Compiling Process Networ ksto | nteraction Nets

lan Mackie
LIX, CNRS UMR 7161 Ecole Polytechnique, 91128 Palaiseau Cedex, France

Kahn process networks are a model of computation based dfeatam of sequential, deterministic
processes that communicate by sending messages througindda channels. They are well suited
for modelling stream-based computations, but are in no wstyicted to this application. Interaction
nets are graph rewriting systems that have many intergstoqperties for implementation. In this pa-
per we show how to encode process networks using interantits) where we model both networks
and messages in the same framework.

1 Introduction

We relate two models of computation: Kahn Process NetwdfkENs) and Interaction Nets. Our aim
is to encode process networks as Interaction Nets so thahmwmeke use of implementations, and also
to understand a different way of programming and computiitgiminteraction nets. Specifically, we
investigate encoding a KPN as a system of interaction netfosn one perspective we can see this
work as giving a compilation. Since there are many implemugorts of interaction nets this gives an
implementation technique for process networks.

Kahn Process Networks|[3] model computation using tokemsetling around a fixed network, and
the structure of the network does not change during compuataEach node of the network transforms,
depending on its function, tokens by consuming and creatawgtokens. Transformation of tokens hap-
pens asynchronously and in parallel in the network: mangnsican be travelling around the network,
and different nodes can be transforming different toketiseasame time. The communication channels,
where the tokens flow, are buffered: the order of tokens isguued, so tokens are queued waiting to be
processed. Each processing element must block if inputsainget available, but they must not block
to output. Only one process can write to each channel, arydoo@ process can read each channel.

Interaction nets [5] on the other hand are a specific form aplyrewriting system. A program is
represented as a network, and the net is rewritten to noomallby graph rewrite rules, called interaction
rules. These rules act locally: no part of the graph can beedaw erased globally, so consequently one
interaction cannot interfere with another interactiortetaction rules can be applied asynchronously and
in parallel; a feature shared with process networks. Eade iod an interaction net must be connected
by a single edge port-to-port to another node. Thus thersianarities between Interaction Nets and
KPN.

Our goal is to simulate process networks in interaction.né#s achieve this by modelling both the
fixed network and tokens using nodes in interaction nets. fifimg of a transformation in the process
network becomes an interaction rule (or several interadatites). It is then just a convention that some
nodes in the interaction net are fixed and others are tragetin reality, we are just performing a
rewrite rule. Not only does this give an implementation aiefow networks with interaction nets, but
it offers an interesting programming style that is freqbemntore natural (and often more efficient) than
other ways. We see this as an application of interaction whtse the body of research on parallel
implementation is becoming stronger.

A. Corradini & H. Zantema (Eds.) © I. Mackie
Computing with Terms and Graphs (TERMGRAPH 2016) This work is licensed under the
EPTCS 225, 2016, pp. B4, doi:10.4204/EPTCS.225.3 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.225.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

6 Compiling Process Networks to Interaction Nets

Overview. The rest of this paper is structured as follows. In the necti@e we give some background

material on process networks and set up the specific stylgerfiction nets that we are using, including
some notation and conventions that we adopt. In Settion 3uilg $ome example interaction systems
that serve as building blocks for our compilation of datavfleetworks. Sectiohl4 gives an outline of the
compilation process, and gives some examples of processmetin interaction nets. Sectibh 5 gives an
example of using the compilation, and also gives additiexamples of programming with interaction

nets in the style of process networks. Finally, we concludgectior .

2 Background

Process networks. A Kahn Process Network [3,] 4] is a directed gragh= (V,E) with sequential
processing units as the verticésand unbounded buffers as the connecting edgea process, which
is a sequential program that could be written in any langyfgeexample C, Java, Algol, Haskell,
etc.), communicates with another process if there is a atimgeedge, called a channel, linking the two
processes. A communication channel (stream or buffer) isite for infinite sequence of data elements
(all the examples in this paper are numbers, but other dathyded structured, is possible). We use a
list notationS= [xg,%y, ...], where the empty stream is denotgdwhen we need to write them down.

A process can be understood as a function mapping a coheotistreams to another collection of
streams. The following diagram illustrates the idea, whieeee araminputs andh outputs:

Each proces$ is a sequential program that can read from input streéams. , S, to write to output
streamdJs, ..., U, (we will assumem,n > 0) that can include the two primitives for communication:

e send x on U:this command sends a valyéwe will assume all values are integers in this paper)
along the channdl. The command is non-blocking, which is why the connectingesdare
unbounded buffers, working as a FIFO queue.

e x = wait (U):this command waits for a value on chanbeland assigns the value to the variable
X. This command is blocking: a read on a channel must wait tirgivalue is there, and only then
consumes it.

If a process has only write instructions, then it may be ttse¢hatm= 0 is required. Such processes
are said to be able to process on empty buffers, and thisitatiypneeded to start the computation going.
Here we will favour an alternative and initialise channelkst@ad. If a process has repeated processing on
empty buffers, then we can simulate this behaviour by argadicycle by connecting an input from an
output. The data on this extra channel can then be used ¢etrige process. The process can then read
this input, and just send it back around the loop to the injouthis way, all processes trigger output from
input, but the price to pay is that we might need to initiasene of the channels with starting values.

Within a process, theend andwait instructions can be used in a number of different ways:

e A process does not have to read all of the inputs. Thus sommelsacan accumulate data indefi-
nitely if a process is writing to the channel but no procesegasling it.

I. Mackie 7

e The order of input/output is not constrained in any way. Acess can read from some of the
channels in any order, then write to others. It can alsolgdge reading and writing.

A process has local variables, and thus an internal states iFlused to make the process behave
differently on future inputs, and also to store past resuiitghe following, interaction nets will use dif-
ferent principal ports to mimic the different behaviour.eTihternal state of a process will be represented
by the corresponding internal state of an interaction ndeno

A process network is a collection of processes connecteetlieg The edges are shared channels
where communication can take place. The network of proselsas a linearity constraint: only one
writer per channel and one receiver per channel. A procesdgalicate values on a channel (and write
a value to two different channels) but each channel musileaiiin this sense. A consequence of these
conditions is that processes are deterministic. But theyksio amenable to a high degree of concurrency:
many processes can be active at one time, and each processbomly wait for all it's values before
proceedings. For this reason process networks are a modatobuted computation. There are many
variants of this model, for example synchronous procesHesre are also many studies of properties of
these networks, such as deadlock. Here we are interestegbiementing them rather than studying any
properties.

We give an example adapted from [3]. In this netwdrks a process that alternately receives input
from the left/right and copies it to the output chanrgels a process that receives an input and alternately
copies it left and righth; is a process that iSitially em\i/tvs anthen copies the input to the output channel.

nen B e
ho X |
C.[g L]
\Y Y
The code for these processes is given by the following, wivergist show, respectivelyy and f:
send O on U bool b = true
repeat repeat
x = wait (V) if b then x = wait(U)
send x on U else x = wait (W)
end send x on X
b = not b
end

In this example, if we monitor the output df we get an infinite alternating sequence of 0 and 1.
This process does not deadlock, and no synchronisatioregeddor any of the individual processes.

We refer the reader to the literature (see for example [3]afimore detailed description of data-flow
networks. Faustini]1] gives an operational semantics ot@ss networks. There are many works im-
plementing KPN (see for exampl€ [8] where they are encodée\a), and there are many programming
languages based on the principles. We give examples of tiedamrks using interaction nets later.

Interaction nets. Analogous to term rewriting systems, we have a set of us@maténodes (drawn as
circles and squares in this paper), and a set of rewrite:rules

SN %n iy Ly,
IO OUENE I

8 Compiling Process Networks to Interaction Nets

The set of rewrite rules is constrained: there is at most oleefor each pair of nodes; and each name in
the diagram occurs exactly twice—once in the left, and ondke right. This means that the interface is
preserved by reduction, and a consequence of this is thtdtipn and erasing must be done explicitly,
but the rewriting system is one-step confluent by constracti

We extend interaction nets in two ways, and here we will pregids informally. First, we allow
nodes to hold values (just numbers are needed for the exanmpthis paper, but other base types can
be included in a similar way). Consequently, rules can iospad update these values. It is possible to
do this and still preserve the same confluence propertieddoyng conditions on the rules. Next, we
avoid introducing auxiliary nodes that are essentiallyunegl because arguments are taken one at a time
(cf. Currying). We do this by allowing some nodes to have ssvgrincipal ports, and the rewrite rule
requires all to match. This offers no new computational powet groups several interactions which
is sometimes convenient. We illustrate all these ideas aritlexample. Consider the two rules which
encode pairwise addition on lists of numbers:

| | |
+ +X +X @
I G I
|
o ¢

we can combine these into a single rule in the following way:

|

+

Vv
(?)(;) +
P

For the programs we write, all the properties of interactiets are preserved, and this extension can
be implemented in usual interaction nets. There are manjeimgntations of interaction nets (see for
examplel[2[B]), including parallel ones. We will be builgimteraction net systems to simulate process
networks, and for this to work we assume that the implemiemias fair, by which we mean that no new
reductions are done before older ones are completed. Mp&tinentations respect this, so this avoids
any starvation or live-lock issues that might arise.

3 Building blocks

In addition to the examples for interaction nets given inlts section, we build some examples here
that will be useful later for the compilation, specificallgrfthe representation of the communication
channels (buffers).

Listsand streams. Using two kinds of nodes, we can build lists of numbers:

OO

I. Mackie 9

An example list with four elements would look like this:

D)

Streams are just lists withouiil. We can write simple operations over these lists/strean®. F
example, applying an operation to each element of a lisnfefp) can be done using the following two
interaction rules, where we increment each element of #tre i

—inc»«@ =>«@ *inc—><—@:><—@7inc—>

The following net rewrites using four interactions to reachormal form:

il @@ rewrites to @@

Other operations on lists/streams can be defined in a simégr

Duplicating streams. A very important operation, because of the linearity caisty is the ability to
explicitly copy lists and streams. With the introductionaofiew noded, we can define two interaction
rules which will copy any list or stream in the following way:

e~y D N W Oty
@@ @W

We can now put both of the above systems together to compungsthike the following (that we
leave as an exercise to the reader):

L e} (0@

Using these components, we can generate an infinite listegens, starting from a given number
with the following net:

inc

We call this cyclic neiints(n). There are variants of this if we change to increment by 2, etc.
Remark that this net is non-terminating. Two interactioresreeeded for each new number on the output
stream (one to copy the number, and another to incrementfdhe oopies). If we start withh= 1, and
trace the execution (after two interactions each time) weha

C e and then after four more @@@ oI~

interactions we have:
inc inc

and so on. Thus we can generate cyclic nets, and simulatdesaafa-flow with interaction nets. This
net generates an infinite stream of integers. This is an ebeaafif@ process network, but uses our own
interpretation on the netg) andinc are considered fixed and the numbers are interpreted asteias i
on a stream. In the next section we take these ideas further.

10 Compiling Process Networks to Interaction Nets

4 Compilation of process networksto nets

Our next task is to show how to translate any KPN into an ictéva net. Not only does this highlight
some connections between the formalisms, but it also pesvésh implementation of process networks.
There are two possible ways to proceed:

e We can define a set of KPN “combinators”, by which we mean aefigett of processes that can be
used to represent all other process networks (thus all ctabfgufunctions). We then just need to
show how to translate this fixed set of processes, togethértivé communication channels and
net structure, to complete the compilation.

e We can give a general translation for each (user-prograjpredess. This means that we need to
fix the programming language used to define processes, amditieea translation of this language.

In this paper we just sketch the general translation, anughe some example interaction systems.
We adopt a convention when writing interaction nets (thathaee followed already in the previous
examples): squares will represent processes, and cirdlegpresent data items on channels (streams).
The general form of the compilation is the following:

e Communication channels are encoded as interaction nanstteas defined in Sectibh 3.

e Each process becomes a set of interaction net nodes thaimillate the functional behaviour of
each process. We need to define the nodes and the rewritfouleach process. Any internal
state of a process becomes the internal state of an intemaudide.

e The topological structure of a process network and an iateranet are identical, so this structure
is just copied as part of the compilation.

Below we give sufficient details of how process and channedgranslated so that we are able to
give some examples.

Channels. Each channel in a KPN is represented as an interaction eeinsirlf the channel is empty,
then the stream is represented as an edge in the interagiorOtherwise, ifS= [xi,...,X,] then we

build the following stream:

Initially, channels are usually empty at the start (so atahmpilation). However, some exceptions
to this rule will be used. In the compilation above, if we allother data, then we need to translate that
too. Here we just use numbers.

Processes. Each process is represented by a collection of interaction net nodest Hasm input
streams and output streams:

I. Mackie 11

then this will be represented by a collection rofinteraction noded,..., fn, where eachf; has the
principal port at positiom corresponding to theh input stream, and each with+ m— 1 auxiliary ports
(m— 1 input andn output):

b 4] -4
f, f, fm

For each nodd; we define the corresponding interaction rules that simufagrocess. The inter-
action rulef; with input on stream becomes the proceds (wherei = j is a possibility) and possibly
outputs something on one of the output channels. The iftetat is changed accordingly also.

We note that a process network uses internal state in twodiffgrent ways: one to know which
channel to read from, and the other to store values from ppats. Interaction nets just use the second,
because the choice of which channel to read from comes fremifferent node used (which gives the
position of the principal port). Note also that if any chanisenot read by the process, then there is no
need to generate any rules for the corresponding node.

Example 1. Consider a KPN that computes the running total from a chanrighis can simply be
implemented by a single process that stores internallyitistafrom 0, the accumulative sum of all
the values read on the input channel. For each data item omia channel, the total is updated, and
the new total is written to the output. Following the ideashaf last section, we need just one node, and
one interaction rule to represent this system:

t

S(x+Y)

] =
s(x)
|

If we start with the node(8), we can generate the stream of accumulating totals read rsolfae
process keeps a history of the inputs (the sum of all the quewalues).

Example 2. Our next example is a variant on the previous one, where tisen® internal state in the
process. We use the network channels to keep the running wdtich illustrates a general idea that
we can frequently represent the internal state using aoldliti channels. Consider the following process
network:

send O on W

repeat
U x = wait(U)
! w = wait (W)
+ W send (x+w) on V
! send (x+w) on W
\Y end

This gets compiled into the following system. Since we neesehd before read, we need to initialise
the streanW with 0. The following is the initial net generated, and wesgitaie two rules corresponding
to the + process:

12 Compiling Process Networks to Interaction Nets

il

+1
1
” b b B!
‘ +1 — | +200 20| —
|] [] |]

We end this section by stating a very general relation betw@N and the compiled interaction net.
Theorem 3 (Correctness)If a KPN reads or writes on a channel, then the corresponditgraction net
can make the same move.

Because we mimic the functional behaviour of the KPN as aesysif interaction nets, then this
result is essentially obtained by construction. In a longesion of this paper we give the additional
details to justify this. Finally, we remark that interactioets are one-step confluent, therefore we get
a completeness result also: it doesn’t matter which way vaduate a generated interaction net, it will
always output the same thing as the KPN.

5 Representing process networ ks

Each process becomes a node in the interaction system, agileveules that simulate the required
behaviour. Channels become streams, and we represennstofadata as given previously. In this
section we give another example of the compilation, and gige some examples of programming
interaction nets directly in the style of process networkise alternating bit process given in Section 2
can be represented by the following interaction net:

(O]~
L

01 J

with the following six interaction rules (there are two mifer h; that are identical):

—@—»«f]_: ff2+<@f:>+f1f
\ \
0 ®

O _ @2* O
o -(i)~ @

The choice of the principal ports directly encodes the oafeeading on channels of the original
process. We next show how to write process networks direStippose we wish to build a net expressing
the following input/output behaviour that we represent &sxaf shown below. We can think of this as
the function on pairs:f = A (x,y).(x,x+Y)). We can represent this using the building blocks we have
already introduced, as shown below on the right:

I. Mackie 13

X y
X y
| |
f
\ \
X Xty X X+y

Connecting numbers to the top will give the required behavid/e can iterate this function by building
a feedback loop as shown below on the left. Finally, we carspuate starting values in to complete the
network, as shown below on the right:

<y

X!

E
X bx+y

If we look at the output of the+ node, we will getn, 2n, 3n, etc. This network will compute a
stream of multiples ofi. We can also control the computation by restricting theattens by introducing
a counter. To do this we need to know when to stop, and how taeixhe result. We can do this by
adding in some synchronisation that can be encoded witklatdrideas from interaction nets.

We give two final examples to illustrate how easily differemts can be built. These networks
compute a stream of factorial numbers and a stream of Filsonambers respectively:

© o [0 &

U U

6 Conclusion

Interaction nets give a very easy way of implementing data-thetworks. There are several parallel
implementations of interaction nets now available, so ithégns that we can also take advantage of the
natural parallelism that arises by writing programs in thigs). Programming algorithms in interaction
nets by encoding a process network can give a very efficiesttddng of the algorithm: the example
above for Fibonacci needs just three kinds of nodes and twoteerules to generate an infinite stream
of Fibonacci numbers which is simpler and more efficient taay other way.

There are interesting extensions to the ideas presentedtingr are currently being investigated.
For instance, is is possible to allow KPN to dynamically tee@ew processes. This fits very naturally
with interaction nets. Notions of second order networke fse instancel[7]) have been discussed, and

14 Compiling Process Networks to Interaction Nets

interesting relations again arise with past work on intéoacnets. We hope to report on some of these
ideas in a longer version of this paper.

References

[1] Antony A. Faustini (1982)An Operational Semantics for Pure Dataflow Mogens Nielsen & Erik Meineche
Schmidt, editors:Automata, Languages and Programming, 9th Colloquium, égrBenmark, July 12-16,
1982, Proceeding&ecture Notes in Computer Sciert&0, Springer, pp. 212—-224, doi:10.1007/BFb0012771.

[2] Abubakar Hassan, lan Mackie & Shinya Sato (201An Implementation Model for Interaction Netdn
Aart Middeldorp & Femke van Raamsdonk, editoRroceedings 8th International Workshop on Comput-
ing with Terms and Graphs, TERMGRAPH 2014, Vienna, Austiidy 13, 2014.EPTCS183, pp. 66-80,
doii10.4204/EPTCS.183.5.

[3] Gilles Kahn (1974):The Semantics of Simple Language for Parallel Programmimng IFIP Congresspp.
471-475.

[4] Gilles Kahn & David B. MacQueen (197 7¢.oroutines and Networks of Parallel Processes IFIP Congress
pp. 993-998.

[5] Yves Lafont (1990):Interaction Nets In: Proceedings of the 17th ACM Symposium on Principles of Pro-
gramming Languages (POPL'9®CM Press, pp. 95-108, doi:10.1145/96709.96718.

[6] lan Mackie & Shinya Sato (2015)Parallel Evaluation of Interaction Nets: Case Studies angh&iments
ECEASST73, doi:10.14279/tuj.eceasst.73.1034.

[7]1 S. G. Matthews (1991)Adding second order functions to Kahn data flolechnical Report, University of
Warwick. Department of Computer Science.

[8] Thomas M. Parks & David Roberts (2003pistributed Process Networks in Javdn: 17th International
Parallel and Distributed Processing Symposium (IPDPS R@2326 April 2003, Nice, France, Proceedings
IEEE Computer Society, p. 138, doi:10.1109/IPDPS.20013286.

http://dx.doi.org/10.1007/BFb0012771
http://dx.doi.org/10.4204/EPTCS.183.5
http://dx.doi.org/10.1145/96709.96718
http://dx.doi.org/10.14279/tuj.eceasst.73.1034
http://dx.doi.org/10.1109/IPDPS.2003.1213266

	1 Introduction
	2 Background
	3 Building blocks
	4 Compilation of process networks to nets
	5 Representing process networks
	6 Conclusion

