
A. Middeldorp and F. van Raamsdonk (Eds.): 8th International
Workshop on Computing with Terms and Graphs (TERMGRAPH 2014)
EPTCS 183, 2015, pp. 33–47, doi:10.4204/EPTCS.183.3

c© Naohi Eguchi
This work is licensed under the
Creative Commons Attribution License.

Complexity Analysis of Precedence Terminating Infinite
Graph Rewrite Systems

Naohi Eguchi∗

Faculty of Science, Chiba University, Japan

neguchi@g.math.s.chiba-u.ac.jp

The general form ofsafe recursion(or ramified recurrence) can be expressed by an infinite graph
rewrite system includingunfolding graph rewrite rulesintroduced by Dal Lago, Martini and Zorzi,
in which the size of every normal form by innermost rewritingis polynomially bounded. Every
unfolding graph rewrite rule isprecedence terminatingin the sense of Middeldorp, Ohsaki and Zan-
tema. Although precedence terminating infinite rewrite systems cover all the primitive recursive
functions, in this paper we consider graph rewrite systemsprecedence terminating with argument
separation, which form a subclass of precedence terminating graph rewrite systems. We show that
for any precedence terminating infinite graph rewrite system G with a specific argument separation,
both the runtime complexity ofG and the size of every normal form inG can be polynomially
bounded. As a corollary, we obtain an alternative proof of the original result by Dal Lago et al.

1 Introduction

1.1 Backgrounds

In this paper we present a complexity analysis of a specific kind of infinite graph rewrite systems,prece-
dence terminating with argument separation. The formulation of precedence termination with argu-
ment separation stems from a function-algebraic characterization of the polytime computable functions
based on the principle known assafe recursion[6] or tiered recursion[13]. The schema of safe re-
cursion is a syntactic restriction of the standard primitive recursion based on a specific separation of
argument positions of functions into two kinds. Notationally, the separation is indicated by semicolon as
f (x1, . . . ,xk ;xk+1, . . . ,xk+l), wherex1, . . . ,xk are callednormalarguments whilexk+1, . . . ,xk+l are called
safeones. The schema of safe recursion formalizes the idea that recursive calls are restricted on normal
arguments whereas substitutions of recursion terms are restricted for safe arguments:f (0,~y;~z) = g(~y;~z),
f (ci(x),~y;~z) = hi(x,~y;~z, f (x,~y;~z)) (i ∈ I), whereI is a finite set of indices. Safe recursion is sound for
polynomial runtime complexity over unary constructors, i.e., over numerals or lists, but it was not clear
whether the general form of safe recursion over arbitrary constructors, which is calledgeneral ramified
recurrence[10] or general safe recursion, could be related to polytime computability as well.

f (ci(x1, . . . ,xarity(ci)),~y;~z) = hi(~x,~y;~z, f (x1,~y;~z), . . . , f (xarity(ci),~y;~z)) (i ∈ I) (General Safe Recursion)

The authors of [10] answered this question positively (Theorem 1, Section 3) showing that the schema
(General Safe Recursion) can be expressed by an infinite set ofunfolding graph rewrite rules. To see
a reason why graph rewriting was employed, consider a term rewrite systemR over the constructors
{ε ,c,0,s} consisting of the following four rules with the argument separation indicated in the rules.

∗The author is supported by Grants-in-Aid for JSPS Fellows (Grant No. 25·726).

http://dx.doi.org/10.4204/EPTCS.183.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

34 Complexity Analysis of Precedence Terminating Infinite Graph Rewrite Systems

g(ε ;z) → z g(c(;x,y) ;z) → c(;g(x;z),g(y; z))
f(0,y;) → ε f(s(;x),y;) → g(y; f(x,y;))

Reduction of a termf(sm(0), t) generates a tree consisting of exponentially many copies ofthe treet
measured bym. Thus the computation should be performed over suitably shared graphs rather than terms.
Moreover, the termf(s(0),c(ε ,ε)) leads to the termc(g(ε ,ε),g(ε ,ε)) in three steps, where the subterm
g(ε ,ε) is duplicated, which means that costly recomputations potentially occur. Such duplications cannot
be avoided by simple sharing but some essential memoizationtechnique is necessary.

1.2 Outline

The most effort in [10] was devoted to show that unfolding graph rewrite rules expressing the schema
(General Safe Recursion) only yield polynomial lengths of rewriting sequences and normal forms of
polynomial sizes measured by the sizes of starting (term) graphs. The initial motivation of the present
work was to deduce the complexity result by means of existingterm rewriting techniques. In a techni-
cal report [11], rewriting sequences under unfolding graphrewrite rules are embedded into descending
sequences under a termination order over lists of terms via avariant of thepredicative interpretation
[1, 3, 4]. In this paper, making the definition of unfolding graph rewrite rules more abstract, we define a
class of graph rewrite systems precedence terminating withargument separation. Though the complexity
analysis in the report above could be adopted, we avoid the use of intermediate termination orders but
make use of numerical interpretation methods, which have been established as well as termination orders,
e.g. [7]. The performed numerical interpretation is closely related to the predicative interpretation but
also strongly motivated by polynomialquasi-interpretations presented in [8, 15, 9]. After preliminary
sections, in Section 4, we show that every graph rewrite system precedence terminating with a specific
argument separation reduces under the associated interpretation (Theorem 2), yielding an alternative
proof of Theorem 1 (Corollary 3). In Section 5, to convince readers that the proposed method is indeed
(potentially) more flexible than unfolding graph rewrite rules, we discuss two possibilities of application
referring to related works.

2 Term graph rewriting

In this section, we present basics of term graph rewriting mainly following [5].

Definition 1 (Signatures, labeled graphs and paths). Let F be asignature, a set of function symbols,
and letarity : F → N wherearity(f) is called thearity of f . Throughout of the paper, we only consider
finite signatures. We assume thatF is partitioned into the setC of constructors and the setD of defined
symbols.

Let G = (VG,EG) be a directed graph consisting of a setVG of vertices (or nodes) and a setEG of
directed edges. Alabeled graphis a triple(G, labG,succG) of an acyclic directed graphG = (VG,EG),
a partiallabeling function labG : VG → F and a (total)successorfunction succG : VG → V∗

G, mapping
a nodev ∈ VG to a sequence of nodes of lengtharity(labG), such that ifsuccG(v) = v1, . . . ,vk, then
{v1, . . . ,vk}= {u∈VG | (v,u) ∈EG}. In casesuccG(v) = v1, . . . ,vk, the nodev j is called thej th successor
of v for every j ∈ {1, . . . ,k}. In particular,succG(v) is empty if labG(v) is not defined.

A list 〈v1,m1, . . . ,vk−1,mk−1,vk〉 consisting of nodesv1, . . . ,vm of a term graphG and naturalsm1, . . . ,
mk−1 is called apathfrom v1 to vk of length kif v j+1 is themth

j successor ofv j for eachj ∈ {1, . . . ,k−1}.
In casek = 0, the list〈v〉 consisting of a single nodev is a trivial path of length 0. A labeled graph
(G, labG,succG) is closedif the labeling functionlabG is total.

Naohi Eguchi 35

Definition 2 (Term graphs, sub-term graphs, basic term graphs, depths ofterm graphs and maximal
sharing). A quadruple(G, labG,succG, rootG) is a term graphif (G, labG,succG) is a labeled graph and
rootG is theroot of G, i.e., a unique node inVG from which every node is reachable. We writeT G (F)
to denote the set of term graphs over a signatureF . For a labeled graphG= (G,succG, labG) and a node
v∈VG, G↾v denotes thesub-term graphof G rooted atv. We writeH ⊑ G to express thatH is a sub-term
graph ofG and❁ for the proper relation. A term graphG∈ T G (F) is calledbasicif labG(rootG) ∈ D

andG↾v∈ T G (C) for every successor nodev of rootG. For a term graphG, the length of the longest
path(s) fromrootG thedepthof G, denoted asdpth(G).

Undefined nodes in a term graphG are intended to behave as free variables in a natural term rep-
resentation ofG. Let termG be an injective mapping from undefined nodes inG to a (possibly infinite)
setV of variables. The mappingtermG is canonically extended to a term representation (overF ∪V)
of sub-term graphs ofG astermG(G↾v) = termG(v) ∈ V in caselabG(v) is not defined, and otherwise
termG(G↾v) = labG(v)(termG(G↾v1), . . . ,termG(G↾vk)) wheresuccG(v) = v1, . . . ,vk. A term graphG is
maximally sharedif, for any two nodesu,v ∈VG, termG(G↾u) = termG(G↾v) implies u= v (under an
arbitrary choice of such a mappingtermG).

Definition 3 (Homomorphisms, redexes, graph rewrite rules and constructor graph rewrite rules). Given
two labeled graphsG and H, a homomorphismfrom G to H is a mappingϕ : VG → VH such that
labH(ϕ(v)) = labG(v) for eachv ∈ dom(labG) ⊆ VG and that, for eachv ∈ dom(labG), if succG(v) =
v1, . . . ,vk, thensuccH(ϕ(v)) = ϕ(v1), . . . ,ϕ(vk). By definition, these conditions are not required for a
nodev∈VG for which labG(v) is not defined. A homomorphismϕ from a term graphG to another term
graphH is a homomorphismϕ : (G, labG,succG)→ (H, labH ,succH) such thatrootH = ϕ(rootG).

A graph rewrite ruleis a triple ρ = (G, l , r) of a labeled graphG and two distinct nodesl and r
respectively called theleft andright root. The term rewrite ruleg(x,y) → c(y,y) is expressed by a graph
rewrite rule (1) andh(x,y,z,w) → c(z,w) by (2) below.

(1) /.-,()*+g

�� ❅
❅❅

❅❅
❅❅

❅ c

�� 		

⊥ ⊥

(2) /.-,()*+h

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

�� ��❅
❅❅

❅❅
❅❅

❅

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖
❖ c

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

��

⊥ ⊥ ⊥ ⊥
In the examples, the left root is written in a circle while theright root is in a square, and undefined nodes
are indicated as⊥. As in the usual term rewriting setting, we assume that everyundefined node occurring
in G↾r occurs inG↾l as well.

A redex in a term graphG is a pair (R,ϕ) of a rewrite ruleR= (H, l , r) and a homomorphism
ϕ : H ↾ l → G. A set G of graph rewrite rules is called agraph rewrite system(GRS for short). A
graph rewrite rule(G, l , r) is called aconstructorone if G↾l is a basic term graph. A GRSG is called
a constructor one ifG consists only of constructor rewrite rules. The rewrite relation in a GRSG is
defined by thebuild, redirectionandgarbage collectionphase, denoted as→G (See, e.g., [10]). In case
thatG−→

G
H is induced by a redex((K, l , r),ϕ), one can find a homomorphismψ : K↾r → H compatible

with ϕ such thatG results inH by replacing the sub-term graphG↾ϕ(l) of G with H↾ψ(r). A formal
definition can be found in [5]. Them-fold iteration of−→

G
is denoted as−→m

G
and the reflective and

transitive closure as−→∗
G

. A rewriting G−→
G

H induced by a redex((K0, l0, r0),ϕ0) is innermostif there
is no redex((K, l , r),ϕ) such thatG↾ϕ(l) is a proper sub-term graph ofG↾ϕ0(l0). The innermost rewrite
relation inG is denoted asi−→

G
, and i−→m

G
, i−→∗

G
are defined accordingly.

36 Complexity Analysis of Precedence Terminating Infinite Graph Rewrite Systems

3 Unfolding graph rewrite rules for general safe recursion

To make the purpose of the present work precise, in this section we restate the main result in [10], formu-
lating thegeneral safe recursivefunctions. LetC be a set of constructors andm 7→ cm (1≤m≤ |C |) be an
enumeration forC . We assume thatC contains at least one constant. We call a functionf : T (C)k+l →
T (C) general safe recursiveif, under a suitable argument separationf (x1, . . . ,xk ;y1, . . . ,yl), f can be
defined from the initial functions by operating the schemataspecified as follows.

• Ok,l
j (x1, . . . ,xk ;y1, . . . ,yl) = c j if c j is a constant. (Constants)

• Cj(;x1, . . . ,xarity(cj)) = c j(x1, . . . ,xarity(cj)) if arity(c j) 6= 0. (Constructors)

• Ik,l
j (x1, . . . ,xk ;xk+1, . . . ,xk+l) = x j (1≤ j ≤ k+ l). (Projections)

• Pi,0(;ci) = ci (arity(ci) = 0), Pi, j(;ci(x1, . . . ,xarity(ci))) = x j (1≤ j ≤ arity(ci)). (Predecessors)

• C(;c j(x1, . . . ,xarity(cj)),y1, . . . ,y|C |) = y j . (Conditional)

• f (x1, . . . ,xk ;y1, . . . ,yl) = h(x j1, . . . ,x jm ;g1(~x;~y), . . . ,gn(~x;~y)) ({ j1, . . . , jm} ⊆ {1, . . . ,k}),
whereh hasm normal andn safe argument positions. (Safe composition)

• f (c j(x1, . . . ,xarity(cj)),~y;~z) = h j(~x,~y;~z, f (x1,~y;~z), . . . , f (xarity(cj),~y;~z)) (j ∈ I).
If c j is a constant, the schema of denotesf (c j ,~y;~z) = h j(~y;~z). (General safe recursion)

In [10] a GRSG is calledpolytime presentableif there exists a deterministic polytime algorithm
which, given a term graphG, returns a term graphH such thatG i−→

G
H if such a term graph exists, or

the valuefalse if otherwise. In addition, a GRSG is polynomially boundedif there exists a polynomial
p : N→ N such that max{m, |H|} ≤ p(|G|) holds wheneverG i−→m

G
H holds.

Theorem 1(Dal Lago, Martini and Zorzi [10]). Every general safe recursive function can be computed
by a polytime presentable and polynomially bounded constructor GRS.

Remark1. The schema (General Safe Recursion) is formulated based on safe recursion (on notation)
following [6] whereas the schema of general ramified recurrence formulated in [10] is based on ramified
recurrence following [13]. Due to the difference, the definition of general safe recursive functions above
is slightly different from the original definition oftiered recursivefunctions in [10]. Notably, the schema
(Safe composition) is a weaker form of the original one in [6], which was introduced in [12]. It is not
clear whether there is a precise correspondence between general safe recursive functions in the current
formulation and tiered recursive functions. However, it isknown that the polytime functions (over binary
words) can be covered with the weak form of safe composition,which means that the restriction of the
general safe recursive functions to unary constructors still covers all the polytime functions.

Theorem 1 is shown by induction over a general safe recursivefunction f . The case thatf is defined
by (General Safe Recursion) is witnessed by an infinite set ofunfolding graph rewrite rules.

Definition 4 (Unfolding graph rewrite rules). Let Σ andΘ be two disjoint signatures in a bijective corre-
spondence byϕ : Σ → Θ. For a fixedk∈N, suppose thatarity(ϕ(g)) = 2arity(g)+k for eachg∈ Σ. Let
f 6∈ Σ∪Θ andarity(f) = 1+k. Given a naturalm≥ 1, themth set of unfolding graph rewrite rule over
Σ andΘ defining fconsists of graph rewrite rules of the form(G, l , r) whereG= (VG,EG,succG, labG)
is a labeled graph over a signatureF ⊇ Σ∪Θ that fulfills the following conditions.

1. The setVG of vertices consists of 1+2m+k elementsy, v1, . . . ,vm, w1, . . . , wm, x1, . . . ,xk.

2. l = y andr = w1.

3. labG(y) = f andsuccG(y) = v1,x1, . . . ,xk.

Naohi Eguchi 37

'&%$!"#f

�� ��❂
❂❂

❂❂
❂❂

❂ (1)

0 ⊥ goo

'&%$!"#f

��

��
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳

(2)

s

��

h

|| ~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

��
0 ⊥ goo

'&%$!"#f

��

��
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮ (3)

s

��

h

ww♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥

��✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍

��
s

��

h

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦♦♦

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

��
0 ⊥ goo

Figure 1: Examples of unfolding graph rewrite rules

4. labG(x j) is not defined for allj ∈ {1, . . . ,k}.

5. For eachj ∈ {1, . . . ,m}, succG(v j) ∈ {v1, . . . ,vm}
∗. Moreover,VG↾v1 = {v1, . . . ,vm}.

6. For eachj ∈ {1, . . . ,m}, labG(v j) ∈ Σ andlabG(w j) = ϕ(labG(v j)).

7. For eachj ∈ {1, . . . ,m}, succG(w j) = v j1, . . . ,v jn,x1, . . . ,xk,w j1, . . . ,w jn if succG(v j) = v j1, . . . ,v jn.

Example1. Let Σ = {0,s}, Θ = {g,h}, ϕ : Σ → Θ be a bijection defined as0 7→ g and s 7→ h, and
f 6∈ Σ∪Θ, where the arities of0,s,g,h, f are respectively 0, 1, 1, 3 and 2. Namely we consider the case
k = 1. The standard equationsf(0,x) → g(x), f(s(y),x) → h(y,x, f(y,x)) of primitive recursion can be
expressed by the infinite GRS

⋃

m≥1Gm, whereGm is themth set of unfolding graph rewrite rules over
F = Σ∪Θ∪{f} definingf. In this case, for eachm≥ 1,Gm consists of a single rule. For example, in case
i = 1,2,3, Gi consists of the rewrite rule(i) pictured in Figure 1. As seen from the pictures, the unfolding
graph rewrite rules in Figure 1 express the infinite instances f(0,x) → g(x), f(s(0),x) → h(0,x,g(x)),
f(s(s(0)),x) → h(s(0),x,h(0,x,g(x))), ..., representing terms as suitably shared term graphs.

To keep every term graph compatible with the associated argument separation, in [10], for any redex
(R,ϕ), the homomorphismϕ is limited to aninjectiveone. In this paper, instead of assuming injectivity
of homomorphisms, we rather indicate argument separationsexplicitly.

Definition 5 (Term graphs with argument separation). In accordance with the idea of safe recursion,
we assume that the argument positions of every function symbol are separated into the normal and
safe ones, writingf (x1, . . . ,xk ;xk+1, . . . ,xk+l) to denotek normal arguments andl safe ones. We al-
ways assume that every constructor symbol inC has safe argument positions only. The argument
separations of function symbols are taken into account in labeled graphs in such a way that for ev-
ery successoru of a nodev we write u ∈ nrm(v) if u is connected to a normal argument position
of labG(v), and u ∈ safe(v) if otherwise. For two distinct nodesv0 and v1, if labG(v0) = labG(v1),
then, for any j ∈ {1, . . . ,arity(labG(v0))}, u0 ∈ nrm(v0) ⇔ u1 ∈ nrm(v1) for the j th successorui of vi

(i = 0,1). Notationally, we writesuccG(v) = v1, . . . ,vk ;vk+1, . . . ,vk+l to express the separation such that
v1, . . . ,vk ∈ nrm(v) andvk+1, . . . ,vk+l ∈ safe(v). We assume that any homomorphismϕ : G → H pre-
serves argument separations. Namely, for eachv∈ dom(labG), if succG(v) = v1, . . . ,vk; vk+1, . . . ,vk+l ,
thensuccH(ϕ(v)) = ϕ(v1), . . . ,ϕ(vk); ϕ(vk+1), . . . ,ϕ(vk+l).

Let us recall the idea of safe recursion that the number of recursive calls is measured only by a normal
argument and recursion terms can be substituted only for safe arguments. This motivates us to introduce
the following safe version of unfolding graph rewrite rules.

38 Complexity Analysis of Precedence Terminating Infinite Graph Rewrite Systems

'&%$!"#f

��

��
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴

��

❍
❊

❇
❄
❀
✽
✻

s

��

h

xx || ���
�
�
�

��
✤
✤
✤

0 ⊥ ⊥ gss oo❴ ❴ ❴

Figure 2: Example of a safe recursive unfolding graph rewrite rule

Definition 6 (Safe recursive unfolding graph rewrite rules). We call an unfolding graph rewrite rulesafe
recursiveif the following constraints imposed on the clause 3 and 7 in Definition 4 are satisfied.

1. In the clause 3,v1 ∈ nrm(y), and in the clause 7,v j1, . . . ,v jn ∈ nrm(w j) andw j1, . . . ,w jn ∈ safe(w j).

2. In the clause 3 and 7, for eachj ∈ {1, . . . ,k}, x j ∈ nrm(y) if and only if x j ∈ nrm(wi) for all
i ∈ {1, . . . ,m}.

As a consequence of Definition 6, we have a basic property of safe recursive unfolding graph rewrite
rules, which ensures that rewriting by any unfolding graph rewrite rule does not change the structures of
subgraphs in normal argument positions.

Corollary 1. Let (G,y,w1) be a safe recursive unfolding graph rewrite rule with the setVG of vertices
consisting of1+2m+k+ l elements y, v1, . . . ,vm, w1, . . . ,wm, x1, . . . ,xk+l specified as in Definition 4 and
6, wheresuccG(y) = v1,x1, . . . ,xk ;xk+1, . . . ,xk+l . Then G↾u❁nrm G↾y holds for any j∈ {1, . . . ,m} and
for any node u∈ nrm(w j).

Corollary 1 follows from an observation that, for anyj ∈ {1, . . . ,m} and for any nodeu∈ nrm(w j),
either u ∈ dom(labG) and u = vi for somei ∈ {1, . . . ,m}, or u 6∈ dom(labG) andu = xi for somei ∈
{1, . . . ,k}. This is exemplified by a safe recursive (constructor) unfolding graph rewrite rule in Figure
2 in casem= 2 andl = k = 1 that expresses the term rewrite rulef(s(;0),x;y)→ h(0,x;y,g(x; y)). To
make a contrast, every edgev // u is expressed asv //❴❴❴ u if u∈ safe(v) andlabG(v) ∈ D and as
v // u if labG(v) ∈ C .

4 Precedence termination with argument separation

Every unfolding graph rewrite rule isprecedence terminatingin the sense of [16]. In this section we pro-
pose a restriction of the standard precedence termination orders,precedence termination with argument
separation. To show the polynomial runtime complexity of those GRSs, wealso introduce a non-standard
number-theoretic interpretation of GRSs precedence terminating with argument separation.

Let F = C ∪D be a signature. Aprecedence< is a well founded partial binary relation onF . The
rank rk : F → N is defined to be compatible with<: rk(g) < rk(f) ⇔ g< f . We always assume that
every constructor symbol is<-minimal.

Definition 7 (A restrictive sub-term graph relation❁nrm and precedence termination with argument
separation). Let < be a precedence on a signatureF and G,H ∈ T G (F). We write H ❁nrm G if
H ⊑G↾v holds for some nodev∈ nrm(rootG). The relationH <pt+nrm G holds if labH(v)< labG(rootG)
for anyv∈VH wheneverlabH(v) is defined, and additionally one of the following two cases holds.

1. H 6pt+nrm G↾u for some successor nodeu of rootG.

Naohi Eguchi 39

2. labH(rootH) is defined, i.e.labH(rootH)< labG(rootG),

• H ❁nrm G for eachv∈ nrm(rootH), and
• H↾v<pt+nrm G for eachv∈ safe(rootH).

We say that a GRSG over a signatureF is precedence terminating with argument separationif for some
separation of argument positions and for some precedence< onF , G↾r <pt+nrm G↾l holds for each rule
(G, l , r) ∈ G for the relation<pt+nrm induced by the precedence<.

Let us recall we always assume that every constructor is minimal in any precedence. By the mini-
mality, for any constructor rewrite rule(G, l , r) ∈ G , if G↾r <pt+nrm G↾l holds by Case 1 of Definition 7,
G↾r ⊑ G↾v holds for some successor nodev of l .

Definition 8 (Safe paths and a classT G nrm(F) of terms).

1. A path〈v1,m1, . . . ,vk−1,mk−1,vk〉 in a term graphG is called asafeone ifv j+1 ∈ safe(v j) for all j ∈
{1, . . . ,k−1}. Notationally, for a term graphG and two nodesu,v∈VG, we writeu∈ safepathG(v)
if u lies on a safe path fromv in G. We will also use the notationsafepathG(v) to denote the set of
such nodesu. The relationu∈ safepathG(rootG) will be simply written asu∈ safepathG.

2. Given a signatureF =C ∪D , we define a subsetT G nrm(F)⊆T G (F). It holdsG∈T G nrm(F)
if G ∈ T G (C), or G↾v ∈ T G (C) for eachv ∈ nrm(rootG) and G↾v ∈ T G nrm(F) for each
v∈ safe(rootG).

By definition, the rootrootG of G lies on the trivial safe path fromrootG in G. In the graph rewrite
rule (G, l , r) in Figure 2, visually every safe path consists only of dashededges · //❴❴❴ · . Thus, for
non-trivial examples, the right bottom⊥ lies on a safe path froml , and both the same⊥ andg lie on
a safe path fromr. The definition of the classT G nrm(F) yields G ∈ T G nrm(F) for any basic term
graphG∈ T G (F).

Lemma 1. LetG be a constructor GRS over a signatureF and G∈ T G nrm(F).

1. Let(H, l , r) ∈ G be a rewrite rule andϕ : H↾l → G a homomorphism. Then any path fromrootG
to ϕ(l) is a safe path.

2. Suppose additionally thatG is precedence terminating with argument separation. If G−→
G

H, then
H ∈ T G nrm(F).

Proof. PROPERTY 1. We show the property by contradiction. Assume that there exists a path from
rootG to ϕ(l) that is not safe. Then the path passes a normal argument position of an intermediate node
v. Since constructors have only safe argument positions,labG(v) must be a defined symbol. Hence
G↾ϕ(l) ∈ T G (C) by the definition of the classT G nrm(F). But labG(ϕ(l)) = labH(l) ∈ D sinceG is
a constructor GRS, contradictingG↾ϕ(l) ∈ T G (C).

PROPERTY 2. Suppose thatG results inH by applying a redex(R,ϕ) for a ruleR= (K, l , r) ∈ G .
Since any path fromrootG to ϕ(l) is a safe one by Property 1, it suffices to show thatH↾rH ∈T G nrm(F)
for the noderH ∈ H corresponding tor ∈ VK . We show thatH ↾rH ∈ T G nrm(F) holds by induction
according to the definition of the relation<pt+nrm.

CASE. K↾r 6pt+nrm K↾u for some successor nodeu of l : In this case, sinceG is a constructor GRS,
K↾r is a sub-term graph ofK↾l as noted after Definition 7. HenceH↾rH ∈ T G nrm(F) follows from the
assumptionG↾ϕ(u) ∈ T G nrm(F).

CASE. Otherwise: For eachv∈ nrm(r), K↾r is a sub-term graph ofK↾u for someu∈ nrm(l). By
assumption,G↾ϕ(u) ∈ T G (C) for eachu ∈ nrm(l), and henceH ↾v ∈ T G (C) also holds for each
v∈ nrm(rH). On the other hand,K↾v<pt+nrm K↾l for eachv∈ safe(r). The induction hypothesis yields
H↾v∈ T G nrm(F) for eachv∈ safe(rH). These allow us to concludeH↾rH ∈ T G nrm(F).

40 Complexity Analysis of Precedence Terminating Infinite Graph Rewrite Systems

For a finite setN = {mi ∈ N | i ∈ I}, let ∑N denote the natural∑i∈I mi with the convention∑ /0= 0.

Definition 9 (Number-theoretic interpretation of term graphs). Let G ∈ T G nrm(F) be a closed term
graph over a finite signatureF = C ∪D , f = labG(rootG), and< be a precedence onF . Then, given a
positive naturalℓ, we define an interpretationIℓ : T G nrm(F)→ N by

Iℓ(G) = ∑
{

(1+ ℓ)2·rk(f) ·
(

1+∑u∈nrm(v) dpth(G↾u)
)

| v∈ safepathG andG↾v 6∈ T G (C)
}

.

By definition,Iℓ(G) = 0 if G∈T G (C). We writeJℓ(G↾v) to abbreviate the component(1+ℓ)2·rk(f) ·
(

1+∑u∈nrm(v) dpth(G↾u)
)

.

Lemma 2 (Main lemma). Let (G, l , r) be a constructor rewrite rule such that G↾r <pt+nrm G↾l holds for
the relation<pt+nrm induced by a precedence< on a finite signatureF . Also let GL,GR ∈ T G nrm(F)
respectively denote closed instances of G↾l and G↾r. If |G↾r| ≤ ℓ, thenIℓ(GR) < Iℓ(GL) holds for the
interpretationIℓ induced by the precedence<.

Proof. We estimate an upper bound forIℓ(GR) = ∑{Jℓ(G↾v) | v∈ safepathGR
andG↾v 6∈ T G (C)} di-

viding the domain{v∈VGR
| safepathGR

andG↾v 6∈T G (C)} into two parts. LetVl ⊆VGL
denote the set

of labeled nodes that already occur inG↾l . More precisely, ifGL is the result of instantiation by a homo-
morphismϕ from G↾l to an underlying term graph,Vl = {v∈VGL

| ∃u∈VG↾l ∩dom(labG) s.t. v= ϕ(u)}.
In other words,VGL

\Vl is the set of nodes that are newly added by the instantiation.Let Vr denote the
corresponding subset ofVGR

. Since every undefined node inG↾r occurs inG↾l as a general assumption,
VGR

\Vr ⊆VGL
\Vl holds. Write f to denotelabG(l).

Claim 1. Jℓ(GR↾v)≤ (1+ℓ)2·rk(f)−1 ·
(

1+∑u∈nrm(rootGL
) dpth(GL↾u)

)

holds for any v∈ safepathGR
∩Vr.

Write g to denotelabGR
(v), which is defined by definition ofVr. By the assumptionG↾r <pt+nrm G↾l ,

g< f for the given precedence<, and hencerk(g)< rk(f) holds. By Definition 7, for eachv′ ∈ nrm(v),
GR↾v′ is a sub-term graph ofGL↾u for someu∈ nrm(rootGL

). Hence, for eachv′ ∈ nrm(v), dpth(GR↾v′)≤

∑u∈nrm(rootGL
) dpth(GL↾u), i.e., 1+∑u∈nrm(v) dpth(GR↾u)≤ 1+arity(g) ·

(

∑u∈nrm(rootGL
) dpth(GL↾u)

)

≤

(1+ℓ) ·
(

1+∑u∈nrm(rootGL
) dpth(GL↾u)

)

. Lettingv∈ safepathGR
∩Vr, this allow us to reason as follows.

Jℓ(GR↾v) ≤ (1+ ℓ)2·rk(f)−2 ·
(

1+∑u∈nrm(v) dpth(GR↾u)
)

(sincerk(g)≤ rk(f)−1)

≤ (1+ ℓ)2·rk(f)−1 ·
(

1+∑u∈nrm(rootGL
) dpth(GL↾u)

)

Since|safepathGR
∩Vr| ≤ |G↾r| ≤ ℓ, Claim 1 allows us to reason as follows.

∑
{

Jℓ(GR↾v) | v∈ safepathGR
∩Vr andGR↾v 6∈ T G (C)

}

≤ ℓ · (1+ ℓ)2·rk(f)−1 ·
(

1+∑u∈nrm(rootGL
) dpth(GL↾u)

)

(by Claim 1)

< (1+ ℓ)2·rk(f) ·
(

1+∑u∈nrm(rootGL
) dpth(GL↾u)

)

= Jℓ(GL) (1)

Claim 2. If v ∈ safepathGR
\Vr and GR↾v 6∈ T G (C), then v∈ safepathGL

\Vl and GL↾v 6∈ T G (C).

Supposev∈ safepathGR
\Vr and,GR↾v 6∈ T G (C). ThenGL↾v 6∈ T G (C) sinceGR↾v⊑ GL↾v holds

as mentioned above. We showv∈ safepathGL
\Vl by contradiction. So assumev 6∈ safepathGL

\Vl. Then,

Naohi Eguchi 41

sinceGL ∈ T G nrm(F), GL↾v∈ T G (C) holds as observed in the proof of Lemma 1.1. Claim 2 allows
us to reason as follows.

∑
{

Jℓ(GR↾v) | v∈ safepathGR
\Vr andGR↾v 6∈ T G (C)

}

≤ ∑
{

Jℓ(GL↾v) | v∈ safepathGL
\Vl andGL↾v 6∈ T G (C)

}

(by Claim 2)

≤ ∑
{

Jℓ(GL↾v) | v∈ safepathGL
\{rootGL

} andGL↾v 6∈ T G (C)
}

(2)

Combining the inequalities (1) and (2), we concludeIℓ(GR)< Iℓ(GL).

The next lemma states that thenormal partof a starting basic term graph does not change under
precedence termination with argument separation.

Lemma 3. LetG be a constructor GRS over a signatureF that is precedence-terminating with argument
separation and G0 ∈ T G (F) a closed basic term graph. If G0 −→∗

G
G, then G↾u❁nrm G0 holds for any

nodes v∈ safepathG and u∈ nrm(v).

Proof. SupposeG0 −→n
G

G. We show the assertion by induction onn≥ 0. In the base casen= 0, G= G0

andnrm(v) = /0 for anyv∈ safepathG\{rootG} sinceG0 is basic. Hence the assertion trivially holds.
For the induction step, suppose thatG0 −→n

G
G holds and thatG−→

G
H is induced by a redex(R,ϕ)

in H for a rewrite ruleR= (K, l , r) ∈ G and a homomorphismϕ : K↾l → G. ThenG,H ∈ T G nrm(F)
by Lemma 1.2. First let us consider the caseϕ(l) = rootG. By induction hypothesis, it suffices to
show that for any nodesvH ∈ safepathH anduH ∈ nrm(vH) there exists a nodevG ∈ safepathG such that
H↾uH ❁nrm G↾vG holds. LetvH ∈ safepathH anduH ∈ nrm(vH).

CASE. K↾r 6pt+nrm K↾u for some successor nodeu of l : SinceG is a constructor GRS,K↾r ⊑ K↾u,
and henceH ⊑ G holds. If vH ∈ safepathG, then we can letvG = vH . If vH 6∈ safepathG, then any
path from rootG to vH passes an normal argument position of a nodevG ∈ safepathG. This means
H↾vH ❁nrm G↾vG, and thusH↾uG ❁nrm G↾vG.

CASE. Otherwise: Ifv∈VG \{ϕ(u) | u∈VG↾l}, then, as in the previous case, one can find a node
vG ∈ safepathG such thatH↾vH ❁nrm G↾vG. Thus we assume thatvH is mapped fromVK↾r by ϕ . Then
K↾r <pt+nrm K↾l yieldsH↾vH <pt+nrm G. By the definition of the relation<pt+nrm, H↾uH ❁nrm G↾ϕ(l)
holds. Sinceϕ(l) ∈ safepathG by Lemma 1.1, we can letvG = ϕ(l).

Now consider the caseϕ(l) 6= rootH . Let rH ∈ H denote the node corresponding tor ∈ K. Let us
consider the subcasevH ∈VH↾rH . In this subcase, sincevH ∈ safepathH(rH), as in the caseϕ(l) = rootG,
there exists a nodevG ∈ safepathG such thatH↾uH ❁nrm G ↾ vG holds. Sinceϕ(l)∈ safepathG by Lemma
1.1, the induction hypothesis yieldsH↾uG ❁nrm G0. Consider the subcasevH 6∈VH↾rH . In this subcase,
vH ∈ safepathG. As in the previous subcase,VH↾uH ∩VH↾rH ⊆ VG↾uH ∩VG↾ϕ(l) holds. On the other side
VH↾uH \VH↾rH ⊆VG↾uH \VG↾ϕ(l) holds. Combining the two inclusions, we reason as

VH↾uH = (VH↾uH ∩VH↾rH)∪ (VH↾uH \VH↾rH)⊆
(

VG↾uH ∩VG↾ϕ(l)

)

∪
(

VG↾uH \VG↾ϕ(l)

)

⊆VG↾uH .

This impliesH↾uH ⊑ G↾uH . SincevH ∈ safepathG anduH ∈ nrm(vH), the induction hypothesis yields
G↾uH ❁nrm G0, and thusH ↾ uH ❁nrm G0.

To express that a term graphG is maximally sharedwith respect to normal argument positionsof
the rootrootG, we define a term graphG∩nrm consisting only of sub-term graphs connecting to normal
argument positions ofrootG. If G represents a termf (t1, . . . , tk ; tk+1, . . . , tk+l), thenG∩ nrm represents
the termf (t1, . . . , tk ;x1, . . . ,xl) with l fresh variablesx1, . . . ,xl .

42 Complexity Analysis of Precedence Terminating Infinite Graph Rewrite Systems

Definition 10. Let G ∈ T G (F) be a term graph withsuccG(rootG) = v1, . . . ,vk ;vk+1, . . . ,vk+l . If
labG(v) is not defined for anyv ∈ safe(rootG), thenG∩ nrm simply denotesG. Otherwise,G∩ nrm

is defined froml distinct nodesu1, . . . ,ul not contained inVG as follows.

VG∩nrm = {rootG}∪
(

⋃

v∈nrm(rootG)VG↾v

)

∪{u1, . . . ,ul}

EG∩nrm =
{

(u,v) ∈ EG | u,v∈ {rootG}∪
(

⋃

v∈nrm(rootG)VG↾v

)}

∪{(rootG,u j) | j = 1, . . . , l}

labG∩nrm(v) =

{

labG(v) if v∈VG,

not defined otherwise.
rootG∩nrm = rootG

By definition,succG∩nrm(rootG∩nrm) = v1, . . . ,vk ;u1, . . . ,ul . A choice of nodesu1, . . . ,ul is not important
and hence will be always omitted in later discussions.

Since an underlying signatureF = C ∪D is finite, for any (infinite) constructor GRSG over F ,
the defined symbolsD can be partitioned into two setsDinf andDfin so that every symbolf ∈ Dinf

is defined by an infinite number of rules whereas every symbolf ∈ Dfin is defined by a finite number
of rules. Accordingly, we define a partition of every constructor GRSG into two setsGinf andGfin by
Ginf = {(G, l , r) ∈ G | labG(l) ∈ Dinf} andGfin = {(G, l , r) ∈ G | labG(l) ∈ Dfin}.

Theorem 2. Let G be a constructor GRS over a finite signatureF that is precedence terminating
with argument separation and letmax({arity(f) | f ∈ F}∪{|K↾r| | ∃l (K, l , r) ∈ Gfin}) ≤ d. Suppose
that, for any rule(K, l , r) ∈ Ginf , (i) (K ↾ l)∩ nrm is maximally shared,(ii) K ↾v is closed for every
v ∈ nrm(l)∩ dom(labK), (iii) |{v ∈ nrm(l) | v 6∈ dom(labK)}∪ (

⋃

v∈safe(l)VK↾v)| ≤ d, and(iv) |K↾r| ≤
|K↾l |+ |

⋃

v∈nrm(r)VK↾v|. Then, for any closed basic term graph G0 ∈ T G (F), if G0 −→∗
G

G, G−→
G

H
and2· (|

⋃

v∈nrm(rootG0)
VG0↾v|+d)≤ ℓ, thenIℓ(H)< Iℓ(G) holds.

We write(VG)nrm to abbreviate the set
⋃

u∈nrm(rootG)VG↾u. The conditions (i) and (ii) ensure that one
step of rewriting can only reduce a constant number of nodes in (VK↾l)nrm by sharing. The condition
(iii) ensures the same for nodes inVK↾l \ (VK↾l)nrm. Since the condition (iv) implies|K↾r| ≤ 2· |K↾l |, the
condition expresses that not onlyK↾l but K↾r is also suitably shared.

Proof. Given a closed basic term graphG0 ∈ T G (F), suppose thatG0 −→∗
G

G and thatG −→
G

H is
induced by a redex(R,ϕ) in G for a rule R = (K, l , r) and a homomorphismϕ : K ↾ l → G. Then
G,H ∈ T G nrm(F) holds by Lemma 1.2. Let 2·

(

|(VG0)nrm|+d
)

≤ ℓ. We show that|K ↾r| ≤ 2 ·
(

|(VG↾ϕ(l))nrm|+d
)

holds. In case(K, l , r) ∈ Gfin, |K↾r| ≤ d holds by assumption. In case(K, l , r) ∈ Ginf

we deduce the following two inequalities.

|K↾l | ≤ |(VG↾ϕ(l))nrm|+d (3)

|(VK↾r)nrm| ≤ |(VG↾ϕ(l))nrm|+d (4)

The homomorphismϕ is injective over(VK↾l)nrm∩dom(labK) by maximal sharing of(K↾l)∩nrm. Hence
|K↾l | ≤ |(VG↾ϕ(l))nrm|+d holds by the assumptions (ii) and (iii).

We deduce the inequality (4) by case analysis. In case thatK↾r 6pt+nrm K↾u for some successor
nodeu of l , K↾r ∈ T G (C), and hence|(VK↾r)nrm|= | /0| = 0 since constructors only have safe argument
positions. Otherwise, for everyv∈ nrm(r), K↾v is a sub-term graph ofK↾u for someu∈ nrm(l). Thus
|(VK↾r)nrm| ≤ |(VK↾l)nrm| holds, and hence the inequality (4) follows from|(VK↾l)nrm| ≤ |(VG↾ϕ(l))nrm|+d.

Combining the assumption (iv) with the inequalities (3) and(4) yields|K↾r| ≤ 2·
(

|(VG↾ϕ(l))nrm|+d
)

.

On the other hand, sinceϕ(l) ∈ safepathG by Lemma 1.1, Lemma 3 yields|(VG↾ϕ(l))nrm| ≤ |(VG0)nrm|.

Naohi Eguchi 43

Therefore|K↾r| ≤ 2·
(

|(VG0)nrm|+d
)

≤ ℓ holds. Now, lettingrH ∈VH denote the node corresponding to
r ∈VK , we deduceIℓ(H)< Iℓ(G) as follows.

Iℓ(H)

= Iℓ(H↾rH)+∑{Jℓ(H↾v) | v∈ safepathH \ safepathH(rH) andH↾v 6∈ T G (C)}

< Iℓ(G↾ϕ(l))+∑{Jℓ(H↾v) | v∈ safepathH \ safepathH(rH) andH↾v 6∈ T G (C)} (by Lemma 2)

≤ Iℓ(G↾ϕ(l))+∑{Jℓ(G↾v) | v∈ safepathG\ safepathG(ϕ(l)) andH↾v 6∈ T G (C)}= Iℓ(G)

The second inequality follows fromsafepathH \ safepathH(rH)⊆ safepathG\ safepathG(ϕ(l)).

Lemma 4. Let G be a constructor GRS over a finite signatureF that is precedence-terminating with
argument separation and letmax({arity(f) | f ∈ F}∪{|G↾r| | ∃l (G, l , r) ∈ Gfin}) ≤ d. Suppose the
assumptions(i)–(iv) in Theorem 2 are fulfilled. Then, for any closed basic term graph G0 ∈ T G (F), if

G0 −→n
G

G, then|G| ≤ |G0|+n·
(

|
⋃

v∈nrm(rootG0)
VG0↾v|+2d

)

holds.

Proof. By induction onn. In the base casen = 0, G = G0 and hence the assertion trivially holds. For
the induction step, suppose thatG0 −→n

G
G holds and thatG −→

G
H is induced by a redex(R,ϕ) in G

for a ruleR= (K, l , r) ∈ G and a homomorphismϕ : K↾l → G. In caseR∈ Gfin, |H| ≤ |G|+d by the
choice of the constantd. SupposeR∈ Ginf . As in the proof of Theorem 2, the homomorphismϕ is
injective over(VK↾l)nrm∩dom(labK) by maximal sharing of(K↾l)∩nrm. Thus, by the assumptions (ii)
and (iii), at mostd nodes inVK↾l can be shared by the homomorphismϕ . These observations imply
|H| ≤ |G|+ |H↾rH |− |G↾ϕ(l)| ≤ |G|+ |K↾r|+d−|K↾l | for the noderH ∈VH corresponding tor ∈VK .
Therefore|H| ≤ |G|+ |(VK↾l)nrm|+d holds by the assumption (iv)|K↾r| ≤ |K↾l |+ |(VK↾l)nrm|. For the
same reason as above|(VK↾l)nrm| ≤ |(VG↾ϕ(l))nrm|+ d holds, and thus|H| ≤ |G|+ |(VG↾ϕ(l))nrm|+ 2d
holds. On the other hand, sinceϕ(l) ∈ safepathG by Lemma 1.1,|(VG↾ϕ(l))nrm| ≤ |(VG0↾rootG0

)
nrm

| holds
by Lemma 3. Therefore|H| ≤ |G|+ |(VG↾rootG0

)
nrm

|+ 2d holds. Combining this inequality with the

induction hypothesis|G| ≤ |G0|+ n ·
(

|(VG0↾rootG0
)
nrm

|+2d
)

allows us to conclude|H| ≤ |G0|+(n+

1) ·
(

|(VG0↾rootG0
)
nrm

|+2d
)

.

Corollary 2. Suppose thatG is a constructor GRS over a finite signatureF precedence-terminating with
argument separation that enjoys the assumptions(i)–(iv) in Theorem 2. Then there exists a polynomial p:
N→ N such that, for any closed basic term graph G0 ∈ T G (F) and for any term graph G∈ T G (F),
if G0 −→m

G
G, then the following two conditions hold.

1. m≤ p
(

|
⋃

v∈nrm(rootG0)
VG0↾v|

)

.

2. |G| ≤ p
(

|
⋃

v∈nrm(rootG0)
VG0↾v|

)

+ |VG0 \
⋃

v∈nrm(rootG0)
VG0↾v|.

Proof. We only show the existence of a witnessing polynomialq : N→ N for Property 1. The construc-
tion of a polynomialp witnessing both Property 1 and 2 will be clear from the polynomial q and Lemma
4. Given a GRSG over a finite signatureF , let max{arity(f) | f ∈ F} ≤ d. In addition, given a closed

basic term graphG0 ∈ T G (F), let 2·
(

|(VG0↾rootG0
)
nrm

|+d
)

≤ ℓ. Suppose thatG0 −→m
G

G holds for

some term graphG ∈ T G (F). By Theorem 2,m can be bounded byIℓ(G0). SinceG0↾v ∈ T G (C)
for any nodev∈ safepathG0

\{rootG0}, Iℓ(G0) = Jℓ(G0) holds. Now letq denote a polynomial such that
(2x+2d+1)2·max{rk(f)| f∈F} ·(1+dx)≤ q(x). Since∑v∈nrm(rootG0)

dpth(G0↾v)≤ d · |(VG0↾rootG0
)
nrm

|, the

inequality 2·
(

|(VG0↾rootG0
)
nrm

|+d
)

≤ ℓ allows us to concludem≤ Iℓ(G0)≤ q
(

|(VG0↾rootG0
)
nrm

|
)

.

44 Complexity Analysis of Precedence Terminating Infinite Graph Rewrite Systems

Remark2. The assumption (iv) in Theorem 2 can be relaxed as|K↾r| ≤ |K↾l |+ p
(

(VK↾l)nrm
)

for some
polynomial p if ℓ is sufficiently large so that a certain polynomial in|(VG0)nrm| determined byp can be
bounded byℓ. Since such a relaxed form of the condition (iv) likely holdsunder a suitable term rewriting
adoption of unfolding graph rewrite rules, it turns out thatjust unfolding a recursion schema seems not
crucial to deduce the polynomial complexity. But, more importantly, as implied from the assumption
(iii), the number of variables occurring in the right-hand side of every rule can be constantly bounded,
which clearly fails in any reasonable term rewriting formulation of unfolding rewrite rules.

The next lemma ensures that the assumption (i) in Theorem 2 isnot too restrictive.

Lemma 5. LetG be a constructor GRS over a finite signatureF precedence-terminating with argument
separation. For any maximally shared, closed basic term graph G0 ∈ T G (F), if G0 −→∗

G
G, then(G↾

v)∩nrm is maximally shared for any v∈ safepathG.

Proof. Let v∈ safepathG andu0,u1 ∈VG↾v. AssumetermG(G↾u0) = termG(G↾u1). By the definition of
the term graph(G↾v)∩nrm, it suffices to consider the caseu0,u1 ∈ (VG↾v)nrm. In this case, by Lemma 3,
G↾u j ❁nrm G0 holds for eachj = 0,1. This means thatG↾u j = G0↾u j holds for eachj = 0,1, and thus
termG0(G0↾u0) = termG0(G0↾u1) holds by the assumption. Maximal sharing ofG0 impliesu0 = u1.

As a consequence of Lemma 1.1 and Lemma 5, for any (completelydefined) constructor GRSG
over a finite signature that is precedence terminating with argument separation, if there exists a constant
d such that the assumptions (i)–(iv) in Theorem 2 hold for any rule (K, l , r) ∈ Ginf , then any rewriting
sequenceG0 −→G

G1 −→
G
· · · starting with a maximally shared, closed basic term graphG0 leads to a

constructor term graph in normal form.

Theorem 3. Every general safe recursive function can be computed by a constructor GRS that prece-
dence terminating with an argument separation fulfilling the conditions(i)–(iv) in Theorem 2.

Proof. By induction over the definition off . In the base case, every initial function can be defined by a
single constructor rewrite rule(G, l , r) in one of the following shapes 1 and 2.

1. G↾r = G↾v for some successor nodev of l .

2. VG consists of 2+k+ l +n elementsu, v, x1, . . . ,xk+l , w1, . . . ,wn such thatl = u, r = v,

• {labG(u), labG(v), labG(w1), . . . , labG(wn)} ⊆ F ,

• labG(x j) is undefined for allj ∈ {1, . . . ,k+ l},

• succG(u) = x1, . . . ,xk ;xk+1, . . . ,xk+l ,

• succG(v) = x j1, . . . ,x jm ;w1, . . . ,wn for some{ j1, . . . , jm} ⊆ {1, . . . ,k}, and

• succG(w j) = x1, . . . ,xk ;xk+l , . . . ,xk+l for all j ∈ {1, . . . ,n}.

The graph rewrite rule (1) below is an instance of Case 2 withk= 2, l = 1 andn= 2, which expresses the
term rewrite rulef(x1,x2 ;x3)→ h(x1 ;g1(x1,x2 ;x3),g2(x1,x2 ;x3)). As in Figure 2, every edgev // u
is expressed asv //❴❴❴ u if u∈ safe(v) andlabG(v) ∈ D .

(1) h

��

��⑧
⑧
⑧
⑧
⑧

��
✤
✤
✤

'&%$!"#f

�� ❇
❇❇

❇❇
❇❇

❇❇

((P
PPPPPPP g1

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

�� ❅
❅

❅
❅ g2

vv♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥

~~⑦⑦
⑦⑦
⑦⑦
⑦

��
✤
✤
✤

⊥ ⊥ ⊥

(2) GFED@ABCo
2,2
j

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

�� ��❅
❅

❅
❅

''❖
❖❖❖❖❖❖❖ c j

⊥ ⊥ ⊥ ⊥

(3) ?>=<89:;i
2,2
3

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

�� ��❄
❄

❄
❄

''◆
◆◆◆◆◆◆◆

⊥ ⊥ ⊥ ⊥

Naohi Eguchi 45

Every instance of(Constants)can be defined by a single graph rewrite rule as (2) above in a special
shape of Case 2, and each of(Projections), (Predecessors)and (Conditional) can be defined by a
single graph rewrite rule as (3) in the form of Case 1. The induction step splits into two cases. In case
that f is defined by(Safe composition), f is defined by a constructor graph rewrite rule in the form of
Case 2 together with the constructor GRSs obtained from induction hypothesis. In case thatf is defined
by (General safe recursion), f is defined by an infinite set of constructor safe recursive unfolding graph
rewrite rules together with the constructor GRSs obtained from induction hypothesis. For instance,
suppose thatf is defined byf (ε ;z) = g(;z) and f (c(;x,y) ;z) = h(x,y;z, f (x; z), f (y;z)). By induction
hypothesis,g andh can be respectively computed by some constructor GRSsGg andGh defining the
corresponding function symbolsg,h ∈ D . Let e,c ∈ C respectively correspond toε ,c and f ∈ D to f
Also let Σ = {e,c} andΘ = {g,h} with a bijective correspondencee 7→ g,c 7→ h. Then, for eachm≥ 1,
one can define themth setGm of safe recursive unfolding graph rewrite rules overΣ∪Θ definingf. Since
Σ ⊆ C , Gm is a constructor GRS for everym≥ 1. Since elements of

⋃

m≥1Gm expressf(e ;z) → g(;z),
f(c(;e,e) ;z)→ h(e,e ;z,g(;z),g(; z)), . . ., f is computed by the infinite GRSGg ∪Gh∪

(

⋃

m≥1Gm
)

.
The precedence< is defined so that, letting every constructor be<-minimal, for every rule(G, l , r),

labG(v)< labG(l) for anyv∈VG↾r wheneverlabG(v) is defined. Theng< f means thatf is defined from
g for the functions f ,g respectively corresponding tof,g. Hence the well-foundedness of< follows
from the observation that the relation “is defined from” is well-founded by the definition of general safe
recursive functions. Precedence termination of so obtained GRSs is obvious.

Let<pt+nrm be the relation induced by the precedence<. By definition, the subsetGinf of G consists
of safe recursive unfolding graph rewrite rules whereasGfin contains no unfolding graph rewrite rule.
It follows from the definition of safe recursive unfolding graph rewrite rules thatG↾l <pt+nrm G↾r for
each(G, l , r) ∈ Ginf (See also Corollary 1). Consider a rewrite rule(G, l , r) ∈ Gfin. It is obvious that
G↾l <pt+nrm G↾r holds if (G, l , r) is an instance of Case 1. Suppose thatVG consists of 2+ k+ l + n
elementsl , r, x1, . . . ,xk+l , w1, . . . ,wn as specified in Case 2. Letv∈VG↾r = {r,x1, . . . ,xk+l ,w1, . . . ,wn}.
Consider the case thatlabG(v) is not defined, i.e.,v ∈ {x1, . . . ,xk+l}. In this case,v is a successor
node of l . NamelyG↾v = G↾u for some successor nodeu of l , and henceG↾ l <pt+nrm G↾v holds.
Assume thatlabG(v) ∈ F . Thenv ∈ {r,w1, . . . ,wn}. SincesuccG(w j) = x1, . . . ,xk ;xk+1, . . . ,xk+l for
every j ∈ {1, . . . ,n}, G↾l <pt+nrm G↾w j for every j ∈ {1, . . . ,n}. This yieldsG↾l <pt+nrm G↾v since
succG(v) = x j1, . . . ,x jm ;w1, . . . ,wn for some{ j1, . . . , jm} ⊆ {1, . . . ,k}. The conditions (ii)–(iv) follow
from the definition of unfolding graph rewrite rules. Choosing every rewrite rule(G, l , r) ∈ G so that
(G↾l)∩nrm is maximally shared allows one to conclude.

Corollary 3. For every general safe recursive function f , there exist a constructor GRSG that computes
f and a polynomial p: N → N such that, for any maximally shared, closed basic term graphG, if
G−→m

G
H, then m≤ p(n) and |H| ≤ p(n)+ |G| hold, where n denotes the size|

⋃

v∈nrm(rootG)VG↾v| (of the
union) of the subgraphs connected to the normal argument positions ofrootG only.

The corollary says that every general safe recursive function can be computed by a polynomially
bounded constructor GRS. Since such a witnessing GRS is polytime presentable in particular, Corollary
3 yields an alternative proof of Theorem 1.

5 Related works and further application

In this section we discuss two related works to see some potential applicability of the method presented
in the previous section and one more work to see a limit of the computational power of the method.

46 Complexity Analysis of Precedence Terminating Infinite Graph Rewrite Systems

In [15] a term rewrite systemRlcs, which computes the length of thelongest common subs-sequence
of two strings, is discussed. The rewrite systemRlcs contains instances of

f(ε ,y,z;w) → g(y,z;w) f(x,ε ,z;w) → g(x,z; w)
f(ci(x),c j (y),z;w) → hi, j(x,y,z; w, f(x,c j (y),z;w), f(ci(x),y,z; w)),

i.e., rewrite rules expressing safe recursion with multiple recursion arguments. For exactly the same
reason as in case of general safe recursion,Rlcs only admits a polynomialquasi-interpretation which
says nothing about polynomial runtime complexity. Due to the restriction to single recursion arguments,
it is not possible to represent these rules as instances of (safe recursive) unfolding graph rewrite rules.
However, as seen from an instance (1) below (where the variable z is ignored to ease the presentation),
Rlcs could be represented by an infinite GRS fulfilling the assumptions (i)–(iv) in Theorem 2.

(1) '&%$!"#f

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

��

��

✫
✩
✦
✤

✢
✚
✘

ci

��

c j

��

hi, j

xxtt❥❥❥❥
❥❥❥❥

❥❥❥❥
❥❥❥❥

❥❥❥❥
❥❥

ww♣ ♣ ♣ ♣ ♣ ♣ ♣

���
�
�
�

��
✤
✤
✤

ε ⊥ goo❴ ❴ ❴ gkk ❢❞❜❴❪❩❳

(2) /.-,()*+fi

��⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

�� ��
✳
✳
✳
✳
✳
✳
✳
✳

c

�� ��

hi

xx tt❥❥❥❥
❥❥❥❥

❥❥❥❥
❥❥❥❥

❥❥❥❥
❥❥❥

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦♦♦

��⑧
⑧
⑧
⑧

��

✕✤
✮
��

✮
✤

✕ ��❄
❄

❄
❄

��

❑
❄
✹

ε ⊥ ⊥ g0
ss oo❴ ❴ ❴ g1
vv

kk ❢❞❛❴❪❩❳

In a very recent work [2], Theorem 1 is expanded forsimultaneousgeneral safe recursion, e.g.,
fi(ε ,z;w) → gi(z;w)

fi(c(x,y),z; w) → hi(x,y,z; w, f0(x,z;w), f0(y,z;w), f1(x,z;w), f1(y,z;w))
(i = 0,1).

In contrast to the current approach, instead of taking an advantage of sharing in term graph rewriting,
the notion ofcacheis employed in [2] to avoid costly recomputations. A similarnotion, calledminimal
function graphs, can be found in [15], yielding that the rewrite systemRlcs can be executed in polynomial
time. As mentioned in Remark 2, the condition (iv) in Theorem2 can be relaxed as (iv)’|K↾r| ≤ |K↾

l |+O(|(VK↾l)nrm|). Thus, as seen from an instance (2) above, such the schema of simultaneous recursion
could be also represented by an infinite GRS enjoying the assumptions (i)–(iii) and (iv)’.

As shown in [14], it is known that the polynomial-space computable functions can be captured with
safe recursion (on notation)with parameter substitutions. To see an explicit boundary of the proposed
method, consider the term rewrite system below that expresses an instance of the schema.

f(ε ;y) → g(;y)
f(c(x) ;y) → h(x;y, f(x;p(x;y)), f(x;q(x;y)))

The rules below are the first three instances of unfolding theabove rules.
(0) f(ε ;y) → g(;y)
(1) f(c(ε) ;y) → h(ε ;y,g(;p(ε ;y)),g(;q(ε ;y)))
(2) f(c(c(ε)) ;y) → h(c(ε);y,h(ε ;y,g(;p(ε ;p(c(ε),y))),g(;q(ε ;p(c(ε),y)))),

h(ε ;y,g(;p(ε ;q(c(ε),y))),g(;q(ε ;q(c(ε),y)))))
One will see thatg occurs 2i times in theith instance(i) and none of the occurrences can be shared since
their arguments are different. For this reason, even if theyare represented as maximally shared GRSG ,
2|(VK↾l)nrm| ≤ |K↾r| for every(K, l , r) ∈ Ginf , and thus (even a relaxed form of) the condition (iv) fails.

6 Conclusion

Generalizing unfolding graph rewrite rules that express the schema (General Safe Recursion), we pro-
posed restrictive precedence termination orders, precedence termination with argument separation. The
restrictive notion together with suitable assumptions yields a new criterion for the polynomial runtime
complexity of infinite GRSs and for the polynomial-size normal forms in infinite GRSs. As discussed in

Naohi Eguchi 47

the last section, the proposed method can be potentially expanded for safe recursion with multiple recur-
sion arguments or simultaneous general safe recursion, andthus is indeed more flexible than unfolding
graph rules at least in a limited sense. It should be stressed, however, that it is unclear how to express
infinite instances of those recursion schemata with infinitegraph rewrite rules in a uniform way.

References

[1] T. Arai & G. Moser (2005):Proofs of Termination of Rewrite Systems for Polytime Functions. In: Proceedings
of the 25th FSTTCS, LNCS 3821, pp. 529–540, doi:10.1007/1159015643.

[2] M. Avanzini & U. Dal Lago (2015):On Sharing, Memoization, and Polynomial Time. In: Proceedings of the
32nd STACS, pp. 62–75, doi:10.4230/LIPIcs.STACS.2015.62.

[3] M. Avanzini, N. Eguchi & G. Moser (2011): A Path Order for Rewrite Systems that Com-
pute Exponential Time Functions. In: Proceedings of the 22nd RTA, LIPIcs 10, pp. 123–138,
doi:10.4230/LIPIcs.RTA.2011.123.

[4] M. Avanzini, N. Eguchi & G. Moser (2012):A New Order-theoretic Characterisation of the Poly-
time Computable Functions. In: Proceedings of the 10th APLAS, LNCS 7705, pp. 280–295,
doi:10.1007/978-3-642-35182-220.

[5] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert,R. Kennaway, M. J. Plasmeijer & M. R. Sleep
(1987):Term Graph Rewriting. In: Parallel Architectures and Languages Europe, Volume II, 259, pp. 141–
158, doi:10.1007/3-540-17945-38.

[6] S. Bellantoni & S. A. Cook (1992):A New Recursion-theoretic Characterization of the Polytime Functions.
Computational Complexity2(2), pp. 97–110, doi:10.1007/BF01201998.

[7] G. Bonfante, A. Cichon, J.-Y. Marion & H. Touzet (2001):Algorithms with Polynomial Interpretation Ter-
mination Proof. J. Funct. Program.11(1), pp. 33–53, doi:10.1017/S0956796800003877.

[8] G. Bonfante, J.-Y. Marion & J.-Y. Moyen (2001):On Lexicographic Termination Ordering with Space
Bound Certifications. In: The 4th Andrei Ershov Memorial Conference, Revised Papers, pp. 482–493,
doi:10.1007/3-540-45575-246.

[9] G. Bonfante, J.-Y. Marion & J.-Y. Moyen (2011):Quasi-interpretations A Way to Control Resources. Theor.
Comput. Sci.412(25), pp. 2776–2796, doi:10.1016/j.tcs.2011.02.007.

[10] U. Dal Lago, S. Martini & M. Zorzi (2010):General Ramified Recurrence is Sound for Polynomial Time. In
Patrick Baillot, editor:Proceedings DICE 2010, pp. 47–62, doi:10.4204/EPTCS.23.4.

[11] N. Eguchi (2014):Proving Termination of Unfolding Graph Rewriting for General Safe Recursion. Available
athttp://arxiv.org/abs/1404.6196. Technical report.

[12] W. G. Handley & S. S. Wainer (1999):Complexity of Primitive Recursion. In U. Berger & H. Schwichtenberg,
editors:Computational Logic, NATO ASI Series F: Computer and Systems Science165, Springer, pp. 273–
300, doi:10.1007/978-3-642-58622-48.

[13] D. Leivant (1995):Ramified Recurrence and Computational Complexity I: Word Recurrence and Poly-time.
In Peter Clote & Jeffrey B. Remmel, editors:Feasible Mathematics II, Progress in Computer Science and
Applied Logic, 13, Birkhäuser Boston, pp. 320–343, doi:10.1007/978-1-4612-2566-911.

[14] D. Leivant & J.-Y. Marion (1994):Ramified Recurrence and Computational Complexity II: Substitution and
Poly-Space. In: The 8th CSL, Selected Papers, pp. 486–500, doi:10.1007/BFb0022277.

[15] J.-Y. Marion (2003):Analysing the Implicit Complexity of Programs. Information and Computation183(1),
pp. 2–18, doi:10.1016/S0890-5401(03)00011-7.

[16] A. Middeldorp, H. Ohsaki & H. Zantema (1996):Transforming Termination by Self-Labeling. In: Proceed-
ings of the 13th CADE, LNCS 1104, pp. 373–387, doi:10.1007/3-540-61511-3101.

http://dx.doi.org/10.1007/11590156_43
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.62
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.123
http://dx.doi.org/10.1007/978-3-642-35182-2_20
http://dx.doi.org/10.1007/3-540-17945-3_8
http://dx.doi.org/10.1007/BF01201998
http://dx.doi.org/10.1017/S0956796800003877
http://dx.doi.org/10.1007/3-540-45575-2_46
http://dx.doi.org/10.1016/j.tcs.2011.02.007
http://dx.doi.org/10.4204/EPTCS.23.4
http://arxiv.org/abs/1404.6196
http://dx.doi.org/10.1007/978-3-642-58622-4_8
http://dx.doi.org/10.1007/978-1-4612-2566-9_11
http://dx.doi.org/10.1007/BFb0022277
http://dx.doi.org/10.1016/S0890-5401(03)00011-7
http://dx.doi.org/10.1007/3-540-61511-3_101

	1 Introduction
	1.1 Backgrounds
	1.2 Outline

	2 Term graph rewriting
	3 Unfolding graph rewrite rules for general safe recursion
	4 Precedence termination with argument separation
	5 Related works and further application
	6 Conclusion

