
A. Corradini & H. Zantema (Eds.)
Computing with Terms and Graphs (TERMGRAPH 2016)
EPTCS 225, 2016, pp. 5–14, doi:10.4204/EPTCS.225.3

c© I. Mackie
This work is licensed under the
Creative Commons Attribution License.

Compiling Process Networks to Interaction Nets

Ian Mackie
LIX, CNRS UMR 7161,École Polytechnique, 91128 Palaiseau Cedex, France

Kahn process networks are a model of computation based on a collection of sequential, deterministic
processes that communicate by sending messages through unbounded channels. They are well suited
for modelling stream-based computations, but are in no way restricted to this application. Interaction
nets are graph rewriting systems that have many interestingproperties for implementation. In this pa-
per we show how to encode process networks using interactionnets, where we model both networks
and messages in the same framework.

1 Introduction

We relate two models of computation: Kahn Process Networks (KPNs) and Interaction Nets. Our aim
is to encode process networks as Interaction Nets so that we can make use of implementations, and also
to understand a different way of programming and computing within interaction nets. Specifically, we
investigate encoding a KPN as a system of interaction nets, so from one perspective we can see this
work as giving a compilation. Since there are many implementations of interaction nets this gives an
implementation technique for process networks.

Kahn Process Networks [3] model computation using tokens travelling around a fixed network, and
the structure of the network does not change during computation. Each node of the network transforms,
depending on its function, tokens by consuming and creatingnew tokens. Transformation of tokens hap-
pens asynchronously and in parallel in the network: many tokens can be travelling around the network,
and different nodes can be transforming different tokens atthe same time. The communication channels,
where the tokens flow, are buffered: the order of tokens is preserved, so tokens are queued waiting to be
processed. Each processing element must block if inputs arenot yet available, but they must not block
to output. Only one process can write to each channel, and only one process can read each channel.

Interaction nets [5] on the other hand are a specific form of graph rewriting system. A program is
represented as a network, and the net is rewritten to normal form by graph rewrite rules, called interaction
rules. These rules act locally: no part of the graph can be copied or erased globally, so consequently one
interaction cannot interfere with another interaction. Interaction rules can be applied asynchronously and
in parallel; a feature shared with process networks. Each node of an interaction net must be connected
by a single edge port-to-port to another node. Thus there aresimilarities between Interaction Nets and
KPN.

Our goal is to simulate process networks in interaction nets. We achieve this by modelling both the
fixed network and tokens using nodes in interaction nets. Thefiring of a transformation in the process
network becomes an interaction rule (or several interaction rules). It is then just a convention that some
nodes in the interaction net are fixed and others are travelling—in reality, we are just performing a
rewrite rule. Not only does this give an implementation of data-flow networks with interaction nets, but
it offers an interesting programming style that is frequently more natural (and often more efficient) than
other ways. We see this as an application of interaction netswhere the body of research on parallel
implementation is becoming stronger.

http://dx.doi.org/10.4204/EPTCS.225.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

6 Compiling Process Networks to Interaction Nets

Overview. The rest of this paper is structured as follows. In the next section we give some background
material on process networks and set up the specific style of interaction nets that we are using, including
some notation and conventions that we adopt. In Section 3 we build some example interaction systems
that serve as building blocks for our compilation of data-flow networks. Section 4 gives an outline of the
compilation process, and gives some examples of process networks in interaction nets. Section 5 gives an
example of using the compilation, and also gives additionalexamples of programming with interaction
nets in the style of process networks. Finally, we conclude in Section 6.

2 Background

Process networks. A Kahn Process Network [3, 4] is a directed graphG = (V,E) with sequential
processing units as the verticesV and unbounded buffers as the connecting edgesE. A process, which
is a sequential program that could be written in any language(for example C, Java, Algol, Haskell,
etc.), communicates with another process if there is a connecting edge, called a channel, linking the two
processes. A communication channel (stream or buffer) is a finite or infinite sequence of data elements
(all the examples in this paper are numbers, but other data, included structured, is possible). We use a
list notationS= [x1,x2, ...], where the empty stream is denoted[], when we need to write them down.

A process can be understood as a function mapping a collection of streams to another collection of
streams. The following diagram illustrates the idea, wherethere arem inputs andn outputs:

f

· · ·

· · ·

Each processf is a sequential program that can read from input streamsS1, . . . ,Sm to write to output
streamsU1, . . . ,Un (we will assumem,n> 0) that can include the two primitives for communication:

• send x on U: this command sends a valuex (we will assume all values are integers in this paper)
along the channelU . The command is non-blocking, which is why the connecting edges are
unbounded buffers, working as a FIFO queue.

• x = wait(U): this command waits for a value on channelU , and assigns the value to the variable
x. This command is blocking: a read on a channel must wait untilthe value is there, and only then
consumes it.

If a process has only write instructions, then it may be the case thatm= 0 is required. Such processes
are said to be able to process on empty buffers, and this is typically needed to start the computation going.
Here we will favour an alternative and initialise channels instead. If a process has repeated processing on
empty buffers, then we can simulate this behaviour by creating a cycle by connecting an input from an
output. The data on this extra channel can then be used to trigger the process. The process can then read
this input, and just send it back around the loop to the input.In this way, all processes trigger output from
input, but the price to pay is that we might need to initialisesome of the channels with starting values.

Within a process, thesend andwait instructions can be used in a number of different ways:

• A process does not have to read all of the inputs. Thus some channels can accumulate data indefi-
nitely if a process is writing to the channel but no process isreading it.

I. Mackie 7

• The order of input/output is not constrained in any way. A process can read from some of the
channels in any order, then write to others. It can also interleave reading and writing.

A process has local variables, and thus an internal state. This is used to make the process behave
differently on future inputs, and also to store past results. In the following, interaction nets will use dif-
ferent principal ports to mimic the different behaviour. The internal state of a process will be represented
by the corresponding internal state of an interaction net node.

A process network is a collection of processes connected together. The edges are shared channels
where communication can take place. The network of processes has a linearity constraint: only one
writer per channel and one receiver per channel. A process can duplicate values on a channel (and write
a value to two different channels) but each channel must be linear in this sense. A consequence of these
conditions is that processes are deterministic. But they are also amenable to a high degree of concurrency:
many processes can be active at one time, and each processor need only wait for all it’s values before
proceedings. For this reason process networks are a model ofdistributed computation. There are many
variants of this model, for example synchronous processes.There are also many studies of properties of
these networks, such as deadlock. Here we are interested in implementing them rather than studying any
properties.

We give an example adapted from [3]. In this networkf is a process that alternately receives input
from the left/right and copies it to the output channel.g is a process that receives an input and alternately
copies it left and right.hi is a process that initially emits ani, then copies the input to the output channel.

g

f

h0 h1

U W

V

X

Y
The code for these processes is given by the following, wherewe just show, respectively,h0 and f :

send 0 on U

repeat

x = wait(V)

send x on U

end

bool b = true

repeat

if b then x = wait(U)

else x = wait(W)

send x on X

b = not b

end

In this example, if we monitor the output off , we get an infinite alternating sequence of 0 and 1.
This process does not deadlock, and no synchronisation is needed for any of the individual processes.

We refer the reader to the literature (see for example [3]) for a more detailed description of data-flow
networks. Faustini [1] gives an operational semantics of process networks. There are many works im-
plementing KPN (see for example [8] where they are encoded inJava), and there are many programming
languages based on the principles. We give examples of thesenetworks using interaction nets later.

Interaction nets. Analogous to term rewriting systems, we have a set of user-defined nodes (drawn as
circles and squares in this paper), and a set of rewrite rules:

α
· · ·

x1 xn

α β...
...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

8 Compiling Process Networks to Interaction Nets

The set of rewrite rules is constrained: there is at most one rule for each pair of nodes; and each name in
the diagram occurs exactly twice—once in the left, and once in the right. This means that the interface is
preserved by reduction, and a consequence of this is that duplication and erasing must be done explicitly,
but the rewriting system is one-step confluent by construction.

We extend interaction nets in two ways, and here we will present this informally. First, we allow
nodes to hold values (just numbers are needed for the examples in this paper, but other base types can
be included in a similar way). Consequently, rules can inspect and update these values. It is possible to
do this and still preserve the same confluence properties by placing conditions on the rules. Next, we
avoid introducing auxiliary nodes that are essentially required because arguments are taken one at a time
(cf. Currying). We do this by allowing some nodes to have several principal ports, and the rewrite rule
requires all to match. This offers no new computational power, but groups several interactions which
is sometimes convenient. We illustrate all these ideas withan example. Consider the two rules which
encode pairwise addition on lists of numbers:

x

+
=⇒

+x

y

+x
=⇒

x+y

+

we can combine these into a single rule in the following way:

x

+

y

=⇒
x+y

+

For the programs we write, all the properties of interactionnets are preserved, and this extension can
be implemented in usual interaction nets. There are many implementations of interaction nets (see for
example [2, 6]), including parallel ones. We will be building interaction net systems to simulate process
networks, and for this to work we assume that the implementation is fair, by which we mean that no new
reductions are done before older ones are completed. Most implementations respect this, so this avoids
any starvation or live-lock issues that might arise.

3 Building blocks

In addition to the examples for interaction nets given in thelast section, we build some examples here
that will be useful later for the compilation, specifically for the representation of the communication
channels (buffers).

Lists and streams. Using two kinds of nodes, we can build lists of numbers:

i nil

I. Mackie 9

An example list with four elements would look like this:

1 2 3 4 nil

Streams are just lists withoutnil. We can write simple operations over these lists/streams. For
example, applying an operation to each element of a list (cf.map) can be done using the following two
interaction rules, where we increment each element of the list:

inc nil =⇒ nil inc x =⇒ x+1 inc

The following net rewrites using four interactions to reacha normal form:

inc 1 2 3 nil rewrites to 2 3 4 nil

Other operations on lists/streams can be defined in a similarway.

Duplicating streams. A very important operation, because of the linearity constraint, is the ability to
explicitly copy lists and streams. With the introduction ofa new nodeδ , we can define two interaction
rules which will copy any list or stream in the following way:

δ nil

nil

nil

=⇒ δ x
x

x
δ=⇒

We can now put both of the above systems together to compute things like the following (that we
leave as an exercise to the reader):

+ δ 1 2 3 4 nil

Using these components, we can generate an infinite list of integers, starting from a given numbern
with the following net:

inc

δ n

We call this cyclic netints(n). There are variants of this if we changeinc to increment by 2, etc.
Remark that this net is non-terminating. Two interactions are needed for each new number on the output
stream (one to copy the number, and another to increment one of the copies). If we start withn= 1, and
trace the execution (after two interactions each time) we have:

inc

δ 21
and then after four more

interactions we have:
inc

δ 4321

and so on. Thus we can generate cyclic nets, and simulate simple data-flow with interaction nets. This
net generates an infinite stream of integers. This is an example of a process network, but uses our own
interpretation on the nets:δ and inc are considered fixed and the numbers are interpreted as data items
on a stream. In the next section we take these ideas further.

10 Compiling Process Networks to Interaction Nets

4 Compilation of process networks to nets

Our next task is to show how to translate any KPN into an interaction net. Not only does this highlight
some connections between the formalisms, but it also provides an implementation of process networks.
There are two possible ways to proceed:

• We can define a set of KPN “combinators”, by which we mean a finite set of processes that can be
used to represent all other process networks (thus all computable functions). We then just need to
show how to translate this fixed set of processes, together with the communication channels and
net structure, to complete the compilation.

• We can give a general translation for each (user-programmed) process. This means that we need to
fix the programming language used to define processes, and then give a translation of this language.

In this paper we just sketch the general translation, and then give some example interaction systems.
We adopt a convention when writing interaction nets (that wehave followed already in the previous
examples): squares will represent processes, and circles will represent data items on channels (streams).
The general form of the compilation is the following:

• Communication channels are encoded as interaction net streams, as defined in Section 3.

• Each process becomes a set of interaction net nodes that willsimulate the functional behaviour of
each process. We need to define the nodes and the rewrite rulesfor each process. Any internal
state of a process becomes the internal state of an interaction node.

• The topological structure of a process network and an interaction net are identical, so this structure
is just copied as part of the compilation.

Below we give sufficient details of how process and channels are translated so that we are able to
give some examples.

Channels. Each channel in a KPN is represented as an interaction net stream. If the channel is empty,
then the stream is represented as an edge in the interaction net. Otherwise, ifS= [x1, . . . ,xn] then we
build the following stream:

x1 x2 xn· · ·

Initially, channels are usually empty at the start (so at thecompilation). However, some exceptions
to this rule will be used. In the compilation above, if we allow other data, then we need to translate that
too. Here we just use numbers.

Processes. Each processf is represented by a collection of interaction net nodes. Iff hasm input
streams andn output streams:

f

· · ·

· · ·

I. Mackie 11

then this will be represented by a collection ofm interaction nodesf1, . . . , fm, where eachfi has the
principal port at positioni corresponding to theith input stream, and each withn+m−1 auxiliary ports
(m−1 input andn output):

f1

· · ·

· · ·

f2

· · ·

· · ·

· · · fm

· · ·

· · ·

For each nodefi we define the corresponding interaction rules that simulatethe process. The inter-
action rule fi with input on streami becomes the processf j (wherei = j is a possibility) and possibly
outputs something on one of the output channels. The internal state is changed accordingly also.

We note that a process network uses internal state in two verydifferent ways: one to know which
channel to read from, and the other to store values from past inputs. Interaction nets just use the second,
because the choice of which channel to read from comes from the different node used (which gives the
position of the principal port). Note also that if any channel is not read by the process, then there is no
need to generate any rules for the corresponding node.

Example 1. Consider a KPN that computes the running total from a channel. This can simply be
implemented by a single process that stores internally, starting from 0, the accumulative sum of all
the values read on the input channel. For each data item on theinput channel, the total is updated, and
the new total is written to the output. Following the ideas ofthe last section, we need just one node, and
one interaction rule to represent this system:

s(x)

y

=⇒

s(x+y)

x+y

If we start with the node s(0), we can generate the stream of accumulating totals read so far. The
process keeps a history of the inputs (the sum of all the previous values).

Example 2. Our next example is a variant on the previous one, where thereis no internal state in the
process. We use the network channels to keep the running total, which illustrates a general idea that
we can frequently represent the internal state using additional channels. Consider the following process
network:

+

U

V

W

send 0 on W

repeat

x = wait(U)

w = wait(W)

send (x+w) on V

send (x+w) on W

end

This gets compiled into the following system. Since we need to send before read, we need to initialise
the streamW with 0. The following is the initial net generated, and we give the two rules corresponding
to the + process:

12 Compiling Process Networks to Interaction Nets

+1 0
+1 =⇒ +2(x)

x

+2(x) =⇒

+1y

x+y x+y

We end this section by stating a very general relation between KPN and the compiled interaction net.
Theorem 3 (Correctness). If a KPN reads or writes on a channel, then the corresponding interaction net
can make the same move.

Because we mimic the functional behaviour of the KPN as a system of interaction nets, then this
result is essentially obtained by construction. In a longerversion of this paper we give the additional
details to justify this. Finally, we remark that interaction nets are one-step confluent, therefore we get
a completeness result also: it doesn’t matter which way we evaluate a generated interaction net, it will
always output the same thing as the KPN.

5 Representing process networks

Each process becomes a node in the interaction system, and wegive rules that simulate the required
behaviour. Channels become streams, and we represent streams of data as given previously. In this
section we give another example of the compilation, and alsogive some examples of programming
interaction nets directly in the style of process networks.The alternating bit process given in Section 2
can be represented by the following interaction net:

g1

f1

h0 h1

0 1

with the following six interaction rules (there are two rules for hi that are identical):

i f1 f2

i

=⇒ f2 i f1

i

=⇒

g1

i

=⇒

i g2 g2

i

=⇒

g1 i

hi

hii

i

=⇒

The choice of the principal ports directly encodes the orderof reading on channels of the original
process. We next show how to write process networks directly. Suppose we wish to build a net expressing
the following input/output behaviour that we represent as abox f shown below. We can think of this as
the function on pairs:f = λ 〈x,y〉.〈x,x+y〉). We can represent this using the building blocks we have
already introduced, as shown below on the right:

I. Mackie 13

f

x

x

y

x+y

δ

+

x

x

y

x+y

Connecting numbers to the top will give the required behaviour. We can iterate this function by building
a feedback loop as shown below on the left. Finally, we can putsome starting values in to complete the
network, as shown below on the right:

δ

+

x

x

y

x+y

δ

+

n 0

If we look at the output of the+ node, we will getn, 2n, 3n, etc. This network will compute a
stream of multiples ofn. We can also control the computation by restricting the iterations by introducing
a counter. To do this we need to know when to stop, and how to extract the result. We can do this by
adding in some synchronisation that can be encoded with standard ideas from interaction nets.

We give two final examples to illustrate how easily differentnets can be built. These networks
compute a stream of factorial numbers and a stream of Fibonacci numbers respectively:

δ

∗inc

n m

δ

+

1 1

6 Conclusion

Interaction nets give a very easy way of implementing data-flow networks. There are several parallel
implementations of interaction nets now available, so thismeans that we can also take advantage of the
natural parallelism that arises by writing programs in thisway. Programming algorithms in interaction
nets by encoding a process network can give a very efficient encoding of the algorithm: the example
above for Fibonacci needs just three kinds of nodes and two rewrite rules to generate an infinite stream
of Fibonacci numbers which is simpler and more efficient thanany other way.

There are interesting extensions to the ideas presented here that are currently being investigated.
For instance, is is possible to allow KPN to dynamically create new processes. This fits very naturally
with interaction nets. Notions of second order networks (see for instance [7]) have been discussed, and

14 Compiling Process Networks to Interaction Nets

interesting relations again arise with past work on interaction nets. We hope to report on some of these
ideas in a longer version of this paper.

References

[1] Antony A. Faustini (1982):An Operational Semantics for Pure Dataflow. In Mogens Nielsen & Erik Meineche
Schmidt, editors:Automata, Languages and Programming, 9th Colloquium, Aarhus, Denmark, July 12-16,
1982, Proceedings, Lecture Notes in Computer Science140, Springer, pp. 212–224, doi:10.1007/BFb0012771.

[2] Abubakar Hassan, Ian Mackie & Shinya Sato (2014):An Implementation Model for Interaction Nets. In
Aart Middeldorp & Femke van Raamsdonk, editors:Proceedings 8th International Workshop on Comput-
ing with Terms and Graphs, TERMGRAPH 2014, Vienna, Austria,July 13, 2014., EPTCS183, pp. 66–80,
doi:10.4204/EPTCS.183.5.

[3] Gilles Kahn (1974):The Semantics of Simple Language for Parallel Programming. In: IFIP Congress, pp.
471–475.

[4] Gilles Kahn & David B. MacQueen (1977):Coroutines and Networks of Parallel Processes. In: IFIP Congress,
pp. 993–998.

[5] Yves Lafont (1990):Interaction Nets. In: Proceedings of the 17th ACM Symposium on Principles of Pro-
gramming Languages (POPL’90), ACM Press, pp. 95–108, doi:10.1145/96709.96718.

[6] Ian Mackie & Shinya Sato (2015):Parallel Evaluation of Interaction Nets: Case Studies and Experiments.
ECEASST73, doi:10.14279/tuj.eceasst.73.1034.

[7] S. G. Matthews (1991):Adding second order functions to Kahn data flow. Technical Report, University of
Warwick. Department of Computer Science.

[8] Thomas M. Parks & David Roberts (2003):Distributed Process Networks in Java. In: 17th International
Parallel and Distributed Processing Symposium (IPDPS 2003), 22-26 April 2003, Nice, France, Proceedings,
IEEE Computer Society, p. 138, doi:10.1109/IPDPS.2003.1213266.

http://dx.doi.org/10.1007/BFb0012771
http://dx.doi.org/10.4204/EPTCS.183.5
http://dx.doi.org/10.1145/96709.96718
http://dx.doi.org/10.14279/tuj.eceasst.73.1034
http://dx.doi.org/10.1109/IPDPS.2003.1213266

	1 Introduction
	2 Background
	3 Building blocks
	4 Compilation of process networks to nets
	5 Representing process networks
	6 Conclusion

