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The general form ofafe recursior(or ramified recurrencecan be expressed by an infinite graph
rewrite system includingnfolding graph rewrite ruleintroduced by Dal Lago, Martini and Zorzi,
in which the size of every normal form by innermost rewritiisgpolynomially bounded. Every
unfolding graph rewrite rule iprecedence terminating the sense of Middeldorp, Ohsaki and Zan-
tema. Although precedence terminating infinite rewritetesyss cover all the primitive recursive
functions, in this paper we consider graph rewrite systprasedence terminating with argument
separation which form a subclass of precedence terminating graphitegystems. We show that
for any precedence terminating infinite graph rewrite systeéwith a specific argument separation,
both the runtime complexity o7 and the size of every normal form & can be polynomially
bounded. As a corollary, we obtain an alternative proof efdhginal result by Dal Lago et al.

1 Introduction

1.1 Backgrounds

In this paper we present a complexity analysis of a specifid kf infinite graph rewrite systemgrece-
dence terminating with argument separatioffhe formulation of precedence termination with argu-
ment separation stems from a function-algebraic chaiaate&m of the polytime computable functions
based on the principle known asife recursion6] or tiered recursion[13]. The schema of safe re-
cursion is a syntactic restriction of the standard primitrecursion based on a specific separation of
argument positions of functions into two kinds. Notatidpnahe separation is indicated by semicolon as
f(X1, oo X Xkt 1, - - - Xkt l ), Wherexg, ..., X are calledhormal arguments whileg 1, ..., X are called
safeones. The schema of safe recursion formalizes the ideadbatsive calls are restricted on normal
arguments whereas substitutions of recursion terms atrécted for safe argumentd:(0,y;2) = g(V;2),
f(ci(x),¥;2) = hi(x,V;Z f(x,¥;2)) (i € 1), wherel is a finite set of indices. Safe recursion is sound for
polynomial runtime complexity over unary constructors,,iover numerals or lists, but it was not clear
whether the general form of safe recursion over arbitranstactors, which is callegeneral ramified
recurrencef[10] or general safe recursigrcould be related to polytime computability as well.

f(Ci(Xt, -+ s Xarity () ¥s 2) = i (X 9,2, £ (X0, Y3 2), - -, F(Xarity (), Y3 2) (i €1) (General Safe Recursioh

The authors of [10] answered this question positively (Tasnl, Sectionl3) showing that the schema
(General Safe Recursio can be expressed by an infinite setuofolding graph rewrite rulesTo see

a reason why graph rewriting was employed, consider a tewriteesystem&% over the constructors
{¢&,¢,0,s} consisting of the following four rules with the argument aigtion indicated in the rules.
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g(€;2) z glc(;xy);2 — c(;8(x;2),8(y;2)

f(0.y;) € f(s(;x),y:) — s(y:f(xy;))
Reduction of a ternf(s™(0),t) generates a tree consisting of exponentially many copigbeofreet
measured byn. Thus the computation should be performed over suitablseshgraphs rather than terms.
Moreover, the ternfi(s(0),c(¢, €)) leads to the term(g(€, €),g(&, €)) in three steps, where the subterm
g(&,¢€) is duplicated, which means that costly recomputationsrpiaty occur. Such duplications cannot
be avoided by simple sharing but some essential memoizegabmique is necessary.

—
—

1.2 Outline

The most effort in[[10] was devoted to show that unfoldingpgraewrite rules expressing the schema
(General Safe Recursioh only yield polynomial lengths of rewriting sequences amdnmal forms of
polynomial sizes measured by the sizes of starting (terapltg. The initial motivation of the present
work was to deduce the complexity result by means of exigtng rewriting techniques. In a techni-
cal report [11], rewriting sequences under unfolding grephrite rules are embedded into descending
sequences under a termination order over lists of terms variant of thepredicative interpretation
[1,13,[4]. In this paper, making the definition of unfoldingagh rewrite rules more abstract, we define a
class of graph rewrite systems precedence terminatingangiiment separation. Though the complexity
analysis in the report above could be adopted, we avoid thelimtermediate termination orders but
make use of numerical interpretation methods, which haga bstablished as well as termination orders,
e.g. [7]. The performed numerical interpretation is clpselated to the predicative interpretation but
also strongly motivated by polynomiguasiinterpretations presented inl [8,/115, 9]. After preliminary
sections, in Sectionl 4, we show that every graph rewriteegygirecedence terminating with a specific
argument separation reduces under the associated ingtipne(Theoreni2), yielding an alternative
proof of Theoreni 1 (Corollarl]3). In Sectidh 5, to convincaders that the proposed method is indeed
(potentially) more flexible than unfolding graph rewritées, we discuss two possibilities of application
referring to related works.

2 Term graph rewriting

In this section, we present basics of term graph rewritinghtpdollowing [5].

Definition 1 (Signatures, labeled graphs and patist .# be asignature a set of function symbols,
and letarity : .# — N wherearity(f) is called thearity of f. Throughout of the paper, we only consider
finite signatures. We assume thtis partitioned into the se&t” of constructors and the sét of defined
symbols.

Let G = (Vg,Eg) be a directed graph consisting of a $gtof vertices (or nodes) and a d&¢ of
directed edges. Aabeled graphis a triple (G, labg,succg) of an acyclic directed grap® = (Vg, Eg),
a partiallabeling function labg : Vg — % and a (total)jsuccessofunction succg : Vg — V&, mapping
a nodev € Vg to a sequence of nodes of lengthity(labg), such that ifsuccg(v) = v1,...,W, then
{v1,..., %} = {u€Vs | (vu) € Eg}. In casesuccg(V) = Vi,. .., Vk, the nodey; is called thej"" successor
of vfor everyj € {1,...,k}. In particular,succg(v) is empty iflabg(V) is not defined.

Alist (vi,my, ..., k-1, M_1,Vk) consisting of nodeg, ..., vy, of a term graptG and naturalsn, .. .,
my_1 is called gpathfrom vy to vi of length kif v 1 is themtjh successor of; for eachj € {1,... ,k—1}.
In casek = 0, the list(v) consisting of a single nodeis a trivial path of length 0. A labeled graph
(G, labg,succg) is closedif the labeling functionabg is total.
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Definition 2 (Term graphs, sub-term graphs, basic term graphs, deptteyrofgraphs and maximal
sharing) A quadruple(G, labg,succg, rootg) is aterm graphif (G, labg,succg) is a labeled graph and
rootg is theroot of G, i.e., a unique node Mg from which every node is reachable. We writ& (%)
to denote the set of term graphs over a signatére~or a labeled grap6 = (G, succg, labg) and a node
v € Vi, GJv denotes theub-term graplof G rooted atv. We writeH C G to express thatl is a sub-term
graph ofG andr for the proper relation. A term grapgb € .79 (.%) is calledbasicif labg(rootg) € Z
andG|v e 7Y (¥ ) for every successor nodeof roots. For a term graple, the length of the longest
path(s) fromroots thedepthof G, denoted adpth(G).

Undefined nodes in a term gra@are intended to behave as free variables in a natural term rep
resentation of>. Lettermg be an injective mapping from undefined node&ito a (possibly infinite)
set? of variables. The mappintermg is canonically extended to a term representation (cdey ¥)
of sub-term graphs dB astermg(G|Vv) = termg(Vv) € ¥ in caselabg(v) is not defined, and otherwise
termg(GJV) = labg(V)(termg(GIv1), ..., termg(G|Vk)) wheresuccg (V) = vi,...,Vk. A term graphG is
maximally sharedf, for any two nodeau,v € Vg, termg(G[u) = termg(G|v) impliesu = v (under an
arbitrary choice of such a mappingrmg).

Definition 3 (Homomorphisms, redexes, graph rewrite rules and coristrgcaph rewrite rules)Given
two labeled graph$s and H, a homomorphisnfrom G to H is a mapping¢ : Ve — Vy such that
laby (¢ (v)) = labg(v) for eachv € dom(labg) C Vg and that, for eaclr € dom(labg), if succg(v) =
V1,...,Vk, thensuccy (¢ (V) = ¢(v1),...,¢ (). By definition, these conditions are not required for a
nodev € Vg for which labg (V) is not defined. A homomorphisgh from a term grapl@ to another term
graphH is a homomorphisng : (G, labg,succg) — (H,laby,succy) such thatooty = ¢ (rootg).

A graph rewrite ruleis a triple p = (G,l,r) of a labeled grapls and two distinct nodes andr
respectively called thkeft andright root. The term rewrite rulg(x,y) — c(y,y) is expressed by a graph
rewrite rule (1) anch( x y,z w) — c(z,w) by (2) below.

N

1 1 1 1
In the examples, the left root is wrltten in a circle while tight root is in a square, and undefined nodes

are indicated ad.. As in the usual term rewriting setting, we assume that evadefined node occurring
in GJr occurs inGJl as well.

A redexin a term graphG is a pair (R, ¢) of a rewrite ruleR= (H,l,r) and a homomorphism
¢ -HJl — G. A set¥ of graph rewrite rules is called graph rewrite systenfGRS for short). A
graph rewrite rulgG,l,r) is called aconstructorone if Gl is a basic term graph. A GR® is called
a constructor one i consists only of constructor rewrite rules. The rewritatieh in a GRSY is
defined by thébuild, redirectionandgarbage collectiorphase, denoted as« (See, e.g./[10]). In case
thatG —, H is induced by a redei(K,I,r),¢), one can find a homomorphisg: K [r — H compatible
with ¢ such thatG results inH by replacing the sub-term gragh| ¢ (1) of G with H[y(r). A formal
definition can be found in_[5]. Thefold iteration of —, is denoted as-/} and the reflective and
transitive closure as+,. A rewriting G —, H induced by a redex(Ko, lo, o), $o) is innermostif there
is no redex((K,l,r),¢) such thaG[d)(I) is a proper sub-term graph Gff '¢o(lo). The innermost rewrite
relation in% is denoted as-,,, and-57, 3% are defined accordingly.
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3 Unfolding graph rewrite rules for general safe recursion

To make the purpose of the present work precise, in thisseate restate the main result in [10], formu-
lating thegeneral safe recursivieinctions. Lets” be a set of constructors amd— ¢y, (1 < m< |%|) be an
enumeration fof’. We assume th&t’ contains at least one constant. We call a funcﬁorﬁ(%)”' —

7 (¥) general safe recursivé, under a suitable argument separatifiixy, ..., %;VY1,...,%), f can be
defined from the initial functions by operating the schensgiecified as follows.

° O'j‘"I (X1, X Y1,..., Y1) = Cj if ¢j is a constant. (Constants)
. Cj(;X]_,...,Xarity(Cj)) = Cj(X1,- - Xarity(cj)) If arity(cj) # 0. (Constructors)
. I}‘"(xl,...,xk;xk+1,...,xk+|) =X (1< j<k+l). (Projections)
e Po(;c)=c (arity(ci)) = 0), Bj(;Ci(X1,- - Xarity(g))) = Xj (L < j <arity(ci)).  (Predecessors)
e C(;¢j (X1 s Xarity (c;) ) Y1s - - Yg)) = Y- (Conditional)
o f0a, X:yn W) = hXj e X 01 (X3Y), - n(X3Y) (s dmp {1, kD),

whereh hasm normal andh safe argument positions. (Safe composition)
o F(Cj(Xe, Xarity(c))): ¥: 2) = (R Y32 (X1, ¥32D), -, T (Xarity(c;), Y5 D) (J €.

If ¢j is a constant, the schema of denotés;,y;7) = h;(y;2). (General safe recursion)

In [10] a GRSY is calledpolytime presentablé there exists a deterministic polytime algorithm
which, given a term grapf®, returns a term grapH such thatG i@ H if such a term graph exists, or
the valuefalse if otherwise. In addition, a GRY is polynomially boundedf there exists a polynomial
p: N — N such that magm,|H|} < p(|G|) holds wheneve -3 H holds.

Theorem 1(Dal Lago, Martini and Zorzi [10]) Every general safe recursive function can be computed
by a polytime presentable and polynomially bounded con&iruGRS.

Remarkl. The schemdGeneral Safe Recursiolis formulated based on safe recursion (on notation)
following [6] whereas the schema of general ramified recureeformulated in [10] is based on ramified
recurrence following [13]. Due to the difference, the deiom of general safe recursive functions above
is slightly different from the original definition dfered recursivdunctions in[10]. Notably, the schema
(Safe composition is a weaker form of the original one inl[6], which was intradd in [12]. It is not
clear whether there is a precise correspondence betweenafjsafe recursive functions in the current
formulation and tiered recursive functions. However, kngwn that the polytime functions (over binary
words) can be covered with the weak form of safe compositidnch means that the restriction of the
general safe recursive functions to unary constructdigstiers all the polytime functions.

Theorent 1 is shown by induction over a general safe recufsihetion f. The case that is defined
by (General Safe Recursiopis withessed by an infinite set ahfolding graph rewrite rules

Definition 4 (Unfolding graph rewrite rules)Let Z and® be two disjoint signatures in a bijective corre-
spondence by : ¥ — O. For a fixedk € N, suppose thatrity(¢ (g)) = 2arity(g) + k for eachg € Z. Let

f ¢ UG andarity(f) = 1+k. Given a naturaim > 1, themt" set of unfolding graph rewrite rule over
> and © defining fconsists of graph rewrite rules of the fo(i®,!,r) whereG = (Vg, Eg, succg,labg)

is a labeled graph over a signatue D 2 U © that fulfills the following conditions.

1. The selk/s of vertices consists of + 2m-+k elementsy, va,...,Vm, W1, ..., Wm, X1, ..., X-
2. | =yandr =ws.
3. labg(y) = f andsuccg(y) = V1, X1, -, Xk-
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Figure 1: Examples of unfolding graph rewrite rules

4. labg(x;) is not defined for allj € {1,... k}.

5. Foreach € {1,...,m}, succg(Vj) € {Vi,...,Vm}*. MoreoverVg, = {V1,...,Vm}.
6. Foreach € {1,...,m}, labg(vj) € Z andlabg(w;) = ¢ (labg(vj)).
7. Foreachj € {1,...,m}, succg(Wj) = Vj;,...,Vjy, X1, - -, Xk, Wiy, . . ., Wj, if succg(Vj) = Vj;,...,Vj,.

Examplel. Let £ = {0,s}, © = {g,h}, ¢ : £ — © be a bijection defined a&+— g ands — h, and
f ¢ 2U O, where the arities dd,s,g, h,f are respectively 0, 1, 1, 3 and 2. Namely we consider the case
k=1. The standard equatiofifd,x) — g(x), f(s(y),x) — h(y,x,f(y,x)) of primitive recursion can be
expressed by the infinite GRS,~1 %m, Where%, is them" set of unfolding graph rewrite rules over
F =2UOU{f} definingf. In this case, for eaam> 1, “%n consists of a single rule. For example, in case
i =1,2,3,% consists of the rewrite rul@) pictured in Figuréll. As seen from the pictures, the unfgdin
graph rewrite rules in Figurlel 1 express the infinite instarf¢e x) — g(x), f(s(0),x) — h(0,x,g(x)),
f(s(s(0)),x) — h(s(0),x,h(0,x,g(x))), ..., representing terms as suitably shared term graphs.

To keep every term graph compatible with the associatechagguseparation, in [10], for any redex
(R,9), the homomorphisng is limited to aninjectiveone. In this paper, instead of assuming injectivity
of homomorphisms, we rather indicate argument separatiopiitly.

Definition 5 (Term graphs with argument separatiof) accordance with the idea of safe recursion,
we assume that the argument positions of every function eyt separated into the normal and
safe ones, writingf (Xq,...,Xc;X+1,---,X+) to denotek normal arguments anidsafe ones. We al-
ways assume that every constructor symbolsirhas safe argument positions only. The argument
separations of function symbols are taken into accounthbelé graphs in such a way that for ev-
ery successou of a nodev we write u € nrm(v) if u is connected to a normal argument position
of labg(Vv), andu € safe(v) if otherwise. For two distinct nodeg and vy, if labg(vp) = labg(vi),
then, for anyj € {1,...,arity(labg(vo))}, Up € nrm(Vp) < Uy € nrm(vy) for the j™ successou; of v;
(i=0,1). Notationally, we writesuccg(V) = Vi,...,Vk;Vk+1,- - -, Vil tO €Xpress the separation such that
Vi,...,Vk € nrm(V) and Vi1, ...,V € safe(v). We assume that any homomorphigm G — H pre-
serves argument separations. Namely, for eaghdom(labg), if succg(V) = Va,. .., Vi Vi1« -5 Vit s
thensuccy (@ (V) = @ (Va), ..., @ (Vi); @ (Vix1)s -, D (Vi ).

Let us recall the idea of safe recursion that the number ofsae calls is measured only by a normal
argument and recursion terms can be substituted only ferasgliments. This motivates us to introduce
the following safe version of unfolding graph rewrite rules
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Figure 2: Example of a safe recursive unfolding graph rewrtite

Definition 6 (Safe recursive unfolding graph rewrite rule§Ye call an unfolding graph rewrite rutafe
recursiveif the following constraints imposed on the clat$e 3[and 7 fifition[4 are satisfied.

1. Inthe clausEl3y; € nrm(y), and in the claudé ¥, , ..., Vj, € nrm(w;) andwj,, ..., wj, € safe(w;).

2. In the clausé€l3 and 7, for eaghe {1,...,k}, xj € nrm(y) if and only if X; € nrm(w;) for all
ie{l,...,m}.

As a consequence of Definitidh 6, we have a basic propertyfefreaursive unfolding graph rewrite
rules, which ensures that rewriting by any unfolding graglurite rule does not change the structures of
subgraphs in normal argument positions.

Corollary 1. Let(G,y,w;) be a safe recursive unfolding graph rewrite rule with the\éef vertices
consisting ofL+2m-+k+1 elementsy, ..., Vm, W1, ...,Wm, X1, ..., Xk Specified as in Definition 4 and
[6, wheresuccg(y) = Vvi1,Xa, -+, Xi; Xkt-15 - - -, Xkt 1 - Then GU T Gy holds for any je {1,...,m} and
for any node e nrm(w;).

Corollary[] follows from an observation that, for ap¥ {1,...,m} and for any node € nrm(w;),
eitheru € dom(labg) andu = v; for somei € {1,...,m}, or u € dom(labg) andu = x for somei €
{1,...,k}. This is exemplified by a safe recursive (constructor) whfg graph rewrite rule in Figure
in casem= 2 andl = k = 1 that expresses the term rewrite ré{e(;0),x;y) — h(0,x;y,g(x;y)). To
make a contrast, every edge— u is expressed as — — > u if u € safe(v) andlabg(v) € Z and as
V. >u if |abG(V) cc.

4 Precedence termination with argument separation

Every unfolding graph rewrite rule recedence terminating the sense of [16]. In this section we pro-
pose a restriction of the standard precedence terminataergprecedence termination with argument
separation To show the polynomial runtime complexity of those GRSsalge introduce a non-standard
number-theoretic interpretation of GRSs precedence tetnig with argument separation.

Let.# = ¥ U Z be a signature. Arecedencec is a well founded partial binary relation gi. The
rank rk : .# — N is defined to be compatible with: rk(g) < rk(f) < g < f. We always assume that
every constructor symbol is-minimal.

Definition 7 (A restrictive sub-term graph relation,., and precedence termination with argument
separation) Let < be a precedence on a signatweandG,H € Y (%#). We writeH C,m G if

H C GJv holds for some nodec nrm(rootg). The relatiorH <p¢;nrm G holds iflaby (V) < labg(rootg)

for anyv € iy whenevelaby (v) is defined, and additionally one of the following two caseklfio

1. H <pt4nrm GJu for some successor nodeof rootg.
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2. laby(rooty) is defined, i.elaby (rooty ) < labg(rootg),
e H C,m Gfor eachv € nrm(rooty ), and
e H |V <ptinm Gfor eachv € safe(rooty).

We say that a GRY over a signature” is precedence terminating with argument separaifdor some
separation of argument positions and for some precederme?, G|r <pt.nrm Gl holds for each rule
(G,1,r) € ¢ for the relation<p:,nm induced by the precedenee

Let us recall we always assume that every constructor isnmaihin any precedence. By the mini-
mality, for any constructor rewrite rul@,|,r) € 4, if GJr <pt+nm G|l holds by Caskl1 of Definitidn 7,
GJr C G|v holds for some successor nodef |.

Definition 8 (Safe paths and a clas8¥ ,,m (.7 ) of terms)
1. Apath(vy,my, ..., Vk_1,M_1,V) in aterm graplG is called asafeone ifvj1 € safe(v;) forall j €
{1,...,k—1}. Notationally, for a term grap& and two nodesl, v € Vg, we writeu € safepathg(V)
if ulies on a safe path fromin G. We will also use the notatiosafepathg(v) to denote the set of
such nodesi. The relationu € safepathg(rootg) will be simply written asu € safepathg.

2. Givenasignature” =% U2, we define asubsel ¥ ,,m(F) C 7Y (F). ItholdsG € TY nym(F)
if Ge 79(%), or G|ve T9(%) for eachv € nrm(rootg) andG|v € TY,m(#) for each
Vv € safe(rootg).

By definition, the rootootg of G lies on the trivial safe path fromootg in G. In the graph rewrite
rule (G,1,r) in Figure[2, visually every safe path consists only of dashéges - — — > - . Thus, for
non-trivial examples, the right bottom lies on a safe path frorh and both the samé andg lie on
a safe path fromn. The definition of the class/ ¥ ,m (%) yieldsG € .TY m(F) for any basic term
graphG e Y (7).

Lemma 1. Let¥ be a constructor GRS over a signatu#e and Ge 7Y, (F).

1. Let(H,l,r) € ¢ be arewrite rule andp : H|l — G a homomorphism. Then any path freootc
to ¢ (1) is a safe path.

2. Suppose additionally that is precedence terminating with argument separation. 4G H, then
He TG nm(7).

Proof. PROPERTY[D. We show the property by contradiction. Assume that therstea path from
rootg to ¢ (1) that is not safe. Then the path passes a normal argumenbpasitan intermediate node
v. Since constructors have only safe argument posititahg; (v) must be a defined symbol. Hence
Glo(l) € 7Y(%) by the definition of the class ¥ nem (% ). Butlabg(¢(l)) = labn(l) € Z since¥ is

a constructor GRS, contradictifg¢ (1) € 7Y (%).

PROPERTY[2. Suppose thab results inH by applying a redexR, ¢) for a ruleR= (K,I,r) € 4.
Since any path frormootg to ¢ (1) is a safe one by Propeffty 1, it suffices to show ity € 7Y i (F)
for the nodery € H corresponding ta € V. We show thaH [ry € 79 ,,m(#) holds by induction
according to the definition of the relatict,t nrm.

CASE. KT <pt+nrm KU for some successor nodeof |: In this case, sinc# is a constructor GRS,
K]r is a sub-term graph df [ as noted after Definition 7. Hente[ry € 7Y ,,m (%) follows from the
assumptiorG| ¢ (u) € 7Y (7).

CAsE. Otherwise: For eacthe nrm(r), K|r is a sub-term graph df [u for someu € nrm(l). By
assumptionG[ ¢ (u) € 79 (%) for eachu € nrm(l), and henceH |[v € .T¥ (%) also holds for each
ve nrm(ry). On the other hand [V <pi1nrm KTl for eachv € safe(r). The induction hypothesis yields
HIve TY nm(F) for eachv € safe(ry ). These allow us to concludé [ry € 7Y o m(F). O
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For a finite selN = {m e N | i € I}, let 3 N denote the naturgf;.; m with the conventiory 0 = 0.

Definition 9 (Number-theoretic interpretation of term graphkpt G € Y, (%) be a closed term
graph over a finite signatut® = ¢'U 2, f = labg(rootg), and< be a precedence o#i. Then, given a
positive natural, we define an interpretatidn: .79 ,,m(-#) — N by

=5 {1+ 02" (14 3 yeprm(v) dPth(GU)) | v € safepathg andGIv ¢ T%(%)} .

By definition,l,(G) = 0if G € 7Y (¢). We writeJ;(G|v) to abbreviate the componefit+ ¢)2(7).
(l+zu€nrm dpth(GF ))

Lemma 2 (Main lemma) Let(G,,r) be a constructor rewrite rule such that/G<;nrm G|l holds for
the relation<,,nrm induced by a precedence on a finite signature. Also let G ,Gr € T Y nm(-F)

respectively denote closed instances ¢f éd Gjr. If |G[r| < ¢, thenl,(Ggr) < l¢(GL) holds for the
interpretationl, induced by the precedenee

Proof. We estimate an upper bound fio(Gr) = S {J/(G[V) | v € safepathg, andG|v ¢ 7Y (%)} di-
viding the domain{v € Vg, | safepathg, andGJv¢ .7% (%)} into two parts. LeW; C Vg, denote the set
of labeled nodes that already occurGil. More precisely, ifG, is the result of instantiation by a homo-
morphism¢ from GJl to an underlying term grap; = {v € Vg | 3u € Vg Ndom(labg) s.t. v=¢(u)}.

In other wordsyg, \V, is the set of nodes that are newly added by the instantiatienV, denote the
corresponding subset ¥§,. Since every undefined node@vr occurs inG|l as a general assumption,
Ve, \Vr € Vg, \V holds. Writef to denotdabg(l).

Claim 1. J;(Gg|V) < (1+¢)2(f)-1. (1+ 3 uenrm(roots, ) APth(GL [u)) holds for any \e safepathg, NV;.

Write g to denotdabg, (V), which is defined by definition of,. By the assumptio|r <ytynrm GIl,
g < f for the given precedence, and hencek(g) < rk(f) holds. By Definitiori ¥, for eackl € nrm(v),
Gr|V is a sub-term graph @, |u for someu € nrm(rootg, ). Hence, for eackl € nrm(v), dpth(Gg|V) <

Zuenrm(rootGL) dpth(GLf ) i.e., 1+ ZUEnrm dpth(GRf ) < 1+arity(g) ’ <ZUEnrm(rootGL) dpth(GL [U)) <
(1+2)- (1+ Y uenrm(rootg, ) dpth(GL [u)) . Lettingv € safepathg, NV, this allow us to reason as follows.

Jo(GrIV) (1+0)2™072 (14 3 yenmm(v) dpth(GrIU)) - (sincerk(g) < rk(f)—1)

(l+€)2 k(f)-1 <l+ ZUEnrm (rootg )dpth(GLF ))

INIA

Sincelsafepathg, NV;| < |GJr| < ¢, Claim[] allows us to reason as follows.
Y {Je(GrIV) | v € safepathg, NV, andGr V¢ TY(%) }
< L@+ 02O (14 5 epmroote, ) dPt(GLIU) ) (by Claimid)
< (@02 (14 Sycnmiootey ) IPE(GLI) ) = Ji(GL) ®
Claim 2. If v € safepathg, \V, and Gr[v ¢ T Y (%), then ve safepathg \Viand G.[v¢Z 7Y ().

Suppose € safepathg, \V; and,Gr[v¢ 7Y (€). ThenGL|v ¢ 79(%) sinceGr|vC GL[v holds
as mentioned above. We show safepathg, \ V| by contradiction. So assunveZ safepathg \Vi. Then,
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sinceGL € 7Y nm(F), GLIvE TY(€) holds as observed in the proof of Lemiia 1.1. Claim 2 allows
us to reason as follows.

Y {Je(GrIV) | v € safepathg, \V; andGrIv & 7Y ()}

< Y {Ju(GLIV) | v e safepathg \V, andG|v¢ T¥ (%)} (by Claim[2)
< 3 {Je(GLIV) | v € safepathg, \ {rootg } andGL|v¢ T¥ (%)} 2
Combining the inequalities (1) and (2), we concldd&g) < 1,(Gy). O

The next lemma states that thermal partof a starting basic term graph does not change under
precedence termination with argument separation.

Lemma 3. Let¥ be a constructor GRS over a sighatu#ethat is precedence-terminating with argument
separation and ge .7% (%) a closed basic term graph. Ifc=, G, then Gu Cnm Go holds for any
nodes \& safepathg and ue nrm(v).

Proof. Supposésy —f, G. We show the assertion by induction o2 0. In the base cage= 0, G = Gg
andnrm(v) = 0 for anyv € safepathg \ {rootg} sinceGy is basic. Hence the assertion trivially holds.

For the induction step, suppose ti@&f —!, G holds and thaG —, H is induced by a rede{R, ¢)
in H for a rewrite ruleR= (K,I,r) € ¢ and a homomorphisn : K[l — G. ThenG,H € 7%, (.#)
by Lemmald.R. First let us consider the cas@) = rootg. By induction hypothesis, it suffices to
show that for any nodes; € safepathy anduy € nrm(vy) there exists a nodes € safepathg such that
Hluy Chrm GlVg holds. Letvy € safepathy anduy € nrm(vy).

CASE. KIr <pt4nrm KU for some successor nodeof |: Since¥ is a constructor GRK [r C KJu,
and henceHd C G holds. Ifvy € safepathg, then we can letig = vy. If vy & safepathg, then any
path fromrootg to vy passes an normal argument position of a negec safepathg. This means
H VH Corm GJVs, and thusH [ug Corm Gl Ve.

Cask. Otherwise: Ifve Vg \ {¢(u) | ue Vgp }, then, as in the previous case, one can find a node
VG € safepathg such thatH [vy Cnrm GlVg. Thus we assume tha is mapped fronVi, by ¢. Then
Kt <pt4nrm K[l yieldsH [Vy <ptinrm G. By the definition of the relatioR s nrm, H [U4 Toem Gl (1)
holds. Sincep(l) € safepathg by Lemmd L1, we can let; = ¢ (1).

Now consider the casg¢(l) # rooty. Letry € H denote the node correspondingrte K. Let us
consider the subcasg@ € Viyy,,. In this subcase, sinog; € safepathy (ry), as in the cas¢(l) = rootg,
there exists a node; € safepathg such thaH juy C,m G [ Vg holds. Sincep (1) € safepathg by Lemma
[, the induction hypothesis yiel#s|ug Cnrm Go. Consider the subcasg ¢ Viyr,,. In this subcase,
Vy € safepathg. As in the previous subcas¥yy, NVury € Veu, MVaig) holds. On the other side
Vi 1w \VHiry € Vojuy \ Vi) holds. Combining the two inclusions, we reason as

Viius = (Ve us MV ) U (Ve g \VHing) € Vet NVeie0)) Y (Verus \Varem) € Veiu

This impliesH [uy C Gluy. Sincevy € safepathg anduy € nrm(vy), the induction hypothesis yields
GlU4 Chrm Go, and thuH [ uy Chem Go. O

To express that a term gragghis maximally sharedvith respect to normal argument positionf
the rootrootg, we define a term grapB N nrm consisting only of sub-term graphs connecting to normal
argument positions abotg. If G represents a terrfi(ty, ..., t;tk11,. .., tke1), thenGninrm represents
the termf (ty,...,t;X1,...,X ) with | fresh variablex,...,x.
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Definition 10. Let G € Y (.%) be a term graph witBuccg(rootg) = Vi,...,Vik;Vii1,-- -, Viel- If
labg(V) is not defined for any € safe(rootg), thenG N nrm simply denotess. Otherwise,GNnrm
is defined fronl distinct nodesu,,...,u not contained itVg as follows.

Veanrm = {I’OOtG} U <Uv6nrm(rootc;)VGW) U {U]_, U }
EGmmm _ {(U,V) G EG | U,VG {rOOtG}U <Uvenrm(rootG)VG[V>}U{(rOOtG’uj) | J — lyyl}
B labg (V) if ve Ve,
labgnrm (V) = { not defined otherwise.
rootgonrm = rootg

By definition,succgnnrm (rooteanmm) = V1, - - -, Vk; U1, . . . , Uj. A choice of nodesi, ..., U is not important
and hence will be always omitted in later discussions.

Since an underlying signatur® = ¢ U Z is finite, for any (infinite) constructor GR$ over .%,
the defined symbol®/ can be partitioned into two sets;,s and %5, so that every symbof € Z.¢
is defined by an infinite number of rules whereas every synfibelZy, is defined by a finite number
of rules. Accordingly, we define a partition of every constan GRS¥ into two sets¥.,s and%;, by
Ginf = {(G,1,r) €9 | labg(l) € Zins} and%i, = {(G,I,r) € 4 | labg(l) € Zrin}-

Theorem 2. Let ¢ be a constructor GRS over a finite signatugé that is precedence terminating
with argument separation and letax({arity(f) | f € Z}U{|KIr| |3l (K,l,r) € %n}) < d. Suppose
that, for any rule(K,l,r) € %, (i) (K[l)Nnrm is maximally shared(ii) K[v is closed for every
v € nrm(l) Ndom(labk), (iii) [{v € nrm(l) | v & dom(labk )} U (Uvesate(r) Viiv)| < d, and(iv) [Kr| <
IKTH + [Uvenrm(ry Viivl- Then, for any closed basic term graph & 954( 7),ifGo—=% G, G—=4 H
and2- (| U\,Emm(rooteo)v@w\ +d) </, thenl,(H) < 1,(G) holds.

We write (VG )nrm t0 abbreviate the Séd,cnm(roots) Voiu- The conditions (i) and (ii) ensure that one
step of rewriting can only reduce a constant number of nod¢¥y ) . by sharing. The condition
(iii) ensures the same for nodes\iy \ (Vkii),,,m- Since the condition (iv) impliefK [r| < 2- KT, the
condition expresses that not orfyj| butK [r is also suitably shared.

Proof. Given a closed basic term grafiy € .79 (%), suppose thaGy —#, G and thatG —, H is
induced by a redexR ¢) in G for a ruleR= (K,l,r) and a homomorphisng : K[| — G. Then
G,H € T%nm(:F) holds by Lemmdlll2. Let 2(|(Vg,),m|+d) < ¢. We show thatK |r| < 2-
(’(VGW'(I))nrm‘ +d> holds. In caséK,1,r) € %, [K[r| < d holds by assumption. In casi,|,r) € %,¢
we deduce the following two inequalities.

nrm

KN < 1(Va160)) | +d 3)
|(Viit) nem| < 1VG19(1)) e+ (4)

The homomorphisnp is injective over(Vk;i )., Ndom(labk ) by maximal sharing ofK[l) "nrm. Hence
KT < |(VG(¢('>)nrm| +d holds by the assumptions (ii) and (iii).

We deduce the inequalityl(4) by case analysis. In caseKhat . nm KU for some successor
nodeu of |, K[r € 7%(%), and hencé(Vk),,.,| = |0| = 0 since constructors only have safe argument
positions. Otherwise, for everye nrm(r), K|v is a sub-term graph df [u for someu € nrm(l). Thus
|(Vi<it) e < [(Vk 1) v | NOIdS, @nd hence the inequality (4) follows frof i) ... | < |(Veis0),,,p, | 0

Combining the assumption (iv) with the inequalities (3) &idyields|K|r| < 2- (\ (V1o )mm\ + d)
On the other hand, singg(l) € safepathg by Lemma ILIL, Lemma 3 yield$Ve4(1)), .| < [(VGo) nml-
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ThereforelK [r| < 2- (|(Vg,) ym| +d) < € holds. Now, letting € Viy denote the node corresponding to
r € Vk, we deducd,(H) < 1,(G) as follows.

le(H)
le(Hru) + S {J/(H V) | v € safepathy \ safepathy (ry) andH [v¢ TY(€)}

< (Gl (1) + 3 {Je(HVv) | v € safepathy \ safepathy (ry) andH [v¢ 79 (¢)} (by Lemmd2
< 1(GI9(1)+ 3 {Je(Glv) | v € safepathg \ safepathg(¢ (1)) andH [v¢ TG (€)} = 14(G)
The second inequality follows fromafepathy, \ safepathy (ry) C safepathg \ safepathg(¢(1)). O

Lemma 4. Let¥ be a constructor GRS over a finite signatuethat is precedence-terminating with
argument separation and lehax({arity(f) | f € Z}U{|G[r| |3l (G,I,r) € %n}) < d. Suppose the
assumptiongi)—(iv) in Theoreni R are fulfilled. Then, for any closed basic termpbré&y € 7Y (.%), if

Go —1, G, then|G| < |G| +n- (y Usenmirootey) Veol + 2d> holds.

Proof. By induction onn. In the base case= 0, G = Gy and hence the assertion trivially holds. For
the induction step, suppose thag —f, G holds and thaG —,, H is induced by a redexR, ¢) in G
fora ruleR= (K,I,r) € ¢ and a homomorphisng : K|I — G. In caseR € %, |H| < |G| +d by the
choice of the constard. SupposeR € %,s. As in the proof of Theorernl 2, the homomorphigmis
injective over(Vk i), Ndom(labk) by maximal sharing ofK[l) N nrm. Thus, by the assumptions (ii)
and (iii), at mostd nodes inVi; can be shared by the homomorphigm These observations imply
H| < |G|+ |H[ru|—|Gl¢ ()| < |G|+ |K[r|+d— |K[I| for the nodery € Vy corresponding to € V.
Therefore|H| < |G|+ |(Vkji),,,m| +d holds by the assumption (iVK [r| < |KTI|+ |(Vkji),m|- For the
same reason as abo\@®k i), < |(Veieq)),,,| +d holds, and thusH| < |G| + |(Vgi4()),,.,| +2d
holds. On the other hand, singgl) € safepathg by Lemma L1L| (Vg (1)), | < |(Veolroote, ). | holds
by Lemma[B. ThereforéH| < |G| +|(Vgjroots,),. | +2d holds. Combining this inequality with the

induction hypothesi$G| < |Go| +n- (\(Veorrooteo)

nrm

nr

n

1)- (\(VGorrootGO)mm! - 2d>. -

Corollary 2. Suppose tha? is a constructor GRS over a finite signatueprecedence-terminating with
argument separation that enjoys the assumpt{@rsiv) in Theoreni 2. Then there exists a polynomial p
N — N such that, for any closed basic term graph €.7%(.%) and for any term graph G 7Y (.%),

if Go = G, then the following two conditions hold.

1. m<p (’ UVEnrm(rootGo)VGo fV‘) :

2. ‘G’ <p (’ Uvenrm(rootGO)VGoFVD + ’VGO \ Uvenrm(rootGO)VGo FV"

Proof. We only show the existence of a witnessing polynomgiaN — N for Property 1. The construc-
tion of a polynomialp witnessing both Properfy 1 ahd 2 will be clear from the potyia g and Lemma
4. Given a GR% over a finite signature?, let maxarity(f) | f € #} <d. In addition, given a closed
basic term graply € 7Y (.F), let 2- <|(VG0“°°tGo)mm| +d) < (. Suppose thaGy — G holds for
some term grapls € 7Y (.#). By Theoren{2m can be bounded bly(Gp). SinceGy|ve TY(%)
for any nodev € safepathg, \ {rootg, }, 1/(Go) = J/(Gop) holds. Now letg denote a polynomial such that
(2X+ 2d + 1)2‘max{rk(f)\f69} . (1—|—dX) < Q(X) SinceZVenrm(rootGO) dpth(Go [V) < d- |(VGO[r°°tGO)nrm |1 the

inequality 2 (|(VGo(rooteo)mm| +d> < ( allows us to concluden< 1,(Gp) < q (I(Veonooteo) |). O

o +2d> allows us to concludéH | < |Go| + (n+

nrm
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Remark2. The assumption (iv) in Theorelm 2 can be relaxedkas| < |[K[I|+ p((Vki),,,) for some
polynomial p if ¢ is sufficiently large so that a certain polynomial|{Ng,),,,| determined byp can be
bounded by. Since such a relaxed form of the condition (iv) likely holdwler a suitable term rewriting
adoption of unfolding graph rewrite rules, it turns out thett unfolding a recursion schema seems not
crucial to deduce the polynomial complexity. But, more imgntly, as implied from the assumption
(iii), the number of variables occurring in the right-haridesof every rule can be constantly bounded,
which clearly fails in any reasonable term rewriting foratidn of unfolding rewrite rules.

The next lemma ensures that the assumption (i) in Thebrem@ i®o restrictive.
Lemma5. Let¥ be a constructor GRS over a finite signatufeprecedence-terminating with argument

separation. For any maximally shared, closed basic ternphréy € .79 (%), if Gg =, G, then(G|
V) Nnrm is maximally shared for any & safepathg.

Proof. Letv € safepathg andup,u; € Vgjy. Assumetermg(Glup) = termg(GJuz). By the definition of
the term grapRGJv) Nnrm, it suffices to consider the casg u; € (Vg}v),,,,- In this case, by Lemnid 3,
GlUj Cnrm Go holds for eachj = 0,1. This means thab[uj = Go[u; holds for eachj = 0,1, and thus
termg,(Go[Up) = termg,(Go[uz1) holds by the assumption. Maximal sharing@&f impliesup = u;. O

As a consequence of Lemrll.1 and Leniha 5, for any (compldégiged) constructor GRS
over a finite signature that is precedence terminating wihraent separation, if there exists a constant
d such that the assumptions (i)—(iv) in Theorem 2 hold for ang (K,l,r) € %, then any rewriting
sequencesy —,, Gy —, --- starting with a maximally shared, closed basic term gr@gHeads to a
constructor term graph in normal form.

Theorem 3. Every general safe recursive function can be computed bynateetor GRS that prece-
dence terminating with an argument separation fulfilling tonditionsi)—(iv) in Theoren P.

Proof. By induction over the definition of. In the base case, every initial function can be defined by a
single constructor rewrite rul@,l,r) in one of the following shapés 1 ahd 2.

1. G[r = GJvfor some successor nogef .

2. Vg consists of 2+ k+ | +nelementsy, v, X, ..., Xk, W1,...,Wy suchthat =u, r =v,
{labg(u),labg(V),labg(wy),...,labg(wp)} C Z,

labg(X;) is undefined for allj € {1,... k+1},

SUCCG(U) = X1, -+, Xic; Xkt 1y -« + s Xkl s

succg (V) = Xj, - -, Xjm s Wi, . . ., Wp for some{jq,..., jm} € {1,...,k}, and

succg(Wj) = X1, ..., Xi; X1, - - -, Xt forall j € {1,....n}.

The graph rewrite rule (1) below is an instance of Gdse 2 kviti2, | = 1 andn = 2, which expresses the

term rewrite rulef (xy, Xz X3) — h(X1;g1(X1, X2;X3), 82(X1,%2;X3) ). As in Figurd 2, every edgg —— u
is expressed ag — — > u if u € safe(v) andlabg(v) € 2.

(2)/\ ® @&
l
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Every instance ofConstants)can be defined by a single graph rewrite rule as (2) above ireciap
shape of Caskl 2, and each (Bfrojections), (Predecessorsiand (Conditional) can be defined by a
single graph rewrite rule as (3) in the form of Ca$e 1. The dtidua step splits into two cases. In case
that f is defined by(Safe composition) f is defined by a constructor graph rewrite rule in the form of
Casé R together with the constructor GRSs obtained froncimmuhypothesis. In case thatis defined
by (General safe recursion) f is defined by an infinite set of constructor safe recursiveldirig graph
rewrite rules together with the constructor GRSs obtaimedchfinduction hypothesis. For instance,
suppose that is defined byf (¢;z) = g(;2) and f(c(;x,y);2) = h(x,y;z f(x;2), f(y;z)). By induction
hypothesis,g andh can be respectively computed by some constructor GRSand %, defining the
corresponding function symbogsh € 2. Lete,c € ¥ respectively correspond ®c andf € Z to f
Also letZ = {e,c} and® = {g,h} with a bijective correspondenee— g,c — h. Then, for eacim> 1,
one can define the" set%,, of safe recursive unfolding graph rewrite rules oker® definingf. Since

3 C ¥, %mis aconstructor GRS for every > 1. Since elements @f)-; %m express(e;2) — g(;2),
f(c(;e,e);2) — h(e,e;2g(;2),8(;2), ..., f is computed by the infinite GRE, U %, U (Upz1%m)-

The precedence is defined so that, letting every constructor<$eninimal, for every rulgG,l,r),
labg (V) < labg(l) for anyv € Vg whenevetabg(v) is defined. Theg < f means thaf is defined from
g for the functionsf,g respectively corresponding tog. Hence the well-foundedness &f follows
from the observation that the relation “is defined from” idivieunded by the definition of general safe
recursive functions. Precedence termination of so obtai®ieSs is obvious.

Let <,t+nrm be the relation induced by the precederceBy definition, the subsef,¢ of 4 consists
of safe recursive unfolding graph rewrite rules wher@gs contains no unfolding graph rewrite rule.
It follows from the definition of safe recursive unfoldingagh rewrite rules thaB [l <pinm GIr for
each(G,l,r) € ¢, (See also Corollari]1). Consider a rewrite rg@,1,r) € %;,. It is obvious that
G[l <pt4nrm G[r holds if (G,1,r) is an instance of Case 1. Suppose Matconsists of 2-k+1+n
elementd, r, X1,..., X1, W1,...,W, as specified in Cade 2. Lete Vi = {r, X1, ..., X1, W1,...,Wn}.
Consider the case th#dbg(v) is not defined, i.e.v € {x1,..., %41 }. In this casey is a successor
node ofl. NamelyG[v = GJ[u for some successor nodeof |, and henceé5[l <,i1nm GV holds.
Assume thatabg(v) € #. Thenv € {r,wi,...,Wn}. Sincesuccg(Wj) = X1,...,Xk;Xk+1,- - -, Xk fOr
every j € {1,...,n}, GJl <ptinrm G[w;j for every j € {1,...,n}. This yieldsG[l <ptrnm G|V since
succg(V) = Xjy, -+ -, Xjm i W1, ..., W for some{js,..., jm} C {1,...,k}. The conditions (ii)—(iv) follow
from the definition of unfolding graph rewrite rules. Chaousievery rewrite ruldG,l,r) € ¢4 so that
(GJI)nnrm is maximally shared allows one to conclude. O

Corollary 3. For every general safe recursive function f, there existrasstmictor GR%/ that computes
f and a polynomial p N — N such that, for any maximally shared, closed basic term gréphif
G — H, then m< p(n) and|H| < p(n) + |G| hold, where n denotes the Sidgycnrm(roots) Vaivl (Of the
union) of the subgraphs connected to the normal argumeritigros of rootg only.

rootg

The corollary says that every general safe recursive fonatan be computed by a polynomially
bounded constructor GRS. Since such a witnessing GRS iirpelyresentable in particular, Corollary
[Byields an alternative proof of Theorér 1.

5 Related works and further application

In this section we discuss two related works to see some faitapplicability of the method presented
in the previous section and one more work to see a limit of tmeputational power of the method.
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In [15] a term rewrite syster#,.s, which computes the length of thengest common subs-sequence

of two strings, is discussed. The rewrite systéig contains instances of
fley.zw) — gy.z;w) f(xezw) — gxzw)
fci(¥),cj(y).zzw) = hij(xy,z;wf(xcj(y),z;w),f(ci(X),.Z;w)),

i.e., rewrite rules expressing safe recursion with mudtigcursion arguments. For exactly the same
reason as in case of general safe recursigg, only admits a polynomiafjuastinterpretation which
says nothing about polynomial runtime complexity. Due ®@1bstriction to single recursion arguments,
it is not possible to represent these rules as instancesfaf (scursive) unfolding graph rewrite rules.
However, as seen from an instance (1) below (where the Varzab ignored to ease the presentation),
s could be represented by an infinite GRS fulfilling the assumnpt(i)—(iv) in Theoreni 2.

VA
l=s--g __g =1

In a very recent work [2], Theorem 1 is expandeddonultaneougeneral safe recursion, e.g.,

fi(e,z;w) — gi(z;w) (i=0,1)

filc(x,y),zZ;w) —  hi(x,y,z; W, fo(X,Z; W), fo(y, Z; W), f1(X, Z; W), f1(y, z;w)) ~ 77
In contrast to the current approach, instead of taking aa@dge of sharing in term graph rewriting,
the notion ofcacheis employed in[[2] to avoid costly recomputations. A simitention, calledminimal
function graphscan be found in [15], yielding that the rewrite systéfp can be executed in polynomial
time. As mentioned in RemafK 2, the condition (iv) in Theof@roan be relaxed as (iv)K |r| < |[K|
14+ O(|(Vk1),,ml)- Thus, as seen from an instance (2) above, such the scheinauttbsieous recursion
could be also represented by an infinite GRS enjoying thengsthons (i)—(iii) and (iv)'.

As shown in[[14], it is known that the polynomial-space comajple functions can be captured with
safe recursion (on notatiomjith parameter substitutionsTo see an explicit boundary of the proposed
method, consider the term rewrite system below that expsess instance of the schema.

flesy) — s(iy)
flc(®);y) = h(Xyf(x;p(x;y)),f(x;q(x;y)))

The rules below are the first three instances of unfoldingatiwve rules.

(0) fle;y) — s(iy)

(1) f(c(e)iy) — h(e;y.g(ip(e;y)).e(ia(e:y)))

(2) flc(c(e));y) — h(c(e);y.h(e;y.g(ip(eip(c(e).y))).g(aleip(c(€).y)))),

h(e;y,g(ip(e;a(c(e),y))).8(a(galc(e),y)))))

One will see thag occurs 2times in the™ instance(i) and none of the occurrences can be shared since
their arguments are different. For this reason, even if Hreyrepresented as maximally shared GRS
21wl < |K 1| for every (K, 1,r) € %, and thus (even a relaxed form of) the condition (iv) fails.

6 Conclusion

Generalizing unfolding graph rewrite rules that expresssithemdGeneral Safe Recursioly, we pro-
posed restrictive precedence termination orders, precedermination with argument separation. The
restrictive notion together with suitable assumptionddgea new criterion for the polynomial runtime
complexity of infinite GRSs and for the polynomial-size nafrforms in infinite GRSs. As discussed in
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the last section, the proposed method can be potentiallgneiqul for safe recursion with multiple recur-
sion arguments or simultaneous general safe recursiorthasds indeed more flexible than unfolding
graph rules at least in a limited sense. It should be stresswaever, that it is unclear how to express
infinite instances of those recursion schemata with infiiggh rewrite rules in a uniform way.
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