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An introductory formal languages course exposes advanced undergraduate and early graduate stu-
dents to automata theory, grammars, constructive proofs, computability, and decidability. Program-
ming students find these topics to be challenging or, in many cases, overwhelming and on the fringe
of Computer Science. The existence of this perception is notcompletely absurd since students are
asked to design and prove correct machines and grammars without being able to experiment nor get
immediate feedback, which is essential in a learning context. This article puts forth the thesis that
the theory of computation ought to be taught using tools for actually building computations. It de-
scribes the implementation and the classroom use of a library, FSM, designed to provide students
with the opportunity to experiment and test their designs using state machines, grammars, and regu-
lar expressions. Students are able to perform random testing before proceeding with a formal proof
of correctness. That is, students can test their designs much like they do in a programming course.
In addition, the library easily allows students to implement the algorithms they develop as part of the
constructive proofs they write. Providing students with this ability ought to be a new trend in the
formal languages classroom.

1 Introduction

An introductory formal languages course exposes advanced undergraduate and early graduate students to
automata theory, grammars, constructive proofs, computability, and decidability. Programming-oriented
students find these topics to be challenging or, in many cases, overwhelming and on the fringe of Com-
puter Science. The existence of this perception is not completely absurd since students are asked to
design and prove correct machines/grammars without being able to experiment nor get immediate feed-
back, as they do in any programming course, which is essential in a learning context and needs to be
timely (the sooner the better) [9]. Computer Science students are accustomed to immediate feedback as
they routinely use compilers and interpreters that provideerror messages and warnings. Moreover, ma-
chines/grammars are representations of programs. Thus, inessence, designing machines and grammars
without being able to test them goes against the grain of whatstudents have learned in programming
courses. The same holds true when arguing that a problem is decidable. In our experience, the inability
to implement state machines and grammars results in inexperienced students submitting solutions that
are incorrect even when an exercise is relatively simple. Experimentation and immediate feedback are
key components to learning that are seldom found in the automata theory classroom.

Rarely do formal languages textbooks (e.g., [5, 7, 11]), unlike programming textbooks, offer any
software infrastructure for students to experiment with their ideas and designs. This omission has an
impact on how well students understand constructive proofs. In essence, a constructive proof spells
out an algorithm to build a machine/grammar. For example, algorithms are outlined by the proof that
nondeterministic finite-state machines and deterministicfinite-state machines are equivalent and by the
proof that context-free languages are closed under union. Computer Science students are taught that
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algorithms need to be implemented and tested. This is especially true when the student has an intuition
of how an algorithm ought to proceed, but is uncertain of all the details–the typical case when a student
starts thinking about a constructive proof. Without feedback obtained from implementation and testing, it
is common for students to try to prove the correctness of a machine/grammar that is incorrect. This leads
to their work being marked down by an instructor and, in turn,to frustration and apathy for the material.
The reader can contrast this scenario with a programming course in which the student can experiment
with an implementation. Formal languages textbooks that reference software support (e.g., [6]) fail to
integrate the use of the software as a part of the textbook. Instead, it is left as a recommendation. More
worrisome, however, is that the support software is not easily extendible by students to integrate the
algorithms they develop as part of their own constructive proofs. In other words, students are required to
design algorithms that are not to be implemented.

Given that it is reasonable for Computer Science students tobe able to experiment with and get feed-
back on the algorithms they develop, a decision must be made as to how to engage programming students.
One solution, of course, is to have students implement the algorithms from scratch in their favorite pro-
gramming language without providing any software support.Although possible, this approach is likely
to be too time-consuming within the confines of one semester.A more reasonable approach is to provide
students with a library (or a programming language) that allows them to quickly implement and test1

the machines/grammars they design and the algorithms they develop. This article describes aRacket
library, FSM, designed to provide students with the opportunity to implement and to test their designs
using finite-state machines, regular expressions, regulargrammars, pushdown automata, context-free
grammars, Turing machines, and context-sensitive grammars much like they experiment when writing
programs in a programming course. In addition, theFSM library easily allows students to implement
the algorithms they develop as part of the constructive proofs they write. In essence, this article puts
forth that the theory of computation ought to be taught usingtools for actually building computations.
Providing this ability should be a new trend in the formal languages classroom and in the development of
software to support such courses. This software support allows students to receive immediate feedback
on their work and, thus, the learning experience is enhanced. Furthermore, it is likely to provide signif-
icant help to instructors that commonly need to grade contrived machine designs for which determining
correctness is difficult. This approach ties in nicely with other topics in a Computer Science curricu-
lum, such as programming languages and compilers, by exposing students to programming with the data
representation of programs.

The library provides the ability to replace pencil-and-paper designs with programming by making
it an integral part of an Automata Theory course. Students use the library to implement and test all
their designs and algorithms. The library has been implemented inRacket, because the resulting ma-
chines/grammars descriptions are concise. Furthermore, most of our students are familiar with the lan-
guage syntax and with list-based processing. The reader cannote that the library is also useful for
students not familiar withRacket as only a minimal amount of syntax needs to be learned. Knowledge
of functional programming is not a prerequisite to useFSM.

The article is organized as follows. Section 2 highlights the interface and the implementation of the
FSM library to provide the framework needed by any reader that desires to implement the library using
a different programming language. Section 3 provides examples of how the library has been used in
practice and highlights the usefulness of immediate feedback in the formal languages classroom. Section
4 describes and contrastFSM with related work. Finally, Section 5 presents concluding remarks and
directions for future work.

1Tests provide a form of immediate feedback that either confirms or challenges the understanding of a student.
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2 Interface and Implementation

TheFSM library presents the user with a generic interface to construct and manipulate state machines
and grammars. The interface is presented to facilitate its reproduction in any modern programming lan-
guage. Constructors are divided into two categories: primitive constructors and transformers. Primitive
constructors build a state machine or a grammar from a formaldescription provided by the program-
mer. Transformers build a state machine or a grammar from existing machines or grammars exploiting
algorithms obtained from constructive proofs. Observers are divided into three categories: accessors,
applicators, and testers. Accessors return a specified component used to build a grammar or a state
machine. Applicators apply a given machine or grammar to a word. Testers allow for machines and
grammars to be tested with words provided by the programmer or with randomly generated words by the
software. The latter two provide students with immediate feedback on the validity (not the verification)
of their designs and implementations.

2.1 State Machines

A state machine (sm) is either:

1. Deterministic finite-state machine (dfa)

2. Nondeterministic finite-state machine (ndfa)

3. Pushdown automata (pda)

4. Turing machine (tm)

Every state machine has the user explicitly provide a finite set of states (S), a tape alphabet (Σ), a
starting state (s), a set of final states (F), and a set of transition rules (δ ). The transition rules must
describe a function for adfa while simply a relation for the other machines. Finally, apda also requires
a stack alphabet (Γ). |M| denotes the representation of a regular expression or a machine/grammar of
type M. The corresponding primitive constructors for machines with explicit rules have the following
signatures2:

1. make-dfa: SΣ s F δdfa → |dfa|,
( f b t) ∈ δdfa where f , t ∈ Sandb∈ Σ

2. make-ndfa: SΣ s F δndfa → |ndfa|,
( f b t) ∈ δndfa where f , t ∈ Sandb∈ {Σ∪{ε}}

3. make-pda: SΣ Γ s F δpda→ |pda|,
(( f b g)(t l)) ∈ δpda where f , t ∈ S, b∈ {Σ∪{ε}}, and
g, l ∈ {{non-empty list ofΓ-symbols} ∪ {ε}}

4. make-tm: SΣ δtm s F → |tm|,
(( f b)(t l)) ∈ δtm where f , t ∈ Sandb, l ∈ {Σ∪{ε ,⊔}}

State machines are represented as functions that dispatch to the appropriate observer given some input.
FSM also employs a more general notion of a machine. A machine (m) is either:

1. A state machine

2. Combined Turing machine (ctm)3.

2ε represents the empty string and⊔ represents a blank tape space.
3In terms of computational power there is no difference between a Turing Machine and a combined Turing machine. The

latter is simply an abstraction that simplifies the design ofTuring machines built from existing Turing Machines.
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A ctm is not defined by providing a formal description. Instead, the user provides actm description
(ctmd) andΣ. A ctm description uses other Turing machines as building blocks.In essence, actm rep-
resents an iterative algorithm with conditional branches and gotos that changes the state of the machine.
A ctmd is described by the following grammar:

<ctmd> → ()
→ (<tm> <ctmd>)
→ (<ctmd> <ctmd>)
→ (<label> <ctmd>)
→ (BRANCH {<symbol> <ctmd>}+)
→ (GOTO <label>)
→ ((VAR <symbol>) <ctmd>)

Informally, the varieties ofctmds are described as follows. The simplestctmds are either: empty, atm
followed by actmd, a ctmd followed by actmd, or a label (used by a goto) followed by actmd. More
complexctmds, can either start with a branch, a goto, or a variable. A branch defines options for the
machine to execute based on the alphabet symbol being read. Agoto unconditionally branches to a label
that must be defined. Finally, to aid in the development of these machines, the library allows for branches
to abstract over the symbol being read. A variable (not an alphabet symbol) captures the read symbol.
This variable is used as a constant, whose value can be written to the tape, in thectm that follows it4.

The constructor signature for actm is: combine-tms: ctmdΣ → ctm. The observerapply-ctm takes
as input actm, a tape configuration (akin to a word), and a head position andreturns a Turing machine
configuration (i.e., a state, a tape, and the position of the head on the tape). Actm is represented as a
function that returns a Turing machine configuration. In this manner,ctm1 andctm2 can be composed
as the resulting tape and head position ofctm1 is used to build the initial configuration forctm2.

The state-machine transformers build new machines from existing machines, from grammars, or
from a regular expression. These constructors implement algorithms from constructive proofs typically
covered in an introductory formal languages course. They include:

(regexp→fsa |regexp|) Transforms a regular expression into a finite-state machine.

(ndfa→dfa |ndfa|) Transforms andfa into adfa.

(rename-states-sm (listof state) |sm|) Renames the states of the givensm such that the intersection of
the new names and the given list of states (i.e., symbols) is empty5. This function is useful when
combining two state machines requires that the intersection of the set of states of both machines
be empty like, for example, when creating a machine using closure under union.

(union-sm |sm| |sm|) Builds ansm that accepts the union of the languages of the two givensms of the
same kind. If the inputs aretms, they must be language recognizers.

(concat-sm |sm| |sm|) Builds ansm that accepts the concatenation of the languages of the two given
sms of the same kind. If the inputs aretms, they must be a language recognizers.

(kleenestar-sm |sm|) Builds ansm that accepts the Kleene star of the givensm’s language. If the input
is atm, it must be a language recognizer.

(complement-sm |sm|) Builds ansm that accepts the complement of the language of the givensm. The
givensm cannot be apda. If the input is atm, it must be a language recognizer.

4In programming languages, this is akin toβ -conversion.
5In programming languages, this is akin toα-conversion.
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(intersection-sm |sm| |sm|) Builds ansm that accepts the intersection of the languages of the two given
sms of the same kind. The givensms cannot bepdas. If the inputs aretms, they must be language
recognizers.

(grammar→sm |grammar|) Builds ansm for the language of the given grammar.

The observers to return a given component of ansm take as input ansm and return the desired
component. The interesting observers are:

(apply-sm |sm| word {natnum}) Runs the givensm assuming the given word is on the tape and the
head of thesm is on position 0 of the tape. If the optional natural number isprovided, the head
starts at that position. The returned value is either 'accept or 'reject. The givensm is simulated by
performing a breadth-first search of all the possible paths it can take by consuming the given word.

(show-transitions-sm |sm| word {natnum}) Similar to apply-sm, but returns the path followed by the
sm. For a nondeterministicsm, it returns an empty path if all possible paths end in a non-accepting
state.

The testers for state machines offer the user the ability to experiment with the machines they create
and provide immediate feedback. There are three testers provided:

(same-result-sm? |sm| |sm| word) Determines if both of the givensms produce the same result for the
given word.

(test-equiv-sm |sm| |sm| {natnum}) Determines if both of the givensms produce the same result on
100 randomly generated words. If the optional natural number is provided, then that number
of random tests are performed. The function returns true or alist of words for which the given
machines produce a different result. If atm is provided as input, it must be a language recognizer.

(test-sm |sm| {natnum}) Generates 100 (or the given optional number of) random wordsand returns a
list of the words with the results obtained from the givensm. If a tm is provided as input, it must
be a language recognizer.

2.2 Grammars

A grammar is either:

1. Regular grammar (rg)

2. Context-free grammar (cfg)

3. Context-sensitive grammar (csg)

Every grammar is composed of a set of terminal and nonterminal symbols (V), a set of terminal symbols
(Σ), a set of of production rules (R), and a starting nonterminal symbolS. The left hand side of production
rules for anrg and acfg must only have a single nonterminal. The left hand side of production rules for
a csg must contain at least one nonterminal. The right hand side ofa production rule for arg must have
either a terminal symbol, a terminal symbol followed by a nonterminal symbol, or, if the left hand side
is S, ε (the empty string). The right hand side of a production rule for acfg and acsg may beε or may
have one or more members ofV. The primitive constructors for grammars are:

1. make-rg: V Σ Rrg S→|rg|,
(A→ aB)∨ (A→ a)∨ (S→ ε) ∈ Rrg whereA,B∈V −Σ anda∈ Σ

2. make-cfg: V Σ Rcfg S→|cfg|,
(A→ a+)∨ (A→ ε) ∈ Rcfg whereA∈V −Σ anda∈V
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3. make-csg: V Σ Rcsg symbol→ |csg|,
BTC→ (D∨ ε)∈ Rcsg whereB,C,D ∈V+ andT ∈V −Σ

The transformers for grammars build new grammars from either existing grammars, existing state
machines, or an existing regular expression. They include:

(sm→grammar |sm|) Transforms a state machine into a grammar. If the input is atm, it must be a
language recognizer.

(grammar-rename-nts (listof symbol) |grammar|) Renames the nonterminals of the given grammar to
symbols not contained in the given list. This function is useful when the intersection of the non-
terminals of two grammars must be empty.

The observers to return a given component of a grammar take asinput a grammar and return the
desired component. The interesting observer is:

(deriv |grammar| word) If the given word is in the language of the given grammar, the derivation of the
word is returned. Otherwise, a string stating that the word is not a member of the language of the
grammar is returned.

The testers for grammars offer students the ability to experiment with the grammars they create and
offer immediate feedback. There are three testers provided:

(both-deriv? |grammar| |grammar| word) Determines if both of the given grammars derive the given
word.

(test-equiv-grammar |grammar| |grammar| {natnum}) Determines if both of the given grammars pro-
duce the same result when attempting to derive 100 randomly generated words. If the optional
natural number is provided, then that number of random testsare performed. The function returns
true or a list of words for which the given grammars produce a different result.

(test-grammar |grammar| {natnum}) Generates 100 (or the given optional number of) random words
and returns a list of the words with the results obtained fromtrying to use the given grammar to
derive them.

2.3 Regular Expressions

Let Σ be an alphabet of symbols. A regular expression (re) is a string that is either

1. ε (the empty string)

2. a∈ Σ
3. (re1∪ re2), wherere1 andre2 arere

4. (re1re2), wherere1 andre2 arere

5. re∗

There is a constructor for each of the above. There is a singletransformer, (fsa→regexp | f sa|), that
converts anndfa to a regular expression. There is a single observer, (printable-regexp r), that takes as
input a regular expression and that returns a string representing the given regular expression.

3 The FSM Library in Practice

This section presents examples of theFSM library in practice using problems that students have facedin
an introductory formal languages course. The examples highlight how students and instructors make the
use of the library relevant to both and how immediate feedback enhances the learning experience.
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ds

q0

q1 q2

>

b

a

b

a

a,b

b a

Figure 1: Buggy Finite-State Automaton forL.

ds

q0

q1 q2

>

b

b

a

a

b

a,b

a

Figure 2: Correct Finite-State Automaton forL.

3.1 Write a Program to Recognize a Regular Language

Let Σ = {a,b}. Consider the problem of recognizing the regular language:

L = {w|w∈ Σ∗∧ w starts and ends with an a}.

It is not uncommon for a student to submit the automaton in Figure 1 which is clearly incorrect and earns
the student a poor grade. The poor grade usually leads a student to experience frustration and apathy for
the material. This frustration stems from realizing that the design has what they consider a small bug that
experimentation and immediate feedback easily uncovers.

If the student has access to theFSM library, an implementation of their design looks as follows:

(define sol1-dfa (make-dfa ’(q0 q1 q2 ds)

’(a b)

’q0

’(q2)

’((q0 a q1)

(q0 b ds)

(q1 a q2)

(q1 b q1)

(q2 a q2)

(q2 b q1)

(ds a ds)

(ds b ds))))

The student can now test this machine as follows:

> (test-sm sol1-dfa)

’(((b b a a b b b b a b a b b b b a b) reject)

((b a b a a a b a b a a a a a b b b a b) reject)

((a a b a b a a b a a b b b b) reject)

((a b a a b b a b b b a) accept)

((a b b a) accept)

...

((a) reject)

...

((b a a a b b b b a a b b b a b) reject)

((b a b a a b b b) reject))
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q0 q1 q2 ds>
a ab

b

a b a,b

Figure 3: Adfa for L = a∗bab∗.

Sn

q0 q1 q2 ds

>

b

ε

a
a

b

a,bba

Figure 4:Mrev from Theorem Version I.

Sn

q0 q1 q2

>

b

ε

a

ba

Figure 5:Mrev from Theorem Version II.

The tests reveal that the word’(a) is rejected, but this word is an element ofL. The student can now
refine the solution to the one displayed in Figure 2. The corresponding implementation is:

(define sol1-dfa (make-dfa ’(q0 q1 q2 ds)

’(a b)

’q0

’(q1)

’((q0 a q1)

(q0 b ds)

(q1 a q1)

(q1 b q2)

(q2 a q1)

(q2 b q2)

(ds a ds)

(ds b ds))))

This example may seem deceptively simple, but it does have a significant impact on a student’s
attitude. The immediate feedback provided by theFSM library assists students to find errors in their
designs and to avoid the frustration of receiving a poor grade. Furthermore, the experience encourages
both the student and the instructor resulting in an enhancedlearning experience by eliminating the need
to spend time on low-level bugs and allowing for more time to be dedicated to harder material.

3.2 The Reverse of a Regular Language

Proving that the reverse of a regular language,Lrev, is regular requires a constructive proof that students in
an introductory formal languages course are commonly askedto write. Typically, students are confused
about how to tackle this kind of problem. They understand that they must show how to build a finite-state
automaton,Mrev, for Lrev, but feel frustrated if their algorithm is not correct. In a programming course,
students can implement and experiment with their proposed solution. The same ought to be true for a
course in formal languages and this is made possible byFSM.

A common proposed solution is to buildMrev from a deterministic finite-state automaton,M, for L.
Intuitively, Mrev hasM’s set of states and a new starting state,M’s alphabet,M’s transition rules reversed,
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ε-transitions from the new starting state to each final state of M, and the starting state ofM as its only
final state. More formally students defineMrev in their proposed version I of the theorem as follows:

Mrev = ({QM ∪{Srev}},ΣM ,δrev,Srev,{SM}), where

• QM = the states ofM

• Srev is the unique symbol for the starting state ofMrev

• ΣM = the alphabet ofM

• δrev contains two types of rules:
1. (Srev, ε , qi) such thatqi ∈ FM = the final states ofM
2. (qi , σ , q j ) such that (q j , σ , qi) ∈ δM

• SM is the starting state ofM

The above algorithm is implemented and tested by students using FSM. Consider applying the pro-
posed theorem to a deterministic finite-state automaton forL= a∗bab∗ depicted in Figure 3. The resulting
ndfa is depicted in Figure 4. Students can observe that the stateds is inaccessible and, therefore, ought
not be part of the transformed machine. This observation suggests a refinement that eliminates the dead
states ofM and any transitions involving a dead state. Using this refinement, the resultingndfa for Mrev is
given in Figure 5. AnFSM implementation of this second version of the proposed theorem is displayed
in Figure 6. Once testing makes students confident that theirsolution is correct, they can proceed to write
the formal proof.

Observe that inFSM new constructors are easily defined by students by simply writing a function.
The code in Figure 6 only uses primitive functions on lists,λ -expressions, and list-based higher-order
functions (e.g.,map, filter, andandmap). Thus, the coding of this constructor ought to be well within the
reach of both advanced undergraduate and beginning graduate Computer Science students. Students un-
comfortable or unfamiliar withλ -expressions and higher-order functions can, instead, omit their use by
explicitly defining functions forλ -expressions and by explicitly defining recursive functions to perform
the necessary list-processing done by the higher-order functions.

3.3 Determining if a Context-Free Language is Empty

Students also face exercises to prove that a problem is decidable. If a problem is decidable, then there is
an algorithm to determine if an instance of a given problem fulfills stipulated conditions. Students can
propose an algorithm for decidability, but without the ability to test their solution they remain unsure
about its validity. Testing their algorithm increases their confidence and brings their Computer Science
education as programmers to bear in a formal languages course. We do not want students, however, to
implement decidability algorithms using Turing machines.That would simply be too unwieldy. Instead,
students ought to be able to use a library likeFSM to implement and test their algorithms.

For example, consider the problem of deciding if the language, L(G), of a context-free grammar,
G, is empty. Students realize thatL(G) is not empty if there exists a derivation for any word formed by
elements of the alphabet ofG. Usually, they must be guided to realize that what they need is an algorithm
to detect the existence of a derivation by creating any backward derivation toG’s starting symbol starting
from the elements of the alphabet ofG andε . The algorithm accumulatesΣ and the left hand sides of
rules (i.e., nonterminal symbols) whose right hand sides only contain symbols in the accumulator. If at
any step,G’s starting symbol is in the accumulator thenL(G) is not empty. If at any step, there are no
new symbols to add to the accumulator thenL(G) is empty. Otherwise, the new symbols are added to
the accumulator and the process recursively proceeds.
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; dfa --> ndfa

(define (reverse-dfa m1)

;symbol (listof rules)--> boolean

(define (deadstate? s rules)

(let ((fromrules (filter (lambda (r) (eq? s (smrule-fromstate r)))

rules)))

(andmap (lambda (r) (eq? s (smrule-tostate r))) fromrules)))

(let* ((newfinal (sm-getstart m1))

(mstates (sm-getstates m1))

(newStart(gen-symbol ’S mstates))

(deadsts (remove-duplicates

(filter (lambda (a) (deadstate? a (sm-getdeltas m1)))

mstates)))

(newQ (cons newStart (filter (lambda (q) (not (member q deadsts)))

mstates)))

(addedrules (map (lambda (s) (list newStart EMP s))

(sm-getfinals m1)))

(changedrules

(map reverse

(filter (lambda (r) (and (not (member (smrule-tostate r)

deadsts))

(not (member (smrule-fromstate r)

deadsts))))

(sm-getdeltas m1)))

(newrules (append addedrules changedrules)))

(make-ndfa newQ (sm-getsigma m1) newStart (list newfinal) newrules)))

Figure 6: Proposed solution to buildMrev

Figure 7 displays the implementation of this algorithm using theFSM library. Notice, that this code
demonstrates that observers are easily added by simply writing a function. This observer only utilizes
FSM provided functions and list-processing functions. Thus, once again, putting it well within the grasp
of Computer Science graduate and advanced undergraduate students. Nonetheless, students tend to make
mistakes at first and their algorithm requires refinement. The most common mistake is to not includeε
in the initial value of the accumulator which is easily discovered once implemented.

3.4 Computing with Turing Machines

Although Turing machines are not the most attractive programming abstraction, it is important for stu-
dents to understand their power and the reason the abstraction is less than attractive. The best way for
students to begin to understand the power of Turing machinesis to have them design Turing machines.
Implementing formal descriptions of Turing machines inFSM is similar to developing the finite-state
automatons in Section 3.1. Such descriptions are best for language recognizers and operations that do
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; cfg --> boolean

(define (Lcfg-isempty? g)

; cfg-rule (listof symbol) --> (listof cfg-rule)

(define (only-accum-elems? rule accum)

(and (not (member (cfg-rule-lhs rule) accum))

(andmap (lambda (s) (member s accum)) (cfg-rule-rhs rule))))

; (listof cfg-rules) nonterminal (listof symbol) --> boolean

(define (isempty? rls S accum)

(cond [(member S accum) #f]

[else

(let ((newmembers (map cfg-rule-lhs

(filter (lambda (r)

(only-accum-elems? r accum))

rls))))

(cond [(empty? newmembers) #t]

[else (isempty? rls S (append newmembers accum))]))]))

(let ((rls (cfg-get-the-rules g))

(S (cfg-get-start g))

(sigma (cfg-get-alphabet g)))

(isempty? rls S (cons EMP sigma))))

Figure 7: A Function to Determine if the Language of a CFG is Empty.

not involve assignment (i.e., altering of the tape). For instance, the following Turing machine moves the
head to the right of the current position of the head.

(define RI (make-tm ’(s h)

’(I add1 sub1)

(list

(list (list ’s ’I) (list ’h RIGHT))

(list (list ’s ’add1) (list ’h RIGHT))

(list (list ’s ’sub1) (list ’h RIGHT))

(list (list ’s BLANK) (list ’h RIGHT)))

’s

’(h)))

Computations with Turing machines, however, may require assignment and, thus, care during their
development. In such a setting, offering abstractions is critical to keep students engaged. Many textbooks
on formal languages develop a notation that is graphical andmore transparent. In essence, the notation
connects Turing machines, not states, using conditional branches and gotos. This allows for progressively
more complex Turing machines to be designed from simpler Turing machines.

Consider the student having to add or subtract 1 from a non-zero unary number. The first step is to
state the precondition and the postcondition for the TuringMachine. For example, the algorithm can be
designed assuming the machine starts in the following configuration: (op⊔ number⊔), whereop is either
add1 or sub1, ⊔ denotes a blank space, and the head is on the first blank after the number. The machine
stops in the following configuration: (op⊔ number⊔), wherenumberis the result of the computation.
Assume that in addition toRI above the following simpler machines are also defined:
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LB LI RB LI BL

RB I RI

sub1

add1

Figure 8: Draft Turing Machine to add or subtract 1 from a non-zero unary number.

LB LI RB RB LI BL

RB RB I RI

sub1

add1

Figure 9: Turing Machine to add or subtract 1 from a non-zero unary number.

LI Moves the head one space to the left.
I Writes I to the tape.
BL Writes⊔ to the tape.
RB Moves the head to the first blank to the right of the head.
LB Moves the head to the first blank to the left of the head.

A first draft of the algorithm developed by a student is displayed in Figure 8. This algorithm moves
the head to read theop. Then it branches depending on theop. After branching, it moves the head to the
first blank to the right and proceeds to construct the resulting number. TheFSM implementation is as
follows:

(define addorsub (combine-tms (list LB LI (list BRANCH (list ’sub1 RB LI BL)

(list ’add1 RB I RI)))

’(I sub1 add1)))

This machine can be tested usingapply-sm to obtain the following results:

> (apply-ctmaddorsub(list add1 I I I I ) 6)
(tmconfig ’h 2 ’(add1 I I I I I ))
> (apply-ctmaddorsub(list sub1 I I I I I I I ) 9)
(tmconfig ’h 0 ’( I I I ))

A student quickly realizes that the postcondition of the machine is not met and, therefore, their design
has a bug. Instead of handing in a buggy design and being marked down by the instructor, the student
can now proceed to redesign their algorithm. The bug, of course, is that after the branch the machine
must move to the second blank to the right. The resulting graphical notation is displayed in Figure 9.
TheFSM implementation is a s follows:

(define addorsub (combine-tms (list LB LI (list BRANCH (list ’sub1 RB RB LI BL)

(list ’add1 RB RB I RI)))

’(I sub1 add1)))
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The tests are repeated and the student gets the following results:

> (apply-smaddorsub(list add1 I I I I ) 6)
(tmconfig ’h 7 ’(add1 I I I I I ))
> (apply-smaddorsub(list sub1 I I I I I I I ) 9)
(tmconfig ’h 8 ’(sub1 I I I I I I ))

With successful tests, the student can now proceed to develop arguments for correctness. This develop-
ment establishes that the feedback provided by testing Turing machines is an important part of the design
process in a formal languages course.

4 Related Work

JFLAP [10] was designed to experiment with state machines and grammars as well as to experiment
with constructive proofs. JFLAP allows the user to create and simulate several types of state machines,
to create and parse strings in the language of a grammar, and to experiment with proof constructions
such as converting a nondeterministic finite automaton to a deterministic finite automaton and then to
a regular expression or regular grammar [10]. A study concluded that students felt more engaged and
enjoyed a formal languages course more when using JFLAP [10]. JFLAP provides all the primitive and
transformation constructors found inFSM. In contrast, however, the graphical nature of JFLAP does
not offer the ability to easily add new observers and constructors to the software neither does JFLAP
generate random testing.

The jFAST [12] library assists beginners to design state machines. It uses a graphical interface just
as JFLAP, but unlike JFLAP it provides no functionality for regular expressions and grammars. Like
JFLAP and, in contrast toFSM, there is no support for students to add the constructive algorithms they
develop and prove. The FSA Simulator allows the user to work and experiment with finite-state automata
offering the ability to compare the languages of two finite-state automatons [3]. That is, it provides testing
facilities for the equivalence of two finite-state automatons asFSM. The FSA comparison feature lets the
software give students feedback about the accuracy of theirwork much as intended byFSM for all types
of state machines. RegeXeX [1] is an interactive system to write regular expressions. In contrast toFSM,
it provides testing facilities for regular expressions. The feedback provided by RegeXeX includes strings
that ought to be accepted and ought to be rejected much likeFSM provides testing facilities for state
machines.

5 Conclusions and Future Work

TheFSM library provides users the necessary facilities to design and experiment with state machines,
grammars, and regular expressions. It supports the view that the existence of a machine or grammar
is proven by developing a constructive proof. This means that the proof presents an algorithm that can
be implemented usingFSM. Students and instructors no longer have to rely solely on paper-and-pencil
traces to build confidence or discover bugs in a design. Instead, they can useFSM testing facilities
to generate tests that provide immediate feedback. This leads students to actively reason and learn
about formal languages as well as to reinforce their Computer Science education by implementing and
developing unit tests for their constructive algorithms. The library has received positive feedback by
students and has provided the examples presented in the article. It is our expectation that the proposed
approach, namely teaching the theory of computation with tools to build computations, be widely adopted
by Computer Science programs.
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Future work includes expanding the library to include more constructors particularly those for state
minimization. We will also extend the library to include a graphical interface. Unlike the interfaces
described in the related work, we do not wish to have studentscreate machines and grammars using
a graphical interface. Instead, our goal is to have studentscontinue to write code to create machines
and grammars that are then rendered using graphics to animate execution and visualize their structure.
Additionally, more support for regular expressions and extensions of Turing machines will be offered.
The latter machines, although not computationally more powerful than a standard Turing Machine, are
likely to make certain designs easier to implement by students. Finally, a goal is to convert the library
into a pedagogy-friendly embedded DSL (e.g., using Racket’s hygienic macros [4]) where it is possible
to machine check the proofs (e.g., using tools like DrACuLa [2] and Coq [8]).
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