
A. Corradini & H. Zantema (Eds.)
Computing with Terms and Graphs (TERMGRAPH 2016)
EPTCS 225, 2016, pp. 15–24, doi:10.4204/EPTCS.225.4

c© I. Mackie & S. Sato
This work is licensed under the
Creative Commons Attribution License.

In-place Graph Rewriting with Interaction Nets

Ian Mackie
LIX, CNRS UMR 7161,École Polytechnique, 91128 Palaiseau Cedex, France

Shinya Sato
University Education Center, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan

An algorithm is in-place, or runs in-situ, when it does not need any additional memory to execute
beyond a small constant amount. There are many algorithms that are efficient because of this feature,
therefore it is an important aspect of an algorithm. In most programming languages, it is not obvi-
ous when an algorithm can run in-place, and moreover it is often not clear that the implementation
respects that idea. In this paper we study interaction nets as a formalism where we can see directly,
visually, that an algorithm is in-place, and moreover the implementation will respect that it is in-
place. Not all algorithms can run in-place however. We can nevertheless still use the same language,
but now we can annotate parts of the algorithm that can run in-place. We suggest an annotation for
rules, and give an algorithm to find this automatically through analysis of the interaction rules.

1 Introduction

An algorithm runs in-place, or in-situ, if it needs a constant amount of extra space to run. For an algorithm
to be in-place, the input is usually overwritten, so mutabledata-structures need to be supported by the
programming language. There are many well-known in-place algorithms, in particular from the domain
of sorting. One example is bubble sort, that we can write in Java for instance:

static void bubble() {

int t;

for (int i = n-1; i >= 0; --i)

for (int j = 1; j <= i; ++j)

if (a[j-1] > a[j])

{ t = a[j-1]; a[j-1] = a[j]; a[j] = t; }

}

With some knowledge of what the above instructions do, and tracing a few steps of the execution, we
can soon realise that it runs in-place: one additional memory location (t) is all that is needed to sort the
arraya of integers. In many programs however, it is not obvious thatan algorithm can run in-place, and
moreover it is often not clear that the underlying implementation respects that idea. This issue becomes
more pertinent when we examine different programming paradigms and different programming styles,
especially when we have dynamic data-structures.

In Figure 1 we give four fragments of programs for inserting an element into a sorted list (so part
of the insertion sort algorithm). These programs are written in Prolog, Haskell and Java, with the latter
written using two different programming styles. Insertioncan be written so that it runs in-place, but
it is not easy to see which of these examples are (or can be) in-place unless we start to examine the
compiler, the run-time system, and the definition of functions likecons in the case of Java. Declarative
languages (functional and logic based in this example) are designed to be referentially transparent, so the
data-structures are updated in a non-destructive way. Moreover, it is not the programmer who decides
how memory is allocated and organised in these languages. Onthe other-hand, languages like C and Java

http://dx.doi.org/10.4204/EPTCS.225.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

16 In-place Graph Rewriting with Interaction Nets

(the imperative fragment) the programmer does the memory allocation (and de-allocation also in some
languages) explicitly, and therefore has a better idea of resource usage. These examples illustrate some
of the difficulties in knowing if the program will run in-place or not.

Program 1: Prolog

insert([Y|Ys], X, [Y|Zs]):-

Y < X, !, insert(Ys, X, Zs).

insert(Ys, X, [X|Ys]).

Program 2: Haskell

insert e [] = [e]

insert e (x:xs) = if e < x then e:x:xs

else x:(insert e xs)

Program 3: Java (functional style)

static List insert(int x, List l) {

if (isEmpty(l) || x < l.head)

return cons(x, l);

else

return cons(l.head, insert(x, l.tail));

}

Program 4: Java (destructive style)

static List insert(int x, List l) {

if (isEmpty(l) || x < l.head)

return cons(x, l);

else {

l.tail = insert(x, l.tail);

return l;

}

}

Figure 1: Example programs

In-place algorithms are important because they can lead to more efficient algorithms, and even change
time complexity. If the data-structure supports it, concatenation of two lists can be constant time if done
in-place, but linear if not. Memory allocation is also expensive, so minimising it also makes it more
efficient. Although less important in some ways, there are devices that have limited space (embedded
systems, hand-held devises, etc.), so limiting the space usage if there is no run-time impact is always
advantageous.

In this paper we use a formalism where we can see directly, in fact visualise, that an algorithm is
in-place, and moreover the implementation respects that itis in-place. We use the graphical rewriting
system of interaction nets [5] as our programming paradigm.This visual language has many similarities
with term rewriting systems in that they are user-defined systems. For this reason, they can be considered
as specification languages. However, they are also a model ofcomputation that requires all aspects of
the computation to be explained, including copying and garbage collection. For this reason they are like
an implementation model, or low-level language. It is the mixture of these features that allows us to see
directly how the program can be implemented, and thus see howthe memory is allocated.

Not all algorithms can run in-place however. The formalism will still be of use though, and we
identify three different uses of the information we can ascertain from interaction rules:

1. If the rewrite rules have a particular property then the algorithm is in-place (and will be imple-
mented in-place).

2. If the rules can be applied in a given way, so a strategy is needed, then the algorithm can be
implemented in-place.

3. If neither of the above hold, then we can still make use of the formalism by re-using as much data
as possible in the computation.

For the final point, we can either ask the programmer to annotate the rules, or develop an algorithm to
do this automatically. In this paper, we give examples to motivate the first and last points—more details
including the second point will be given in a longer version of this paper.

I. Mackie & S. Sato 17

The space usage of algorithms, as well as the time complexity, are fundamental in algorithm design
and analysis, and well documented in many textbooks. There have also been a number of works that
give a bound on the space usage through type systems, for example [3], and [4]. Our approach is more
syntactical, and uses properties of the underlying run-time system.

Overview. The rest of this paper is structured as follows. In the next section we recall the background,
and give some examples to motivate the ideas. We then give some case studies of examples that are
in-place in Section 3. In Section 4 we introduce an annotation for the rules which allows for node reuse.
We then go on in Section 5 to show an algorithm to annotate a rule automatically in the case of using a
fixed-size node representation for nodes. After a brief discussion on how we can use this information in
a compiler in Section 6, we conclude in Section 7.

2 Background

In the graphical rewriting system of interaction nets [5], we have a setΣ of symbols, which are names
of the nodes. Each symbol has an arityar that determines the number ofauxiliary ports that the node
has. Ifar(α) = n for α ∈ Σ, thenα hasn+1 ports: nauxiliary ports and a distinguished one called the
principal port labelled with an arrow. Nodes are drawn as follows:

x� x�

...

�

A netbuilt onΣ is an undirected graph with nodes as the vertices. The edges of the net connect nodes
together at the ports such that there is only one edge at everyport. A port which is not connected is called
a free port. Two nodes(α ,β) ∈ Σ×Σ connected via their principal ports form anactive pair, which is
the interaction net analogue of a redex. A rule((α ,β) ⇒ N) replaces the pair(α ,β) by the netN. All
the free ports are preserved during reduction, and there is at most one rule for each pair of nodes. The
following diagram illustrates the idea, whereN is any net built fromΣ.

x�

x�

.
.
. �

y�

y�

.
.
.� ⇒ N

x�

x�

y�

y�

.
.
.

.
.
.

We refer to the rule((α ,β)⇒ N) asα ⊲⊳ β . The most powerful property of this graph rewriting system
is that it is one-step confluent—all reduction sequences arepermutation equivalent. We use an extension
of these pure interaction nets: values can be stored in the nodes, and rules can test these values. This is
done is such a way as to preserve the one-step confluence property. We use this extension in the insertion
sort example below.

It is possible to reason about the graphical representationof nets, but it is convenient to have a textual
calculus for compact representation. There are several calculi in the literature, and here we review one
calculus [2], which is a refined version of [1].

Agents: Let Σ be a set of symbols, ranged over byα ,β , . . ., each with a givenarity ar : Σ → IN. An
occurrence of a symbol is called anagent, and the arity is the number of auxiliary ports.

Names: Let N be a set of names, ranged over byx,y,z, etc. N andΣ are assumed disjoint. Names
correspond to wires in the graph system.

18 In-place Graph Rewriting with Interaction Nets

Terms: A term is built onΣ andN by the grammar:t ::= x | α(t1, . . . , tn) | $t, wherex∈ N , α ∈ Σ,
ar(α) = n andt1, . . . , tn, t are terms, with the restriction that each name can appear at most twice.
If n= 0, then we omit the parentheses. If a name occurs twice in a term, we say that it isbound,
otherwise it isfree. We write s, t,u to range over terms, and~s,~t,~u to range over sequences of
terms. A term of the formα(t1, . . . , tn) can be seen as a tree with the principal port ofα at the
root, and the termst1, . . . , tn are the subtrees connected to the auxiliary ports ofα . The term $t
represents an indirection node which is created by reduction, and is not normally part of an initial
term. Intuitively, $t corresponds to a variable bounded witht (or a state such that an environment
capturest).

Equations: If t, u are terms, then the unordered pairt =u is anequation. Θ will be used to range over
sequences of equations.

Rules: Rules are pairs of terms written:α(x1, . . . ,xn)=β (y1, . . . ,ym)⇒ Θ, where(α ,β) ∈ Σ×Σ is the
active pair, andΘ is the right-hand side of the rule. We will abbreviate in the following the left-
and right-hand sides of the rule by LHS and RHS respectively.All names occur exactly twice in a
rule, and there is at most one rule for each pair of agents.

3 In-place algorithms: case studies

Here we give some example interaction net systems that demonstrate the ideas we have discussed previ-
ously. The first one is unary numbers with addition. We represent the following term rewriting system:
add(Z,y)=y, add(S(x),y)=add(x,S(y)) as a system of nets with nodesZ, S, Add, and two rewrite
rules:

⇒ ⇒
Add

x� x� y�

Add

y�x�x�

Add

x� x�
x� x�

S S ZAddSZ

The following is an example ofadd(S(Z),Z):

Add

r

Add

r

�→ �→

r

Z

S

Z

S Z

Z

S

Z

Next, we introduce an example for the Ackermann function defined by:
ack 0 n = n+1, ack m 0 = ack (m-1) 1, ack m n = ack (m-1) (ack m (n-1)).

We can build the interaction net system on the unary natural numbers that corresponds to the term rewrit-
ing system as follows:

SA
⇒

A2A
⇒

Z

y r x
y r

S

y r

r y

S

x

A2 ⇒Z

r

A

rx

x

S

Z

Pred SA2 ⇒

yrx

A

r

A

y

Pred

Dup

x

I. Mackie & S. Sato 19

where the nodeDup duplicatesS andZ nodes, and the nodePred erases theS node:

SDup ⇒

S S

Dup Dup ⇒Z
Z Z

Pred
⇒

S

The following is an example of rewriting:

A

A Pred

Dup

Z

S

Z

SS

SA

Z

�→

A2

S

S

Z

S

S

Z

S

Z

AS

Z

A

S

Z

Z

ack 0 (ack 1 1)ack 1 2

�→
�

Z

A

A Pred

S

Z

SS

Z
Dup ⊲⊳ Z

�→

Pred ⊲⊳ S

�→

Observation for in-place running. Interaction nets are quite unique as a programming paradigmbe-
cause we are basically writing programs using the internal data-structure. We characterise three kinds of
rewriting rule:

• Case 1: there are two nodes in the right-hand side (RHS). The two nodes of the active pair can be
reused. Thus, no matter which way we evaluate, the algorithmfor these rules can run in constant
space. The rulesAdd ⊲⊳ S, A ⊲⊳ S andDup ⊲⊳ Z are classified in this case.

• Case 2: there are less than two nodes in the RHS. The active pair nodes can be reused as nodes
that occur in the RHS, so in terms of the memory space, it can run in constant space as well. For
instance, the rulesAdd ⊲⊳ Z, A ⊲⊳ Z andPred ⊲⊳ S are classified in this case.

• Case 3: there are more than two nodes in the RHS. Here, active pair nodes can be reused as nodes
that occur in the RHS, but additional memory space is required for other nodes. We divide this
into two very different categories:

1. An active pair creates another active pair that is Case 2 above. These two reductions together
make the algorithm in-place. For instance, in the last two-step reductions ofack 1 2 to
ack 0 (ack 1 1) in the example, we can save memory space for two nodes when we take
Pred ⊲⊳ S andDup ⊲⊳ Z in this order, in comparison with the orderDup ⊲⊳ Z andPred ⊲⊳ S.

2. For instance, the rulesA2 ⊲⊳ Z, A2 ⊲⊳ S andDup ⊲⊳ S are classified in this case. These rules
are not in-place, but the total cost can be reduced by choosing the two reused nodes well. For
instance, in the ruleA2 ⊲⊳ S, it is better to reuse theA2 in the LHS as the right sideA (not the
left side) because the information of the right auxiliary port (denoted as “r”) can be reused.
Thus we try to reuse the memory in the best way possible.

Insertion sort is a well-known in-place algorithm. The firstthree interaction rules below encode
insertion of an item into a sorted list, and the final two rulesencode the insertion sort algorithm.

I(x) nil ⇒ x nil

20 In-place Graph Rewriting with Interaction Nets

I(x) y x≤y
⇒ x y

I(x) y x>y
⇒ y I(x)

IS nil ⇒ nil

IS x ⇒ I(x) IS

These five rules encode the whole program—there is nothing else. Our real point however, is that in
this case a trace of the execution (an animation of this algorithm) is showing no more and no less than
what is needed to explain this algorithm. It is in-place because to begin with we need to put an additional
IS node, and the final rule for IS erases this. We invite the reader to trace the following example net:

IS 2 4 1 3 nil

This example is the full system of interaction nets for the insertion sort algorithm, and it runs in-
place. There are other examples, for instance reversing a list. In this case, we need to start with adding a
rev node, and the final rule deletes it. The following two rules implement reversing any list:

rev nil ⇒
rev revh

h
⇒

The starting configuration is shown in the following example, which will reverse the list in-place
with five interactions:

rev

1 2 3 4 nil

nil

4 Annotating Rules

In the previous section we saw that there are interaction systems that can run in-place. To ensure that
this is actually achieved at the implementation level, we need to make sure that for these examples the
nodes in the rule are reused when building the new net. This idea can be also used even when there are
more than two nodes in the right-hand side of the rule, and in this case there is a choice of how to reuse
the nodes. We next introduce an annotation to show which nodes in the RHS of the rule are reused. This
helps the compiler to analyse information so that it can improve on the in-place execution of parts of the
program.

Annotation: ∗L and ∗R. We introduce∗L and∗R to denote where the left-hand side and the right-hand
side nodes in the LHS of a rule are used for in-place computation, respectively. For instance, the rule
Add ⊲⊳ S is written as follows:

I. Mackie & S. Sato 21

⇒
Add

x	 x
 y�

*L

y�x
x	

S *R

The advantage is that the compiler is easily able to know, traversing the net, not only where the
active pair nodes are used, but also which information aboutthe connections should be preserved. For
instance, in the above example, the information denoted as “x1” and “y1” in the LHS of the rule should
be preserved, say as “_x1” and “_y1”, because these are overwritten in the RHS of the rule, and the “x1”
and “y1” in the RHS should be replaced by the “_x1” and “_y1”.

Annotation for changing of the node name. To change the node name, we introduce a name cast,
such as the type cast of the C programming language, with the∗L and∗R. For instance, the ruleA2 ⊲⊳ S
is written as follows:

SA2 ⇒

yrx

A
(*L)

r

A

y

Pred
(*R)

Dup

x

In this example, the compiler can also know that the information denoted as “x” and “y” in the LHS
of the rule should be preserved, by checking the connection of ∗L and∗R.

Advantage of using a fixed-size node representation for nodes. We represent nodes as a fixed-size
node, thus fixed-size auxiliary ports. For this we need to usemore space than necessary, but we can
manage and reuse nodes in a simpler way [6]. Here, we assume that auxiliary ports are assigned by the
order from the left-hand side to the right-hand side, the ruleA ⊲⊳ Z is written as follows:

A ⇒Z

y r

S
(*L)

y r

So we can reuse not only the∗L node, but also the pointer information (denoted as “y”).

5 Deriving Annotations

In the previous section we showed how rules can be annotated with information about the reuse of nodes.
Here, in the case of using a fixed-size node representation, we define a function to calculate how a given
term is similar to others. We first introduce some notation. For strings we write double quotes (“ and ”).
We use the notation{x} in a string as the result of replacing the occurrence{x} with its actual value. For
instance, ifx= “abc” andy= 89 then “1{x}2{y}” = “1abc289”. We use+ as an infix binary operation
to concatenate strings. We also use a symbol− to show the empty sequence. In order to show where in
a term is in a sequence of equations, we use the following termpath notation:nth (L | R) : arg1 arg2
For instance, the termt in x=y,α(β (s, t),z)=w is denoted as2L:12 because thet occurs inα(β (s, t),z),
which is the left-hand side term of the second equation, occurs in β (s, t), which is the first argument of
the term, and in the second argument of the termβ (s, t).

Using this, we can now give an important definition for this paper:

22 In-place Graph Rewriting with Interaction Nets

Definition 1 (Node matching) The functionMatch below takes a term and a sequence of equations,
and returns a list of a pair(score, term path) where the score contains the number of the matched agent
and matched arguments. We use Standard ML notation for lists, thus, in the following the operator “@”
is list concatenation.

Match(t, (e1, . . . ,en)) = Matche(t, e1, 1)@· · ·@Matche(t, en, n)

Matche(t, s= u, pos) = Matcht(t, s, “ {pos}L : ”)@Matcht(t, u, “ {pos}R : ”)

Matcht(α(~x), x, tpath) = [((0,0), tpath)]
| Matcht(α(~x), β (t1, . . . , tn), tpath) = [((agentPts, namePts), tpath)]

@Matcht(α(~x), t1, “ {tpath}1”)@· · ·
@Matcht(α(~x), tn, “ {tpath}n”)

where agentPts= if α = β then 1 else 0
namePts= Matchns(~x, (t1, . . . , tn))

Matchns(−,~t) = 0
| Matchns(~x,−) = 0
| Matchns((x,~x), (t,~t)) = (if x= t then 1 else 0)+Matchns(~x,~t)

ThusMatch will return a list of the matching metrics for each node, and give the location in the net
for each. We can then easily extract the best one from this information. The following examples illustrate
how this information is calculated.

Example 2 The ruleAdd ⊲⊳ S given previously is written textually as

Add(x1,x2)=S(y1)⇒ Add(S(x1,x2))=y1

First we take the left hand side termAdd(x1,x2) of the active pair.

Match(Add(x1,x2), Add(S(x1),x2)=y1)

returns the following list:

[((1,1),1L:), ((0,1),1L:1), ((0,0),1L:11), ((0,0),1L:2), ((0,0),1R:)]

The first element of this result((1,1),1L :) shows that the highest score(1,1) is obtained when we
annotate the term1L :, which isAdd(S(x1),x2), such as(∗L)(S(x1),x2). Next we take the right hand side
termS(y1). The following is the result of the functionMatch for S(y1):

[((0,0),1L:), ((1,0),1L:1), ((0,0),1L:11), ((0,0),1L:2), ((0,0),1R:)]

This result shows that there is one agent term1L : 1 (thusS(x1)) that has the same id withS(y1), and
no agent terms that have the same occurrence of the argument.Therefore,S(x1) should be annotated as
(∗R)(x1). These annotations correspond to the first graph in Section 4.

Example 3 The ruleA2 ⊲⊳ S given previously is written textually as

A2(x, r)= S(y)⇒ x=Dup(A(y,w),Pred(A(w, r)))

The result ofMatch(A2(x, r), x=Dup(A(y,w),Pred(A(w, r)))) is as follows:

[((0,0),1L:), ((0,0),1R:), ((0,0),1R:1), ((0,0),1R:11), ((0,0),1R:12),

((0,0),1R:2), ((0,1),1R:21)), ((0,0),1R:211), ((0,0),1R:212)].

I. Mackie & S. Sato 23

This shows that the term1R : 21, which isA(w, r), should be annotated by(∗L) because it has the highest
score(0,1).

In the case ofS(y), the result of theMatch is as follows:

[((0,0),1L:), ((0,0),1R:), ((0,1),1R:1), ((0,0),1R:11), ((0,0),1R:12),

((0,0),1R:2), ((0,0),1R:21)), ((0,0),1R:211), ((0,0),1R:212)].

Thus, taking account of using a fixed-size node representation, we find that we should annotate the term
1R : 1, which isA(y,w), by (∗R), though we annotatedPred in the graph in Section 4. Of course, the
evaluation of the score depends on the implementation method. However, in these cases,(0,1) must be
highest because the others are(0,0).

6 Discussion

The algorithm given above can be put to use in the compilationof rules. There is some choice for the
compiler if several nodes get the same score. We briefly summarise here some details about the low-
level language, and a description of how data-structures are used. Our contribution here is to extend
those ideas with reuse. In the longer version of this paper wewill give the algorithm for compilation in
detail and focus on the data-structures that are used. An important result that we get about compilation
is that we do the least amount of work in implementing the interaction rules.

The concrete representation of an interaction net can be summarised by the following diagram, where
Γ represents a net,EQ a stack of equations, andI an interface of the net:

I

EQ

. . .

.

.

.

Γ

The following is the representation of the netAdd(Z, r) = S(w), Add(Z,w) = S(Z), whereN are nodes
representing variables:

EQ

Add

Z N

S

I

Z

N

Add

Z

The interface of the net is where we collect all the free edgesof a net. We have a set of instructions
that can manipulate this data-structure, and the compilation of a rewrite rule needs to generate code
to manipulate this structure. What we have achieved in this paper is an annotation of a rule so that
we can generate code to manipulate data-structures of the kind shown above with the least amount of
work. Specifically, we limit the allocation of memory on the heap, and also avoid unnecessary garbage
collection. We also find the best way to build the RHS of the rule, by re-using the memory cells and the
existing pointers.

Returning to the ideas presented in the introduction, we have obtained the following:

• Case 1: if there are two nodes in the RHS of the rule, then the algorithm for executing these rules
will run in-place, and moreover we will perform the fewest updates of pointers to build the RHS.
This is because the algorithm above will find the best way of reusing both nodes and connections.

24 In-place Graph Rewriting with Interaction Nets

• Cases 2 and 3: Even when the algorithm is not in-place becausewe have more than two nodes or
fewer than two nodes in the RHS, the ideas of this paper still gives the optimal implementation of
the rule. We note however that if we change the data-structure, there may be other solutions to this
problem, so the result we obtain is with respect to the chosendata-structure.

One aspect of in-place interaction nets reduction that we have not examined in the current paper is
pairing up interaction rules by using a specific reduction strategy. For example, if an interaction system
has a rule with one node in the RHS, and another rule with three, then we might be able to schedule these
two rules to be performed together, this maintaining the algorithm in-place. There are a number of ways
we can do this at the implementation level, and we will include details of this aspect in the long version
of the paper.

7 Conclusion

We have introduced a notion to rewrite graphs, specifically interaction nets, in-place. We have identified
a number of in-place algorithms and this lead us to an annotation to facilitate the implementation of
in-place rewriting by re-using nodes of active pairs. The main feature of this annotation is that is will
give the best possible reuse, so will allow the least amount of work to be done when rewriting the graph.
We are currently working to incorporate the ideas of this paper into an implementation, using the model
previously developed in [2]. We hope to present details of that, and benchmark results at a future time.

References

[1] Maribel Fernández & Ian Mackie (1999):A Calculus for Interaction Nets. In G. Nadathur, editor:Proceedings
of the International Conference on Principles and Practiceof Declarative Programming (PPDP’99), Lecture
Notes in Computer Science1702, Springer-Verlag, pp. 170–187, doi:10.1007/10704567 10.

[2] Abubakar Hassan, Ian Mackie & Shinya Sato (2015):An Implementation Model for Interaction Nets. In:
Proceedings 8th International Workshop on Computing with Terms and Graphs, TERMGRAPH 2014, Vienna,
Austria, July 13, 2014., pp. 66–80, doi:10.4204/EPTCS.183.5.

[3] Martin Hofmann (2000): A Type System for Bounded Space and Functional In-Place Update–Extended
Abstract. In Gert Smolka, editor:Programming Languages and Systems, 9th European Symposiumon
Programming, ESOP 2000, European Joint Conferences on the Theory and Practice of Software, ETAPS
2000, Berlin, Germany, Proceedings, Lecture Notes in Computer Science1782, Springer, pp. 165–179,
doi:10.1007/3-540-46425-511.

[4] John Hughes & Lars Pareto (1999):Recursion and Dynamic Data-structures in Bounded Space: Towards
Embedded ML Programming. In Didier Rémi & Peter Lee, editors:Proceedings of the fourth ACM SIG-
PLAN International Conference on Functional Programming (ICFP ’99), Paris, 1999, ACM, pp. 70–81,
doi:10.1145/317636.317785.

[5] Yves Lafont (1990):Interaction Nets. In: Proceedings of the 17th ACM Symposium on Principles of Pro-
gramming Languages (POPL’90), ACM Press, pp. 95–108, doi:10.1145/96709.96718.

[6] Simon L. Peyton Jones (1987):The Implementation of Functional Programming Languages. Prentice Hall
International.

http://dx.doi.org/10.1007/10704567_10
http://dx.doi.org/10.4204/EPTCS.183.5
http://dx.doi.org/10.1007/3-540-46425-5_11
http://dx.doi.org/10.1145/317636.317785
http://dx.doi.org/10.1145/96709.96718

	1 Introduction
	2 Background
	3 In-place algorithms: case studies
	4 Annotating Rules
	5 Deriving Annotations
	6 Discussion
	7 Conclusion

