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We offer a simple graphical representation for proofs of intuitionistic logic, which is inspired by
proof nets and interaction nets (two formalisms originating in linear logic). This graphical calculus
of proofs inherits good features from each, but is not constrained by them. By the Curry-Howard
isomorphism, the representation applies equally to the lambda calculus, offering an alternative dia-
grammatic representation of functional computations.
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1 Introduction

There are many different ways to write proofs in a given logic, for instance, natural deduction, sequent
calculus and Hilbert systems are well-known proof systems (we refer the reader to [10] for details).
Each syntax has advantages and disadvantages. For example,classical logic works well in sequent
calculus because it allows the symmetry of the connectives to be seen; a natural deduction presentation of
classical logic is considered artificial since rules are needed which do not correspond to the introduction
or elimination of a connective. Intuitionistic logic, which links exceptionally well with computation,
works better in natural deduction, where proofs correspondto programs and there is a notion of canonical
proof (which is not the case in sequent calculus).

In this paper we focus on intuitionistic logic, and we aim at designing a syntax that can both

• facilitate the visualisation and understanding of proofs,and

• serve as a basis for the implementation of the simplificationrules in the logic.

We choose intuitionistic logic as a basis for this work because of the computational significance of the
logic through the Curry-Howard isomorphism: proofs in thislogic correspond to functional programs;
logic formulas correspond to types of programs; and proof normalisation corresponds to computation.
Thus we are not looking for a visual representation oftruth, but rather that of aproof. Furthermore, we
are not interested in just representing logics, but also in studying the reduction process (normalisation)
which corresponds to computation through the Curry-Howardisomorphism.

Linear logic [8] comes equipped with a graphical syntax called proof nets. One of the motivations
for the adoption of a graphical syntax is that traditional syntaxes for logic, such as the sequent calculus,
have a lot of constraints to do with the formalism—and not with the logic. To illustrate this, we borrow
a well-known example from Girard [9]. Let(r) and(s) be two logical rules, and consider a cut working
on auxiliary formulas (not the main formulas of the rulesr ands):

⊢ Γ,A
(r)

⊢ Γ′,A

⊢ ¬A,∆
(s)

⊢ ¬A,∆′

(Cut)
⊢ Γ′,∆′

http://dx.doi.org/10.4204/EPTCS.48.8
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If we permute the cut rule up throughr ands, then there are two possible choices depending on whether
we first permute throughsor throughr. These two choices are represented by:

⊢ Γ,A ⊢ ¬A,∆
(Cut)

⊢ Γ,∆
(r)

⊢ Γ′,∆
(s)

⊢ Γ′,∆′

⊢ Γ,A ⊢ ¬A,∆
(Cut)

⊢ Γ,∆
(s)

⊢ Γ,∆′

(r)
⊢ Γ′,∆′

This demonstrates that permutation of rules is inherent in the syntax. In addition, there is no canonical
representation of proofs, even for cut-free proofs. For example, consider the following two alternative
proofs (in classical logic), of the formula:¬A,C,A∧¬B,B∧¬C, which differ only by the order in which
axioms are combined:

(Ax)
⊢ ¬A,A

(Ax)
⊢ ¬B,B

(Ax)
⊢ ¬C,C

(∧)
⊢C,¬B,B∧¬C

(∧)
⊢ ¬A,C,A∧¬B,B∧¬C

(Ax)
⊢ ¬A,A

(Ax)
⊢ ¬B,B

(∧)
⊢ ¬A,B,A∧¬B

(Ax)
⊢ ¬C,C

(∧)
⊢ ¬A,C,A∧¬B,B∧¬C

A graphical syntax will free us from these inessential permutations. To illustrate the point, the
previous two proofs are given by the following proof net:

∧ ∧

A∧¬B B∧¬C¬A C
In this visual representation, the nodes represent the connectives and the edges are labelled by formulas.
Unlike the sequent calculus, we do not need to impose an orderon the introduction of∧. Moreover,
many of the permutation equivalences become identities in proof nets.

In recent years, advances in this area have produced a betterunderstanding of the notion of proof, and
a pleasing mathematical theory has been developed. However, it is not clear that this is the best way of
visualising proofs or mechanising proof transformations.Proof nets work very well for some fragments
of the logic, but less well for others where extra structure is required (boxes for instance). Related
systems, such as interaction nets [12] have been used to provide implementations of proof nets. Indeed,
they can be seen as a generalisation of proof nets. However, the implementation nature of interaction
nets often leads to cluttering proofs with low-level details, which do not aid the understanding of proofs.

In this paper we propose to take features from both proof netsand interaction nets to build a hybrid
system that takes some of the good features of each, but is notlimited by either of them. We put the
case forward for intuitionistic logic, and by the Curry-Howard isomorphism, we also get results for the
λ -calculus. This hybrid notation allows us to choose the level of detail that we want to include in the
proof. We can give either a high level, visual description ofthe dynamics of proof simplification, or
a low level description which is suited for the implementation or for fine-grained analyses of the cut
elimination process.

This graphical notation can be formally defined as a system ofport graphs [1, 3]. The visualisation
tools available for port graphs (see [2]) can then be used to study proofs and proof transformations.

Summarising, the main contributions of this paper are:

• A new graphical notation for proofs in intuitionistic logicwhere one can choose different levels of
abstraction depending on the kind of analysis that will be done on proofs.
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• By the Curry-Howard isomorphism, the previous point gives agraphical notation for theλ -
calculus with the same characteristics.

Related work In addition to proof nets and interaction nets, several graphical representations of proofs
have been proposed in the literature. We can cite for instance the deduction graphs defined by Geuvers
and Loeb [7] and Lamping’s sharing graphs [13]. Deduction graphs are a generalisation of natural de-
duction and Fitch style flag deduction; they have both nodes and boxes. The latter are collections of
nodes that form a node themselves, and in this sense they are related to Milner’s bigraphs [14], where the
place graph describes the nesting of nodes. However, deduction graphs do not have an explicit way to
represent sharing; they are not intended as a notation for fine-grained analysis of resource management
in proof normalisation. Sharing graphs (introduced in [13]and further developed by Asperti and Guer-
rini [4]) were presented as a solution for the implementation of Lévy’s notion of optimal reduction in the
λ -calculus, and, as their name suggests, emphasise the sharing of subexpressions: sharing is explicit.

The rest of this paper is organised as follows. In the following section we briefly recall intuitionistic
logic, proof nets, interaction nets and the notions of port graph and port graph rewriting. In Sections
3 and 4 we give the visual representation of the logic and theλ -calculus, respectively. In section 5 we
discuss the significance of this work, and speculate on future work.

2 Background

In this section we recall (minimal) intuitionistic logic and sketch some of the ideas behind proof nets and
interaction nets, on which our work is built upon. To formalise the notation, we recall the notion of port
graph and port graph rewriting from [1, 3]. For more details on linear logic and proof nets, we refer the
reader to [8]. For details and examples of interaction nets we refer to [12].

Intuitionistic logic In Figure 1 we give the natural deduction in sequent form presentation of the logic.
We give explicitly the structural rules, which helps understanding the graphical notation later. Adding∨
is straightforward, but not included in this paper.

Identity and Structural Group:

(Ax)
A⊢ A

Γ,A,B,∆ ⊢C
(X)

Γ,B,A,∆ ⊢C

Γ ⊢ B
(W)

Γ,A⊢ B

Γ,A,A⊢ B
(C)

Γ,A⊢ B

Logical Group:

Γ ⊢ A ∆ ⊢ B
(∧I )

Γ,∆ ⊢ A∧B

Γ ⊢ A∧B
(∧E1)

Γ ⊢ A

Γ ⊢ A∧B
(∧E2)

Γ ⊢ B

Γ,A⊢ B
(⇒I )

Γ ⊢ A⇒ B

Γ ⊢ A⇒ B ∆ ⊢ A
(⇒E )

Γ,∆ ⊢ B

Figure 1: Intuitionistic Natural Deduction
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The main computational interest for us is the normalisationprocedure, which transforms proofs by
eliminating redundancies (called detours by Prawitz [15]). The main cases are defined below, showing
how the introduction of a connective followed by the elimination of that same occurrence of the connec-
tive can be transformed into a proof without the two rules. For simplicity, we have ignored details of
permutations of rules that might need to be applied so that one of the following rules can be applied.

Definition 1 (One Step Normalisation)

• (∧I ) followed by(∧E1): below the double line indicates that (W) may be applied zeroor many
times. There is a similar case for(∧I ) followed by(∧E2).

π1

Γ ⊢ A

π2

∆ ⊢ B
(∧I )

Γ,∆ ⊢ A∧B
(∧E1)

Γ,∆ ⊢ A

becomes

π1

Γ ⊢ A
====== (W)
Γ,∆ ⊢ A

• (⇒I ) followed by(⇒E ): π ′
1 is the proofπ1 where all axioms A⊢ A are replaced (substituted) by

a proof ofπ2.
π1

Γ,A⊢ B
(⇒I )

Γ ⊢ A⇒ B

π2

∆ ⊢ A
(⇒E )

Γ,∆ ⊢ B

becomes
π ′

1

Γ,∆ ⊢ B

In this presentation, the notion of substitution is important, and is quite difficult to understand. An
advantage of the visual representation given below is that it clarifies this notion.

Proof Nets and Interaction Nets Proof nets were introduced as the graphical syntax for linear logic.
One of the motivations for the study of graphical presentations is to free us from inessential permutations
in proofs, as mentioned in the Introduction. Proof nets workvery well for the multiplicative fragment
of the logic, but less well for the other fragments. For instance, for the exponentials, more complicated
machinery is needed, which takes us away from a uniform visual notation. More precisely, exponentials
are represented using boxes to group parts of the graph, shown as a dotted line in the diagram below:

N

?Γ
· · ·

!A
Boxes work at a different level to the other nodes in the graph, leading to a two-level syntax. Interaction
nets, on the other-hand, encode the box machinery in the samenotation, as shown below.

An interaction net system [12] is specified by giving a setΣ of symbols, and a setR of interaction
rules. Each symbolα ∈ Σ has an associated (fixed)arity. An occurrence of a symbolα ∈ Σ will be
called anagent. If the arity of α is n, then the agent hasn+ 1 ports: a distinguished one called the
principal port depicted by an arrow, andn auxiliary portslabelledx1, . . . ,xn corresponding to the arity
of the symbol. Such an agent will be drawn in the following way:

α
· · ·

x1 xn
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A net N built on Σ is a graph (not necessarily connected) with agents at the vertices. The edges of the
graph connect agents together at the ports such that there isonly one edge at every port.

A pair of agents(α ,β ) ∈ Σ×Σ connected together on their principal ports is called anactive pair;
the interaction net analog of a redex. An interaction rule((α ,β ) =⇒ N) ∈ R replaces an occurrence of
the active pair(α ,β ) by a netN. The rule must satisfy two conditions: all free ports are preserved during
reduction, and there is at most one rule for each pair of agents.

Boxes are encoded in interaction nets using extra nodes, as shown below:

N

v ? ? !

Due to the constraints in the rules, interaction nets are easy to implement, but extra rules are needed for
management: the details of copying and erasing for instancemust be given in full detail. In addition,
each node in an interaction net has a unique principal port, and this is fixed for each kind of agent, which
means that the reduction system is fixed as part of the encoding.

Our approach in this paper is to put forward a hybrid notationbetween proof nets and interaction nets
to get the best from each. We will be able to use interactive tools developed for interaction nets, such
as PORGY [2] in order to visualise the encodings of proofs. Infact, PORGY deals with port graphs, a
class of graphs that is more general than interaction nets, and which can be used to formalise our hybrid
notation. We recall port graphs below.

Port graphs A port graph [1] is a graph where nodes have explicit connection points for edges, called
ports. Port graphs were first identified as an abstract view of proteins and molecular complexes.

Let N andP be two disjoint sets of node names and port names respectively. A p-signatureover
N andP is a mapping∇ : N → 2P which associates a finite set of port names to a node name. A
p-signature can be extended with variables:∇X : N ∪XN → 2P∪XP , whereXP andXN are two
disjoint sets of port name variables and node name variablesrespectively. Alabelled port graphover a
p-signature∇X is a tupleG= 〈VG, lvG,EG, leG〉 where:VG is a finite set of nodes;lvG : VG → N ∪XN

is an injective labelling function for nodes;EG ⊆ {〈(v1, p1),(v2, p2)〉 | vi ∈VG, pi ∈ ∇(lvG(vi))∪XP}
is a finite multiset of edges;leG : EG → (P ∪XP)× (P ∪XP) is an injective labelling function for
edges such thatleG(〈(v1, p1),(v2, p2)〉) = (p1, p2). A port may be associated to a state (for instance,
active/inactive or principal/auxiliary); this is formalised using a mapping from ports to port states. Sim-
ilarly, nodes can also have associated properties (like colour or shape that can be used for visualisation
purposes).

Let G andH be two port graphs over the same p-signature∇X . A port graph morphism f: G→ H
maps elements ofG to elements ofH preserving sources and targets of edges, constant node names
and associated port name sets, up to variable renaming. We say that G and H are isomorphicif f :
VG×∇(lvG(VG))→VH ×∇(lvH(VH)) is bijective.

A port graph rewrite rule L⇒ R is itself represented as a port graph consisting of two port graphs
L andR over the same p-signature and one special node⇒, calledarrow nodeconnecting them.L and
R are called theleft- andright-hand siderespectively. The arrow node is used to represent the interface
of the rule; it has the following characteristics: for each port p in L, to which corresponds a non-empty
set of ports{p1, . . . , pn} in R, the arrow node has a unique portr and the incident directed edges(p, r)
and(r, pi), for all i = 1, . . . ,n; all ports fromL that are deleted inR are connected to theblack holeport
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of the arrow node. When the correspondence between ports in the left- and right-hand side of the rule
is obvious we omit the ports and edges involving the arrow node. In this way, we avoid dangling edges
after rewriting (for more details on graph rewriting we refer the reader to [11, 6]).

Let L ⇒ R be a port graph rewrite rule andG a port graph such that there is an injective port graph
morphismg from L to G; henceg(L) is a subgraph ofG. A rewriting stepon G usingL ⇒ R, written
G→L⇒R G′, transformsG into a new graphG′ obtained fromG by replacing the subgraphg(L) of G by
g(R), and connectingg(R) to the rest of the graph as specified in the arrow node. We callg(L) a redex. If
there is no such injective morphism, we say thatG is irreducibleby L ⇒ R. Given a finite setR of rules,
a port graphG rewritesto G′, denoted byG ⇒R G′, if there is a ruler in R such thatG ⇒r G′. This
induces a transitive relation on port graphs, denoted by⇒∗

R
. A port graph on which no rule is applicable

is in normal form.

3 Graphs from Proofs

In this section we give a graphical representation of proofsin intuitionistic logic. The general idea is to
interpret a proofπ of Γ ⊢ A as a port graphG (π) with edges representing formulas in the following way
(the second alternative borrows a notation from electroniccircuits):

G (π)

A

· · ·
Γ

or

/

G (π)

The nodes of the graph represent rules in the logic, edges will be attached to ports which are op-
tionally labelled with formulas. We will explicitly distinguish the conclusion port when it is relevant.
Node names will be introduced on demand in the translation below. Later we will see that we need some
additional control nodes, so that there will not be a 1-1 correspondence between logical rules and node
names. We give a translation inductively over the structureof the proof, and refer to Figure 1 for the
rules that we are translating.

• If π is an AxiomA ⊢ A, thenG (π) is simply a nodeAx with two ports, both with labelA. in the
diagrams we omit this node and draw simply a line as it is oftendone in proof nets.

A

A

• Exchange. Ifπ1 is a proof ending inΓ,A,B,∆ ⊢C, then we can build a proofπ of Γ,B,A,∆ ⊢C,
using the exchange rule, and a graphG (π) where the exchange rule is encoded by exchanging two
edges:

π1

Γ,A,B,∆ ⊢C
(X)

Γ,B,A,∆ ⊢C

G (π1)

C

∆ ΓB A

/ /
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• Weakening. Ifπ1 is a proof ending inΓ ⊢ B, then we can build a proofπ of Γ,A ⊢ B using the
weakening rule, and a graphG (π) as follows, where we explicitly mark the erasing port in the
nodeW:

π1

Γ ⊢ B
(W)

Γ,A⊢ B

G (π1)

/

B

•
W

AΓ

• Contraction. Ifπ1 is a proof ending inΓ,A,A ⊢ B, then we can build a proofπ of Γ,A ⊢ B using
the contraction rule, and a graphG (π), where we explicitly mark the copying port in the nodeC:

π1

Γ,A,A⊢ B
(C)

Γ,A⊢ B

/
C
•Γ A

G (π1)

B

• If π1 is a proof ending inΓ ⊢ A andπ2 is a proof ending in∆ ⊢ B, then we can build a proofπ
ending withΓ,∆ ⊢ A∧B using the∧I rule, and a graphG (π), where we introduce a new node
∧I corresponding to the rule, and explicitly mark its conclusion port:

π1

Γ ⊢ A

π2

∆ ⊢ B
(∧I )

Γ,∆ ⊢ A∧B

G (π1)

· · ·
Γ

G (π2)

· · ·
∆

∧I
•

A∧B
• If π1 is a proof ending inΓ ⊢ A∧B, then we can build a proofπ of Γ ⊢ A using the∧E1 rule, and a

graphG (π), where we introduce a new node∧E1:

π1

Γ ⊢ A∧B
(∧E1)

Γ ⊢ A

G (π1)

∧E1
•

A

· · ·
Γ

• If π1 is a proof ending inΓ ⊢ A∧B, then we can build a proofπ of Γ ⊢ B using the∧E2 rule, and a
graphG (π) where we introduce a new node∧E2. The graph is similar to the previous case, except
that we use a node∧E2 instead of∧E1, and concludeB instead ofA.

• If π1 is a proof ending inΓ,A⊢ B then we can build a proofπ of Γ ⊢ A⇒ B using the⇒I rule,
and a graphG (π):
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π1

Γ,A⊢ B
(⇒I )

Γ ⊢ A⇒ B

G (π1)

· · ·

Γ
· · ·

⇒I
•

A⇒ B

• s

where we have introduced a new node⇒I corresponding to the rule, and a second nodes with
variable arity (formally, a family of nodes) that represents the scope of the rule: when the assump-
tion A is discharged we mark all the other assumptions. This structure plays a role to visually
represent scope, but more importantly, it will play a crucial role in the dynamics of cut-elimination
that we give later. We remark that ifΓ is empty (i.e. the proof is closed), then we do not need this
extra node, and will just draw the⇒ I node. Note also that the nodes does not correspond to a
connective.

• If π1 is a proof ending inΓ ⊢ A⇒ B andπ2 is a proof ending in∆ ⊢ A, then we can build a proof
π of Γ,∆ ⊢ B using the⇒ E rule, and a graphG (π), where we introduce a new node⇒ E :

π1

Γ ⊢ A⇒ B

π2

∆ ⊢ A
(⇒E )

Γ,∆ ⊢ B

G (π1)

· · ·
Γ

G (π2)

· · ·
∆

⇒E
•

B
The set of node names introduced for the logic isNL = {C,W,∧I ,∧E1,∧E2,⇒I ,⇒E ,s}.

3.1 Example

To illustrate the translation, we give here an example proofand the corresponding graph. The proof is
of A∧B⊢ B∧A, which shows that∧ is commutative, and in the graph the formulae on the edges canbe
read from the proof:

(Ax)
A∧B⊢ A∧B

(∧E2)
A∧B⊢ B

(Ax)
A∧B⊢ A∧B

(∧E1)
A∧B⊢ A

(∧I )
A∧B,A∧B⊢ B∧A

(C)
A∧B⊢ B∧A

∧I

C

∧E2 ∧E1

•

•

• •

In this example, we can see the true structure of the underlying proof. Contraction was the last rule used
in the derivation and is the last rule in the diagram, at the top since the structural rules work on the left
of the⊢ symbol and at the top of the diagrams (see the translation above).

Note that we have chosen to use the multiplicative presentation of intuitionistic logic in the sequent
calculus, additive is an alternative, and this would lead toa different graphical representation. An es-
sential issue is that the graphical representation is faithful to this choice. In this example, we invite the
reader to apply one more rule (⇒I ) to give a proof of⊢ A∧B⇒ B∧A.
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A second example illustrates one of the axioms of intuitionistic logic: A⇒ B⇒ A. The proof and the
graph are the following, where we demonstrate the two different translations of⇒I , one closed using
just an⇒I node, and one with free variables using ansnode.

(Ax)
A⊢ A

(W)
A,B⊢ A

(⇒ I )
A⊢ B⇒ A

(⇒ I )
⊢ A⇒ B⇒ A

⇒I

⇒I

W
s

•

•

••

3.2 Normalisation

Next we turn to the normalisation process in this graphical setting. Our aim is to show graph transfor-
mations, formalised as port graph rewrite rules, for each ofthe normalisation steps given in Definition 1.

• (∧I ) followed by(∧E1): we attach the weakening nodeW to the graph representingπ2. There is
a symmetric case for(∧I ) followed by(∧E2).

G (π1) G (π2) G (π1)

∧I

∧E1

G (π2)

W

/ / / /

A

A

=⇒ •
•

•

• (⇒I ) followed by(⇒E ):

s•

G (π1)

· · ·

•⇒I

⇒E
•

B

G (π2)

· · ·
∆

=⇒
G (π1)

B

· · ·
Γ

G (π2)

· · ·
∆

This rule performs a substitution. One of the most beautifulaspects of the notation is the clear
explication of the substitution process, which can be seen as replacing an axiom in the proofπ1

with the proofπ2.



78 A new graphical calculus of proofs

We will also consider the following simplification rule, optimising proofs whenC is followed byW
on the same formula. Thus, the following proof:

Γ,A⊢ B
(W)

Γ,A,A⊢ B
(C)

Γ,A⊢ B

will be represented and simplified by the following:

G (π1)

B

/
C
•Γ A

W
=⇒

G (π1)

B

/
Γ A

•

3.3 Copy and Erase

The copy and erase nodes, which correspond to the contraction and weakening rules, require specific
rules in order to copy or erase proofs. This is one of the points where interaction net and proof net rep-
resentations differ. In interaction nets, the copy and erasing processes are performed by traversing the
net after it has been normalised (in this way, redexes cannotbe copied, which ensures a more efficient
implementation). On the other hand, the low level details ofthe copy and erase rules obscure the under-
standing of the logic. In the syntax described above, we are free to give global rules for copy and erase
as in proof nets (but the price to pay for this is a more involved notion of graph rewriting, with an expen-
sive matching algorithm). We are also free to choose low level, interaction net style rules, which have a
simple matching algorithm and are better if we need to analyse the cost of the normalisation process.

Erasing Here we show that the nets arising from the translation function can be erased, either by global
steps onW nodes or using theε agent to erase locally, thus showing that the weakening cut elimination
step above can be fully simulated.

• Erasing a nodeα ∈ NL , α 6=⇒I :

α
· · ·

W

•
• =⇒ W

· · ·
W

• •

• Erasing⇒I :

G (π1)

• s
· · ·

Γ

⇒I
•

W

•

=⇒ W · · · W
••
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This transformation is a global reduction step: it requiresthat we identify the graph forπ1, which in turn
relies on a notion of pattern matching that is not easy to implement (cf. subgraph isomorphism [16]).

Alternatively, one can useε nodes that perform small-step erasing, in which case the pattern matching
algorithm is trivial. In this case, the previous rule has a left-hand side consisting of justW, ⇒I ands,
and we have a reduction to:

••
W · · · W

. . .• •
ε ε

G (π1)

ε
•

In this way, we can provide a low level definition of weakeningwhich is better adapted for fine grained
analysis of the erasing process. The rules forε , with α ∈ NL ∪{ε}, are below (note that ifα is ε the
right hand side is an empty graph):

α
· · ·

ε

•
• =⇒ ε

· · ·
ε

• •

In this case the cost of erasing the graph (i.e., the number ofrewriting steps involved) depends on its size.

Lemma 1 (Erasing) Let N= G (π), for any proofπ of A1, . . . ,An−1 ⊢ An. Then using nε nodes there is
a sequence of rewriting steps that erase N, as shown in the following diagram, where the right-hand side
is the empty graph:

N

ε

ε ε

•

• •

=⇒∗

. . .

Proof: By induction onπ. The proof follows a similar structure to the Duplication Lemma (see Lemma 2
below) that we shall give later. (The case for duplication isslightly more interesting.) �

Duplication Next we address the issue of duplication: specifically, we show that the graphs arising
from the translation function can be copied, either by global steps onC nodes or by using theδ agent to
copy step-by-step. We first show the rules for theC node.

• Copying a nodeα 6=⇒I , α ∈ NL :
· · ·

α
•
•
C

=⇒
C
•

C
•

· · ·

• •
α α

• Copying⇒I :
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G (π1)

s
· · ·

Γ

⇒I
•

C
•

=⇒

•
C

· · ·

G (π1)

s
· · ·

⇒I

· · ·
•
C

· · ·

G (π1)

s
· · ·

⇒I
••

••

•

Alternatively, one can useδ nodes to perform small-step copying. In this case the left-hand side of the
rule is justC with ⇒I ands, and we have a reduction to:

•
C

· · ·

G (π1)

s

δ
•

· · ·

⇒I

· · ·
•
C

· · ·

s

δ
•

· · ·

•
δ

δ
•

⇒I
• •

• •

We now introduce the rewrite rules for theδ nodes. Letα be any node inNL . Thenδ copies the
node and propagates itself to copy the rest of the graph, as shown below. The rule forδ with δ ends the
duplication process.

· · ·

α
•
•
δ

=⇒
δ
•

δ
•

· · ·

• •
α α

δ
•

δ
•

=⇒

Lemma 2 (Duplication) Let N= G (π), for any proofπ of A1, . . . ,An−1 ⊢ An. Then using nδ nodes
there is a sequence of rewriting steps that duplicates N, as shown in the following diagram:

δ• δ•· · ·

N

δ
•

=⇒ N

· · ·

N

· · ·

Proof: By induction on the depth of the proofπ. We show the cases for Axiom and(∧I ).
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• Axiom:

δ
•
•
δ

=⇒

• (∧I ) :

G (π1)

δ• δ•· · ·

G (π2)

δ• δ•· · ·

∧I
•

δ
•

=⇒

G (π1)

δ• δ•· · ·

G (π2)

δ• δ•· · ·

•
δ

∧I

•
δ

∧I

=⇒∗

(I.H.)

• •

G (π1)

· · ·

G (π1)

· · ·

∧I

G (π2)

· · ·

G (π2)

· · ·

∧I
• •

�

Proposition 1 (Correctness) For each normalisation step transformingπ to π ′, there is a transformation
from G (π) =⇒∗ G (π ′).

Proof: For the first normalisation rule,π is a proof build fromπ1 andπ2 using a(∧I ) followed by
(∧E1) (similar for (∧E2)), andG (π ′) is a graph consisting ofG (π1) and aW node attached to each
hypothesis in∆ (note that∆ are the hypothesis forπ2). Using the normalisation step in Section 3.2, from
G (π) one obtains a graph consisting ofG (π1) and aW node attached to the conclusion port ofG (π2).
By induction onπ2, and relying on Lemma 1, one can proof that a graph consistingto aW node attached
to the conclusion port ofG (π2), reduces to a graph consisting of aW node attached to each hypothesis
in ∆. For the second normalisation rule, we rely on Lemma 2 to prove a similar result forC. �

4 Graphs for the Linear λ -calculus

Now that we have seen what graph reduction is for the logic, webriefly look at it again, but from a
different perspective. There are standard ways of representing theλ -calculus as graphs, and the reduction
mechanism as a graph rewriting system. We restrict this section to the linear case which is simpler,
and generalises using the structural rules of the previous section. The general form of the translation
generating a graph from a termt is the following:

G (t)

· · ·

x1 xn

where the free variables oft arex1, . . . ,xn. The translationG (·) is given inductively over the structure
of the linear termt. We shall often drop the labelling of the edges when there is no ambiguity. For
abstractions we assume (without loss of generality) that the (unique occurrence of the) variablex occurs
in the leftmost position of the free variables ofG (u). Notice also that, in the case of applications there
will not be any common free variables between the graphs foru andv by the linearity constraint.



82 A new graphical calculus of proofs

G (x) =

x

G (λx.u) =
G (u)
· · ·

λ
G (uv) =

G (u) G (v)

@

· · · · · ·

As examples consider the graphs for:(λx.x)(λx.x) and(λxy.yx).

@

λ λ @

λ

λ

It is not difficult to see that replacing⇒I 1 by λ and⇒E by @, and changing the orientation of
these graphs we obtain exactly the same system of graph reduction given for the logic. This all leads to
visual confirmation of the Curry-Howard isomorphism, wherewe can think of graphs corresponding to
proofs, types corresponding to formulas, and graph reduction to normalisation.

We now turn to reduction in the linearλ -calculus for these graphs, and set up a notion oflinear graph
reduction. The idea is quite simple: we will draw the graph for the term(λx.t)u and another fort[u/x]
and try to deduce the corresponding graph reduction step(s). The required reduction is given by:

G (t)

· · ·

λ

@

G (u)

· · ·

=⇒

G (t)

· · ·

G (u)

· · ·

Example 1 Here are a couple of examples of linear graph reduction. The first example is the identity
applied to the identity function. NowG ((λx.x)(λx.x)) (which we call N) reduces toG (λx.x) (which we
call N′) with one application of the rewrite rule:

λ λ

λ@
=⇒N ≡ ≡ N′

Note that there was only one graph reduction step required here: theβ -reduction step, together with the
substitution, was captured in a single rewrite. The advantage of this particular system of graph rewriting
for the λ -calculus is that substitution is always done for free. As a larger example, consider the term
(λxy.yx)(λx.x)(λx.x). As a graph reduction, this simply becomes the following:

1Simplified to the linear case.
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=⇒ N =⇒ N′

@

@

@

λ

λ

λ

λ

=⇒

λ

λ

@

@

λ

where N and N′ are the nets of the previous example. Thus, the total number of graph rewrite steps is
just three, corresponding exactly to the number ofβ -reductions performed at the level of syntax. One
can see that there are a lot of benefits from a graphical notation for this simple calculus: the graph
rewriting process islocal, meaning that at any time we only rewrite the part of the graphconnecting the
application and abstraction; the rest of the graph remains unchanged.

5 Discussion and Conclusion

Our goal was to provide a notation for intuitionistic logic (also for theλ -calculus through the Curry-
Howard isomorphism) that shares some of the advantages of previous graphical notions such as proof
nets and interaction nets, but also simplifies and alleviates some of the constraints.

• The graphical notation brings out the structure of the proofvisually, close to the abstract syntax,
and consequently we believe it to be quite natural.

• This notation is preserved under normalisation (computation) which means that we can animate
the process. As part of this, we can better understand the process of normalisation and substitution.

• As the examples show, the diagrams also alleviate much of thesyntactic clutter which helps to
bring out the structure of the underlying proof.

• We have established that normalisation preserves the graphical notation, but we have assumed
that proofs always come from a natural deduction proof (i.e., through a translation). We have
deliberately avoided the question as to when an arbitrary graph built from the nodes given is a valid
proof however. These questions are difficult to solve, and until we have established the usefulness
of the notation, we need not invest effort into this. However, it remains a very important question
that will need to be addressed.

• For theλ -calculus, our approach and motivation is similar to that of[5]. Our graphs are closer to
the abstract syntax trees, and we believe this is easier to relate to the syntax in addition to allowing
the process of substitution to be controlled precisely.

• Since theλ -calculus is the foundational calculus underlying functional programming, this gives a
starting point for a visual approach for this paradigm.
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