasonable time, even with the optimization. Table 3(b) shows
the running times obtained: for the unoptimized version, we again used MCK-0.5.1. The running time
of the unoptimized computation explodes at n = 5 as we increase the number of agents. The optimized
computation takes significantly less time, but also eventually explodes, at n = 9. Thus, the optimization
has doubled the size of the problem that can be handled in reasonable time.

8 Related Work and Conclusion

We conclude with a discussion of some related work and future directions.
Wilson and Mengin [30] have previously related modal logic to valuation algebra, but their definition

requires that the marginalization of a Kripke structure have exactly the same set of worlds and equiv-
alence relation, and merely restricts the assignment at each world, so their approach does not give the
optimization that we have developed, and a model checking approach based on it would be less efficient
than that developed in the present paper. They do not discuss conditional independence, which is a key
part of our approach.

Also related are probabilistic programs, a type of program containing probabilistic choice statements,
that sample from a specified distribution. The semantics of such programs is that they generate a prob-
ability distribution over the outputs. These programs may contain statements of the form observe(φ)
where φ is a boolean condition: these are interpreted as conditioning the distribution constructed to that
point on the condition φ . Hur et al. [15] develop an approach to slicing probabilistic programs based on
a static analysis that incorporates ideas from the Bayesian net literature. There are several differences
between probabilistic programs and our work in this paper. One is that we deal with discrete knowledge
rather than probability – in general, this makes our model checking problem more tractable. We also
reason about all possible sequences of observations, rather than one particular sequence of observations.
Additionally, we allow observations by multiple agents rather than just one. Finally, via knowledge op-
erators, we have a locus of reference to observations in our framework that is located in formulas rather
than inside the program – this enables us to ask multiple questions about a program without changing the
code, whereas in probabilistic programs, one would need to handle this by multiple distinct modifications
of the code.

The results of the present paper concern formulas that refer (directly and through knowledge opera-
tors) only to a specific time. Our approach, however, can be easily extended by means of a straightforward
transformation to formulas that talk about multiple time points, and we intend to implement this exten-
sion in future work. The technique we have developed can also be extended to deal with multi-agent
models based on programs taking probabilistic transitions, which MCK already supports. Formulas in
this extension would include operators that talk about an agent’s subjective probability, given what it has
observed.

Other extensions we intend to implement are to enrich the range of knowledge semantics beyond the
synchronous perfect recall semantics treated in this paper: essentially the same techniques will apply
to the clock semantics (in which an agent’s knowledge is based on just its current observation and the
current time). The observational semantics, in which the agent’s knowledge is based just on its current
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observation, will be more challenging, since it is asynchronous, and knowledge formulas may refer to
times arbitrarily far into the future.
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