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This paper describes the Bricklayer Ecosystem – a freely-available online educational ecosystem
created for people of all ages and coding backgrounds. Bricklayer is designed in accordance with
a “low-threshold infinite ceiling” philosophy and has been successfully used to teach coding to pri-
mary school students, middle school students, university freshmen, and in-service secondary math
teachers. Bricklayer programs are written in the functional programming language SML and, when
executed, create 2D and 3D artifacts. These artifacts can be viewed using a variety of third-party
tools such as LEGO® Digital Designer (LDD), LDraw, Minecraft clients, Brickr, as well as STere-
oLithography viewers.

1 Motivation

Global interest in teaching coding across the entire K-12 spectrum is rapidly increasing. A number of
countries in the EU, including England [3], currently teach computational thinking and coding starting
in kindergarten. A noteworthy recent addition (2016) to this list is Finland, whose educational system
is consistently ranked among the highest in the Western world and has been touted as taking coding
education farther than any country in Europe [18]. On the other side of the globe, Australia now also
teaches coding across the K-12 spectrum. Australia is interesting because it has made time for coding in
its curriculum by eliminating history and geography [2].

The educational landscape in the United States is less unified. However, progress is being made.
Cities such as San Francisco, New York, and Chicago have plans to teach coding across the K-12 spec-
trum. Recently, Rhode Island has rolled out a comprehensive effort, called CS4RI, to teach coding across
the entire K-12 spectrum statewide [12].

The pursuit of coding in the US is also being strongly encouraged at the national level. In his 2016
State of the Union Address, President Obama presented his Computer Science for All initiative that calls
for $4 billion in funding for K-12 computer science education [14]. This interest in computer science is
reflected in similar initiatives across the United States and around the world [11, 8, 19]. The purpose is
not only to provide students with the programming skills needed for high-tech careers, but more generally
to provide them with the computational thinking skills they will need for careers in a technology-driven
world.

The resulting educational environment has given rise to an increased exploration and development
of educational tools and systems whose purpose is to teach coding within the K-12 spectrum. The
Bricklayer ecosystem is one such system.

The remainder of the paper is as follows: Section 2 gives an overview of some existing educational
tools and systems. Section 3 describes how Bricklayer has evolved since its debut at TFPIE 2014.
Section 4 describes the components that make up the Bricklayer ecosystem. Section 5 describes some of
the settings in which Bricklayer is being used, and Section 6 concludes.

http://dx.doi.org/10.4204/EPTCS.230.4
http://creativecommons.org
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2 Related Work

This section describes 3 major educational systems targeting K12 education. Each system offers a distinct
perspective on how to effectively engage K-12 students in coding. We omit discussion of systems such as
Alice, Snap!, Greenfoot, Media Computation, Picturing Programs, Yampa, and Soccer-fun all of which
target audiences outside the K-12 range (e.g., high school and above).

Scratch [10] is a visual programming language and environment designed to teach programming to
young people (8-16) especially those who have no previous programming experience. Building on the
ideas of Logo, Scratch seeks to create a constructionist learning environment where young people can
pursue projects that are both personalized and meaningful. Learning is achieved through experimentation
and peer sharing rather than traditional instruction. To accomplish these goals, the Scratch language
has been designed so that it is virtually impossible to create an ill-formed program. They describe the
rationale for this design decision in terms of the following LEGO® metaphor: “The [LEGO®] brick
shapes suggest what is possible, and experimentation and experience teaches what works”[10]. On
the syntactic level language constructs are colorful blocks whose shape govern their composition. On
the semantic level, Scratch employs data coercion and pre-defined ranges for data values to virtually
eliminate all runtime errors. The result is a programming environment that encourages tinkering with
programs. This mindset is further enhanced by Scratch’s liveness property which enables users to observe
the functionality of a block or program fragment by simply clicking on it and to modify programs during
runtime.

Bootstrap [13] is a programming language, environment and curriculum designed primarily for
middle and high school students. Programs are written in a subset of Racket, a functional programming
language, and focus on the creation of video games involving four principle abstractions: (1) a player, (2)
a target, (3) a danger, and (4) a background. The video games created are deconstructed into a sequence
of frames that center around a player trying to acquire targets while avoiding dangers – all of which can
change from one frame to the next. Programming involves the creation and modification of functions
that define the rules of the game and govern the behavior of the player, targets, and dangers. A platform
called the World framework [7] is responsible for creating frame sequences (i.e., a video game) from a
given set of functions. In this way, programmers are shielded from having to use looping constructs.

Bootstrap coding is designed to achieve very precise learning objectives, namely, to improve abilities
in solving algebra word problems of the kind found in standardized algebra tests given to middle school
students in the US. The Bootstrap philosophy is based on the premise that in order for transfer of learning
to occur between domains (e.g., coding and algebra) study must be carefully guided. Towards this end,
students are taught how to use a process called the (Bootstrap) Design Recipe [6] to design and develop
the functions that underly their video games. This approach has strong ties to key concepts defined in
algebra learning standards.

It is worth mentioning that the abstractions of functional programming languages (e.g., variables
and functions) are much more closely aligned with their mathematical counterparts than their imperative
language counterparts. Thus, along this dimension, functional languages are better positioned for transfer
of learning between the coding and algebra domains.

CodeSpells [4][5] is an extensible educational platform designed to teach Java programming in the
context of video game play (a JavaScript/Blockly version was recently made available on Steam). Code-
Spells targets learning spaces outside of the traditional classroom. The authors believe that it is in such
non-institutionalized settings that lifelong passion for coding is most likely to develop.

In contrast to educational systems like Bootstrap, which focuses on building video games, the focus
of CodeSpells is on playing a video game. More specifically, CodeSpells is a non-competitive role play-
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ing game in which the student is a wizard in a 3D world populated by gnome-like creatures. The game
provides 7 primary spells which include levitation of objects, fire, and flying. Programming consists
of modifying and creating spells, which are written in Java. Game play is largely unstructured, though
quests can be undertaken to earn badges. The first level of the game introduces students to Java basics
like method parameters, conditional statements, and iteration.

Codespells is suitable for both primary and secondary school students. The authors report that the
immersive and role playing aspects of CodeSpells has a number of beneficial effects. Foremost among
these are (1) countless hours – video games have an ability to engage players for hours on end, and (2)
positive attitude toward failure – within the context of game play (a non-institutional setting) when a
student creates code containing an error they do not see themselves as having done something wrong –
rather, such errors are seen as part of the game.

3 The Bricklayer Ecosystem

At its core, Bricklayer is a library of graphical primitives, written in SML, which can be used to create
pixelated artifacts. A Bricklayer program is a program, written in the functional programming language
SML, which references elements (e.g., functions) belonging to the Bricklayer library.

LEGO® Digital Designer (LDD), a freely available tool provided by The LEGO® Group, is the de-
fault viewer for the pixelated artifacts created by Bricklayer programs. Figure 1 shows LEGO® artifacts
created by Bricklayer programs and rendered using the Persistence of Vision Raytracer (POV-Ray)[1]
tool.

(a) A pixel art image of Elvis Presley. (b) The dual of the Menger sponge.

Figure 1: Artifacts created by Bricklayer and rendered using POV-Ray.
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3.1 Then

The Bricklayer library was debuted at TFPIE 2014 [20]. At that time, the library consisted of predicates,
iterators, and around 30 LEGO® bricks. An abstraction called a brick function was also provided which
is similar to a predicate except that its return value is a LEGO® brick rather than a Boolean value. In
2014, the construction of Bricklayer artifacts was limited to compositions involving these primitives.

Though highly expressive from a theoretical standpoint, the sophistication of these abstractions pre-
sented a barrier to students in the K-12 spectrum who wanted to learn how to code. For example, it is
simply too much to expect elementary school students to have fluency in Boolean algebra in order to
create Bricklayer artifacts. To address such limitations, a major redesign of Bricklayer was undertaken
with the goal of making Bricklayer more accessible across the K-12 spectrum. It is this redesign that is
the focus of this paper.

3.2 Now

At present, the Bricklayer library consists of five coding levels (with two more levels in the design stage).
Levels 1–3 provide primitives for creating two dimensional artifacts, and levels 4–5 provide primitives
for creating three dimensional artifacts. The predicates, iterators, and brick functions that were available
in the version of Bricklayer reported on in TFPIE 2014 now reside in level 5.

In addition, the new Bricklayer library is bundled with a collection of interactive web apps, online
videos, documentation, coding examples, and exercises whose collective purpose is to help people of
all ages and coding backgrounds learn how to write Bricklayer programs. We refer to this collection as
the Bricklayer ecosystem – an ecosystem which has been designed in accordance with a “low-threshold
infinite-ceiling” philosophy. The Bricklayer ecosystem can be found at the following URL.

bricklayer.org

4 Additions to Bricklayer

At TFPIE 2014 numerous suggestions were made regarding ways that Bricklayer might be extended or
enhanced. In this section we give an overview of the extensions (some that were proposed, some not)
that we have made to the original Bricklayer library as well as to the Bricklayer ecosystem.

4.1 Vitruvia

Vitruvia1 is an interactive web app that is part of the Bricklayer ecosystem. In Vitruvia, coding skills
can be developed through exercises which require input from the user (via mouse clicks or touch screen
selections) and which are automatically graded. These interactive exercises are grouped into concepts.
Figure 2 shows an example of a manually created solution to an exercise and the automated feedback
provided by Vitruvia.

Presently, Vitruvia contains 23 concepts (more are in the design stage) which provide a gentle learn-
ing curve accessible to people of all ages and backgrounds. In our TFPIE 2014 paper we discussed
characteristics of effective example-problem sequences and asserted that the graphical domain of Brick-
layer, which we described as being example rich and problem dense, was well suited to the creation
of such sequences [20]. The concept sequence in Vitruvia is an instance of such an example-problem
sequence.

1Legend has it that Marcus Vitruvis had a daughter named Vitruvia.

bricklayer.org
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(a) Solution submitted by student.

(b) Automated feedback provided by Vitruvia.

Figure 2: An example of a Vitruvia exercise.

A brief overview of the Vitruvia concept sequence follows (for a more detailed discussion see [21]
or visit bricklayer.org/vitruvia). Concept 1 establishes an understanding of two dimensional co-
ordinate systems. Exercises involve the placement of 1× 1 LEGO® bricks2 (aka “bit bricks”) in cells
having specific coordinates. Concept 2 briefly touches on property-based construction of artifacts. For
example, the even/odd property of coordinates can be used to place black/white bricks thereby creating a
checkerboard pattern. Concepts 3–4 establish a natural language vocabulary for specifying the placement

2Technically the dimension of such bricks is 1×1×1.

bricklayer.org/vitruvia
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and orientation of LEGO® bricks having standard shapes. Concepts 5–6 establish a translation between
natural language specifications and Bricklayer function calls. More specifically, at this stage artifacts are
constructed through a sequence of calls to Bricklayer functions that “put” bricks having standard shapes
and colors at specified coordinates. Concepts 7–9 focus on overwriting (the result of brick collisions)
as well as debugging basics. Concepts 10–12 introduce function declarations and offsets. Concept 13
introduces the ring and the circle as well as the idea of curried functions. Concept 14 improves the “put”
function by parameterizing it on shape, brick type, and coordinate. It is now possible for a single “put”
function call to create a rectangle of arbitrary dimensions. Concept 15 introduces a function for creating
“smooth” lines. Concept 16 discusses clipping and how it can be used to advantage within a program.
Concept 17 introduces a function called setMySpace2D which enables partitioning of Bricklayer’s vir-
tual space. This partitioning enables clipping to be used in more creative ways and also opens up the
possibility of creating multi-user artifacts. Also, artifacts containing interlocking rings, like the Olympic
symbol shown in Figure 3, can be created using Bricklayer’s ring and myspace functions.

Figure 3: The (interlocking) Olympic rings created using rings, clipping and setMySpace2D.

Concept 18 introduces the let-block as a mechanism for structuring code. Concept 19 transitions
the programmer into three dimensional space and introduces the three dimensional version of the “put”
function. Concept 20 focuses on conditional expressions and brick functions. Concept 21 focuses on
nested conditional expressions as well as the logical operator andalso. Concept 22 focuses on nested
conditional expressions as well as the logical operator orelse. Concept 23 introduces the traverseWithin
iterator.

Vitruvia is extensible and we have plans for additional concepts as well as other enhancements such
as the creation of leaderboards and intelligent testing.

4.2 Minecraft

The Bricklayer library is integrated with Minecraft through a CanaryMod plugin called RasberryJuice.
This plugin is a PC implementation of the key functionality of the Minecraft: Pi Edition modding API
(the Pi Edition is a free version of Minecraft developed by Mojang for the Rasberry Pi computer). The
RasberryJuice plugin provides a function, called setBlock, capable of placing a block at a particular
position in a Minecraft world. In order for setBlock to work, the Minecraft world in which the block is to
be placed must be up and running on the CanaryMod server. Another important RasberryJuice function
is called setPos which enables a player to be placed at a particular location in a Minecraft world.
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It is primarily through the RasberryJuice functions setBlock and setPos that Bricklayer interacts with
a Minecraft world (residing on a CanaryMod server).

An artifact residing in Bricklayer’s virtual space can be built in (i.e., exported to) a Minecraft world
running on a CanaryMod server by simply changing the output function of a Bricklayer program from
show (which outputs the artifact to LDD) to showMC. The showMC function will cause Bricklayer to
create a Python program consisting of one setPos function call, to position your avatar (i.e., player),
followed by a sequence of setBlock function calls, one function call for each cell in Bricklayer’s virtual
space occupied by a piece. This Python program is written to a file which is then automatically executed
using a system-level command. The resulting artifact can then be seen using a Minecraft client – provided
it is connected to the CanaryMod server. From a conceptual standpoint, that is all there is to it. The rest
is engineering. Figure 4 shows a Minecraft world populated with several Bricklayer artifacts.

In addition to showMC, the Bricklayer library provides several functions facilitating the construction
of Minecraft artifacts. For example, functions are provided for (1) establishing correspondences between
the coordinate system of the Bricklayer virtual space and the coordinate system of Minecraft, (2) speci-
fying Minecraft-specific coordinate offsets, and (3) positioning Bricklayer artifacts at specific Minecraft
coordinates.

Figure 4: Bricklayer artifacts in Minecraft: Worlds collide.

It should be noted that artifacts viewed in LDD are “stateless” in the sense that if an artifact does not
appear as desired one simply closes LDD, modifies the Bricklayer program, executes the new program,
and views the modified artifact (i.e., the previously viewed artifact no longer exists). In contrast, artifacts
viewed in Minecraft are “stateful” – they remain in the Minecraft world until they are explicitly erased.
To facilitate the artifact development cycle in Minecraft, the Bricklayer library provides a function for
erasing Bricklayer artifacts from a Minecraft world.

Because of “statefullness” and the overhead (e.g., explicit user actions) associated with Minecraft
client viewing, a feedback loop involving the design of an LDD artifact is much simpler (and faster) than
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the feedback loop involving the design of a Minecraft artifact. For this reason, it is highly beneficial
to prototype artifacts in LDD before moving them to a Minecraft world. In this way, the concept of
prototyping naturally finds its way into Bricklayer coding.

There is a problem though: LDD has difficulty displaying artifacts containing more than 25K pieces3.
In contrast, Bricklayer artifacts can be constructed in Minecraft worlds containing up to 450K pieces.
This difference naturally motivates the parameterization of an artifact on its size. The construction of
smaller artifacts can be prototyped using LDD and the size of the artifact can be increased when it is
moved to a Minecraft world.

Currently, the Bricklayer library supports 97 LEGO® bricks and 343 Minecraft blocks. Default
mappings are provided between LEGO® bricks and Minecraft blocks. This allows artifacts to be fluidly
displayed using either LDD or Minecraft with minimal program modification (i.e., simply toggle between
the show and showMC output functions). The Bricklayer library also permits users to define custom
mappings between LEGO® bricks and Minecraft blocks allowing LLD distinctions of Minecraft blocks
in an artifact-specific fashion.

4.3 3D Printing

3D printing provides an educational dimension that can be highly engaging. Over the past 2 years the
most frequent Bricklayer requests/suggestions have been related to 3D printing. Such requests have
originated from researchers, teachers, students, and parents alike.

In response to these requests, the Bricklayer library has been extended to support the output of
artifacts in a STereoLithography (STL) format. The artifacts described by such files can be viewed and
3D printed using viewers such as 3D Builder (Windows OS) and Cura. Figure 5 shows a variety of 3D
printed Bricklayer artifacts. It is worth mentioning that 3D printed Bricklayer artifacts are constructed
from cubes (not LEGO® bricks).

4.4 LDraw

Bricklayer can output artifacts in the LDraw file format thereby enabling artifacts to be viewed using
LDraw. The LDraw viewer has capabilities that distinguishes it from the LDD viewer. First, LDraw
can display an artifact having 250K bricks – in contrast to LDD which begins to have difficulty when
artifacts contain more than 25K pieces. Second, in LDraw it is possible to continuously rotate an artifact
around an arbitrary axis (e.g., the x-axis). Though useful, this behavior is not possible in LDD, which
only permits unrestricted rotation around the y-axis. The 3D printed Wunderlich cube shown in Figure
5c was originally validated in LDD by rotating the cube around the y-axis. The artifact looked good and
was 3D printed. Only later did we realize that the cube we had constructed contained an error – a costly
mistake – which would have been revealed had we rotated the cube around the x-axis. A second (and
correct) version of the Wunderlich cube was validated using the rotational capabilities of LDraw prior to
3D printing.

4.5 Brickr

A well-known problem, called The LEGO® Construction Problem, concerns itself with the construction
of 3D objects using a given set of standard LEGO® bricks [17]. The starting point for this problem

3In special cases, LDD is able to display artifacts having 60K pieces and sometimes even a little bit more. We hope that this
limit will be increased in future versions of LDD.
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(a) A 3D printed Menger sponge consisting of 8000
bricks.

(b) A Wunderlich cube.

(c) A dual extrusion 3D print of the Sierpinski pyramid.

Figure 5: Bricklayer 3D printed artifacts.

is a model of a 3D object consisting entirely of 1× 1× 1 LEGO® bricks. Such a model is referred to
as a “legoized” representation of the 3D object. The goal is to construct a LEGO® artifact in physical
space corresponding to the “legoized” model. There are two primary objectives the construction must
satisfy: (1) the LEGO® artifact must have the same shape as the “legoized” model, and (2) the LEGO®

artifact must hold together under the forces of gravity. Secondary objectives involve issues such as (1)
optimization of brick shape usage, and (2) brick orientations to increase the strength of the LEGO®

artifact.
At this time, all artifacts produced by Bricklayer are in “legoized” form. This makes them ideal
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(a) A Brickr solution to the LEGO® construc-
tion problem for the Moebius strip. (b) A Moebius strip constructed from LEGO® bricks.

Figure 6: Using Bricklayer and Brickr to create a Moebius strip in physical space.

inputs for tools, such as Brickr[16], that focus on the LEGO® construction problem.
To support integration with Brickr, a special Bricklayer output function has been implemented, called

showBinvox. This function will output an artifact in a binvox format – a file format suitable for input to
Brickr. As a result, Brickr is integrated into the Bricklayer ecosystem.

In Brickr, the LEGO® construction problem can be solved by simply pressing the Auto optimize
button. Additionally, Brickr has the ability to produce step-by-step instructions showing how to create
the resulting LEGO® artifact manually. This opens the door to a fascinating problem domain involving
the construction of non-trivial mathematical objects including: the Moebius strip, the Klein bottle, the
trefoil knot, and minimal surfaces such as the Enneper minimal surface. The feasibility of constructing
such creations in LEGO® was demonstrated by Andrew Lipson [9][15], a mathematician who earned a
PhD in knot theory from Cambridge. Lipson creates C/C++ programs that construct “legoized” models
of mathematical objects and then solves the LEGO® construction problem manually – which he says is
“...where the fun is”. In contrast, we use Bricklayer to create a “legoized” model and Brickr to solve the
LEGO® construction problem. Those who want to share in Lipson’s fun can output Brickr instructions
for “legoized” artifacts without first pressing Brickr’s Auto optimize button.

Figure 6a shows a Brickr solution to the LEGO® construction problem for a “legoization” of a
Moebius strip created by a Bricklayer program. Brickr instructions for how to manually create this
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artifact in LEGO® were produced and the authors then (of course) ordered the requisite parts from
LEGO® and built the LEGO® artifact. The result is shown in Figure 6b.

4.6 Bricklayer-Lite

(a) An example of a bricklayer-lite program and the artifact it creates.

(* generated by Bricklayer Lite version 0.9 *)

open Level_3;

fun flag (x,z) =

(

put2D (37 ,28) RED (0,0);

put2D (4,28) WHITE (12 ,0);

put2D (37,4) WHITE (0,12)

);

build2D (64 ,64);

flag (0 ,0);

show2D "flag";

(b) Auto-generated Bricklayer code produced when running a bricklayer-lite program.

Figure 7: Coding using bricklayer-lite.

Bricklayer-lite is a web app that provides a visual block-based coding environment for creating
Bricklayer programs. Bricklayer-lite is implemented using the Blockly library developed by Google.
Currently, the functions available in Levels 1–3 have been implemented in bricklayer-lite. This was
accomplished by defining custom Blockly blocks and then defining their semantics in JavaScript. The
semantics includes a state machine which tracks various properties relating to well-formed programs.

When executing a well-formed bricklayer-lite program, the JavaScript semantics include a function
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that generates executable Bricklayer code corresponding to the bricklayer-lite program. The Bricklayer
program is displayed in a web form below the bricklayer-lite program. An example is shown in Figure
7. Figure 7a shows a bricklayer-lite program and the artifact it creates. Figure 7b shows the Bricklayer
program, auto-generated by bricklayer-lite, corresponding to the program shown in Figure 7a.

Bricklayer-lite runs on any web browser and can be accessed from any device such as a smart phone,
tablet (e.g., iPad), or laptop. Bricklayer-lite programs are pictorial in nature and are constructed by
fitting together blocks. Depending on the technology used (e.g., laptop, smart phone), blocks can be
selected via mouse-clicks or by touch. Some, though very little, typing (e.g., data entry) is required
when constructing a bricklayer-lite program. For example, to place a brick at a specific location requires
entering, via a keyboard, the coordinates of that location.

Bricklayer-lite programs can be executed by selecting the run button. They can be saved to the cloud
and retrieved at a later time as well as from other devices.

4.7 The Lace Animator

The Bricklayer ecosystem contains a variety of (pre-coding) un-plugged exercises which focus on the
understanding and discovery of algorithms for creating 2D patterns on graph paper. The simplest class
of pattern involves the repetition of a set of seed patterns whose size remains constant. We refer to such
patterns as arithmetic patterns. Exercises involving arithmetic patterns include tessellations of the a 2D
plane using pentomino shapes. It should be noted that the spacing of shapes in regular patterns follow
arithmetic progressions.

Figure 8: The result of a lace pattern animation.

The next class of pattern we call geometric patterns. These are patterns whose spacing follow geo-
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metric progressions. As a result, patterns get larger/smaller as they repeat. Fractals fall into this category
of pattern. We have coined the term lace to refer to a class of geometric patterns created from a seed
shape and a stamping pattern. A lace is a structure that is connected but not a line.

Empirical evidence suggests that people of all ages have an initial difficulty constructing laces – they
have a tendency to employ an arithmetic approach (rather than a geometric approach) to constructing
lace patterns. In particular, students want to repeat one pattern over and over without changing its size.
To help students understand the nature of the algorithm that underlies lace patterns we have developed
an interactive web app called the Lace Animator which shows how a variety of laces can be constructed
using linear steps (one seed shape at a time) as well as geometric steps (one pattern at a time). Figure 8
shows a lace created using the Lace Animator.

5 Outreach

Bricklayer has been used for a variety of K-12 outreach efforts including those listed below.

• Summer Workshops – in the summer of 2014 and again in 2015 Bricklayer was used to teach
coding to elementary and middle school students. The educational format was a 3 hour/day 5
day workshop. The venue was the Techademy, a summer tech program offered by the College of
Information Science & Technology at the University of Nebraska at Omaha.

• Coding Club – An after school Bricklayer coding club was held at Rockbrook Elementary School
from November, 2014 – May, 2015. The club met once a week for an hour and culminated with a
parent’s “Art and Pizza Night” event in which students displayed on the school walls the artifacts
they created alongside their code.

• Exhibits

– NE SciFest – The Nebraska Science Festival is a major annual event in Nebraska hosted by
the University of Nebraska Medical Center. Its purpose is to stimulate interest in science.
In 2015, Bricklayer had an exhibit at the NE SciFest – a 2 day event which was held that
the Durham Museum in Omaha. It was estimated that approx 3000 students (mostly from
elementary school) were in attendance.

– Lauritzen Gardens – a botanical center in Omaha periodically hosts a multi-week LEGO®

Artists Expo where artists present life-size LEGO® sculptures. In 2015, during this expo,
Bricklayer was invited to have a 1-day exhibit on the LEGO® robotics day.

– Omaha Children’s Museum – Beginning in May 2015, the Omaha Children’s Museum had a
multi-month LEGO® exhibit. Bricklayer was invited to hold an exhibit on the opening day
of the Museum’s LEGO® exhibit.

• CoderDojo – In the summer of 2015, Bricklayer was used in a topics in mathematical computing
course for in-service secondary school math teachers. The course included a 4-week CoderDojo
session in which the secondary school math teachers taught Bricklayer to a group of students
ranging in age from 7 to 17.

• Gifted Education – In the spring of 2016, a 10-week pilot study was undertaken in which six
facilitators taught a Bricklayer-based curriculum to approximately 120 4th grade students enrolled
in the Gifted and Talented Program of the Omaha Public School system.
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6 Conclusion

The Bricklayer ecosystem has a demonstrated appeal to students in the K-12 spectrum. It continues to
evolve in order to more effectively engage all who wish to learn to code or sharpen their coding abilities.
Bricklayer code has strong mathematical underpinnings including coordinate systems, geometric objects,
arithmetic and geometric progressions that govern the structure of tessellations and fractals, and Boolean
algebra. Bricklayer artifacts are artistic in nature. This engages visual thinking and spatial reasoning
– cognitive processes which are closely correlated with STEM abilities. Last but not least, through
LEGO® and 3D printing, Bricklayer spans the physical and virtual worlds.
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