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Steppers, which display all the reduction steps of a given program, are a novice-friendly tool for un-

derstanding program behavior. Unfortunately, steppers are not as popular as they ought to be; indeed,

the tool is only available in the pedagogical languages of the DrRacket programming environment.

We present a stepper for a practical fragment of OCaml. Similarly to the DrRacket stepper,

we keep track of evaluation contexts in order to reconstruct the whole program at each reduction

step. The difference is that we support effectful constructs, such as exception handling and printing

primitives, allowing the stepper to assist a wider range of users. In this paper, we describe the

implementation of the stepper, share the feedback from our students, and show an attempt at assessing

the educational impact of our stepper.

1 Introduction

Programmers spend a considerable amount of time and effort on debugging. In particular, novice pro-

grammers may find this process extremely painful, since existing debuggers are usually not friendly

enough to beginners. To use a debugger, we have to first learn what kinds of commands are available,

and figure out which would be useful for the current purpose. It would be even harder to use the com-

mand in a meaningful manner: for instance, to spot the source of an unexpected behavior, we must be

able to find the right places to insert breakpoints, which requires some programming experience.

Then, is there any debugging tool that is accessible to first-day programmers? In our view, the

algebraic stepper [1] of DrRacket, a pedagogical programming environment for the Racket language,

serves as such a tool. The algebraic stepper is literally a stepping evaluator for DrRacket programs.

Figure 1 illustrates how the stepper works. In the “before” window (left), we see that the expression (=

3 0) is what we are going to reduce at the current step, i.e., the expression is a redex. In the “after”

window (right), we find the redex is replaced by false, which is the result of reducing (= 3 0).

Note that there is a notable difference between the DrRacket stepper and the stepping facility of

Eclipse or gdb. While Eclipse’s debugger only shows which line is being executed, the stepper tells

us how the whole program looks like at each step, by rewriting the input program according to the

reduction semantics of Racket. Using the stepper would be easier for beginners, because all they need to

understand is how programs are rewritten as the execution proceeds, just like how formulas are rewritten

in mathematics. Thus, we see that the DrRacket stepper should serve as an excellent debugging tool for

beginning programmers.

Unfortunately, the DrRacket stepper is only available in the “teaching languages”; it does not support

the full Racket. What this means is that we cannot step through programs that uses advanced features, in-

cluding exception handling. This is quite disappointing, since understanding how exceptions are handled

is not easy for beginners.

We present a stepper that supports a practical fragment of OCaml, covering most language constructs

used in the “Functional Programming” course of Ochanomizu University. The stepper looks exactly like
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Figure 1: Stepping factorial in DrRacket

Figure 2: Stepping factorial in OCaml

the one provided in DrRacket, as shown in Figure 2. We build the stepper by making modifications to

a standard big-step interpreter. The idea is to keep track of evaluation contexts and to reconstruct the

whole program at each reduction step, which are necessary for reconstructing the whole program when

reducing redexes. We also share our experience of using the stepper in the classroom, and attempt to

evaluate the impact on students’ understanding.

The reminder of this paper is organized as follows. In Section 2, we describe the implementation of

a mini stepper that supports exception handling. It also shows the overview of the actually implemented

stepper. In Section 3, we present how the stepper is used in our classroom, as well as what students

found about it in the recent courses. Related work is discussed in Section 4, and the paper concludes in

Section 5.

2 Implementation

This section presents the implementation of our stepper. We step-evaluate programs in the following

way. First, we convert a given program into an abstract syntax tree using the built-in parser of OCaml.

Next, we pass the parsed program to a stepping interpreter, which outputs the whole program at each

reduction step. The output programs are then processed by an Emacs Lisp program, in such a way that

the user can see the steps one by one. Here we focus our attention to the stepping interpreter, which plays

the key role in the whole stepping system.

As the stepper is supposed to tell us how a program is evaluated, we have to make sure that it evaluates

programs in the same order as the OCaml interpreter does. For the presentation issue, here we restrict

ourselves to a toy language, consisting of lambda terms and a simplified version of the try-with construct.

The full language supported by the current stepper is presented in Section 2.3.
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type e_t =

| Var of string (* x *)

| Fun of string * e_t (* fun x -> e *)

| App of e_t * e_t (* e e *)

| Try of e_t * string * e_t (* try e with x -> e *)

| Raise of e_t (* raise e *)

Figure 3: Syntax

2.1 Building an Interpreter

In Figures 3 and 4, we define the object language as well as a big-step interpreter. The eval function

evaluates a given expression following OCaml’s call-by-value, right-to-left strategy. For instance, when

given an application e1 e2, it first evaluates the argument e2, then evaluates the function e1. Once

the application has been turned into a redex, we perform β -reduction, and evaluate the post-reduction

expression. Note that, when the top-level expression is an executable, closed program, the input of the

eval function cannot be a variable. The reason is that we never touch a function’s body before it receives

an argument, and that β -reduction replaces lambda-bound variables with values.

Object-level exception handling is performed by the meta-level try and raise constructs. Specifi-

cally, when evaluating raise e, we first evaluate e to some value v, and then raise a meta-level (OCaml)

exception Error v. If an exception Error v was raised during evaluation of e1 in try e1 with x ->

e2, the eval function ignores the rest of the computation in e1, and evaluates e2 with v substituted for

x. This is exactly how OCaml’s try-with construct works. For convenience, we will hereafter call e1 a

tryee; the intention is that e1 is the expression being “tried” by the handler.

The main function start calls eval in an exception handling context. From the construction, we

can see that any expression that has a raise e with no matching try clause will be evaluated to raise

v. For example, 2 + 3 + (raise 4) + 5 evaluates to raise 4.

2.2 Turning the Interpreter into a Stepper

As stated in Section 1, a stepper must display the whole program at each reduction step. Consider the

simple arithmetic expression (1 + 2 * 3) + 4. When step-executing this expression, we want to see

the following reduction sequence:

(1+2∗3)+4

→ (1+6)+4

→ 7+4

→ 11

The interpreter in Figure 4, however, does not immediately give us these steps. Suppose the eval

function is evaluating the subexpression 2 * 3. We can display this subexpression using a printing

function, but we do not have enough information to reconstruct the whole program. What is missing

here is the context surrounding 2 * 3, namely (1 + [.]) + 4 (where [.] denotes the hole of the

context). Hence, to implement a stepper, we need to keep track of every evaluation context we have

traversed.

In Figure 5, we define context frames as algebraic data of type frame_t. Each frame represents

evaluation of some subexpression: e.g., CAppR (e1) tells us that we are evaluating the argument part

of an application, whose function part is e1. Evaluation contexts are defined as lists of these frames
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(* exception holding the value of input program’s exception *)

exception Error of e_t

(* evaluate expression *)

(* eval : e_t -> e_t *)

let rec eval expr = match expr with

| Var (x) -> failwith ("unbound variable: " ^ x)

| Fun (x, e) -> Fun (x, e)

| App (e1, e2) ->

begin

let v2 = eval e2 in

let v1 = eval e1 in

match v1 with

| Fun (x, e) ->

let e’ = subst e x v2 in (* substitute v2 for x in e *)

let v = eval e’ in

v

| _ -> failwith "not a function"

end

| Try (e1, x, e2) ->

begin

try

let v1 = eval e1 in

v1

with Error (v) ->

let e2’ = subst e2 x v in (* substitute v for x in e2 *)

eval e2’

end

| Raise (e) ->

let v = eval e in

raise (Error (v))

(* start evaluation *)

(* start : e_t -> e_t *)

let start e =

try

eval e

with

Error v -> Raise v

Figure 4: Big-step interpreter
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(* context frames *)

type frame_t =

| CAppR of e_t (* e [.] *)

| CAppL of e_t (* [.] v *)

| CTry of string * e_t (* try [.] with x -> e *)

| CRaise (* raise [.] *)

(* evaluation contexts *)

type c_t = frame_t list

(* reconstruct the whole program *)

(* plug : e_t -> c_t -> e_t *)

let rec plug expr ctxt = match ctxt with

| [] -> expr

| CAppR (e1) :: rest -> plug (App (e1, expr)) rest

| CAppL (e2) :: rest -> plug (App (expr, e2)) rest

| CTry (x, e2) :: rest -> plug (Try (expr, x, e2)) rest

| CRaise :: rest -> plug (Raise expr) rest

Figure 5: Contexts and reconstruction function; first attempt

(spoiler alert: this does not work for exceptions). We then define the plug function, which reconstructs

a program by wrapping the expression expr with context frames in ctxt.

Now, if we let the evaluation function receive an additional argument representing the context, we

should be able to display all the steps of the arithmetic expression (1 + 2 * 3) + 4. For instance,

when evaluating the subexpression 2 * 3, the extra argument will be a two-element list [(1 + [.]);

([.] + 4)], and we can obtain the whole program using the plug function.

The resulting stepper is essentially the CK abstract machine [4], where the expression is the control

string and the evaluation context is the continuation. Substitution is used to implement β -reduction. We

did not implement the abstract machine directly but augmented a big-step interpreter, because we want

to keep the correspondence between big-step execution and small-step execution. It enables us to skip

evaluation of user-specified function application, as we elaborate in Section 2.3.

Unfortunately, this naı̈ve implementation does not work in the presence of exception handlers. Con-

sider try (2 + 3 * (raise 4) + 5) with x -> x. When step-executing this expression, we ex-

pect to see the following steps:

(* Step 0 *) try ( 2 + (3 * (raise 4)) + 5 ) with x -> x

(* Step 1 *) try ( raise 4 ) with x -> x

(* Step 1 *) try (raise 4) with x -> x

(* Step 2 *) 4

The first reduction happens when the input to the stepping interpreter is raise 4. However, observe

that the highlighted redex is a bigger expression (2 + 3 * (raise 4) + 5), because reduction of a

raise construct discards the context within the tryee. Since context frames are collected in a single list,

the second argument at this point will be [(3 * [.]); (2 + [.]); ([.] + 5); (try [.] with
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(* frames *)

type frame_t =

| CAppR of e_t (* e [.] *)

| CAppL of e_t (* [.] v *)

| CRaise (* raise [.] *)

(* try frame *)

type ctry_t =

| CHole (* [.] *)

| CTry of string * e_t * c_t (* try [.] with x -> e *)

(* evaluation context *)

and c_t = frame_t list * ctry_t

(* reconstruct tryee *)

(* plug_in_try : e_t -> frame_t list -> e_t *)

let rec plug_in_try expr ctxt = match ctxt with

| [] -> expr

| first :: rest -> match first with

| CAppR (e1) -> plug_in_try (App (e1, expr)) rest

| CAppL (e2) -> plug_in_try (App (expr, e2)) rest

| CRaise -> plug_in_try (Raise (expr)) rest

(* reconstruct the whole program *)

(* plug : e_t -> c_t -> e_t *)

let rec plug expr (clist, tries) =

let tryee = plug_in_try expr clist in

match tries with

| CHole -> tryee

| CTry (x, e2, outer) -> plug (Try (tryee, x, e2)) outer

Figure 6: Contexts and reconstruction function; final version

x -> x)], i.e., it contains the context outside the tryee. This suggests that, when dealing with exception

handlers, we have to distinguish between contexts inside and outside a tryee.1

In Figure 6, we present a refined definition of evaluation contexts. We see a new definition of context

frames frame_t, where CTry is missing. When evaluating a program that uses try-with constructs, these

frames are used to build a delimited context within a tryee. We next find a separate datatype ctry_t,

which can be understood as meta contexts. Then we define evaluation contexts as pairs of delimited and

meta contexts. As an example, when evaluating raise 4 in the following expression:

0 + (try 1 + 2 * (try (3 + raise 4) - 5 with x -> x + 6) with y -> y)

the current context looks like:

1 The destination is not necessary, if we want to support only exception handling. We could simply search for the enclosing

handler in the evaluation context. However, it requires a linear search through the evaluation context. Furthermore, distinction

is necessary if we want to implement more general control operators, such as shift and reset [2].
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([(3 + [.]); ([.] - 5)],

CTry ("x", x + 6,

([2 * [.]; 1 + [.]],

CTry ("y", y,

([0 + [.]], CHole)))))

The refined contexts allow us to first reconstruct the expression up to the tryee using the frame_t

contexts, and then build up the whole program using the ctry_t contexts. In our particular example, the

stepper reconstructs (3 + raise 4) - 5, highlights it, and reconstructs the whole program.

To give the reader a better idea how context frames are accumulated, let us demonstrate the evaluation

of an expression involving exception handling:

eval (2 * (try 3 + (raise 4) - 5 with x -> x + 6)) ([], CHole)

eval (try 3 + (raise 4) - 5 with x -> x + 6) ([2 * [.]], CHole)

eval (3 + (raise 4) - 5) ([], CTry ("x", x + 6, ([2 * [.]], CHole)))

eval 5 ([3 + (raise 4) - [.]], CTry ("x", x + 6, ([2 * [.]], CHole)))

eval (3 + (raise 4)) ([[.] - 5], CTry ("x", x + 6, ([2 * [.]], CHole)))

eval (raise 4) ([3 + [.]; [.] - 5], CTry ("x", x + 6, ([2 * [.]], CHole)))

eval 4 ([raise [.]; 3 + [.]; [.] - 5], CTry ("x", x + 6, ([2 * [.]], CHole)))

eval (4 + 6) ([2 * [.]], CHole)

Observe that we discard the context within the tryee, namely 3 + (raise [.]) - 5, at the last step.

Now we present our stepping interpreter in Figure 7. The function extends the big-step interpreter in

two ways (as shaded in the figure): (i) it receives an argument representing the evaluation context; and

(ii) it outputs the current program every time reduction takes place.

Let us observe the application case. As in the big-step interpreter, we first evaluate e2, and then

e1. When e1 has reduced to a function, we know that the application is a β -redex. In the standard

interpreter, what we do is to perform the substitution subst e x v2 and then evaluate the result. In the

stepper, on the other hand, we have an additional function call to the memo function defined in Figure

8. This function receives three arguments: the redex we have just found, its reduct, and the current

evaluation context. When given these arguments, the memo function reconstructs and prints the pre- and

post-reduction programs, using the plug and print_exp functions2 . After printing the programs, we

continue evaluation as usual.

In the eval function, we find three more occurrences of memo, representing the following reduction

rules:

• try v with x -> e v

• try raise v with x -> e2 subst e2 x v

• ... (raise v) ... raise v

Note that, although the second reduction always happens right after the third one, we keep them as

separate rules. The reason is that we need the latter to reduce a raise construct with no matching try

clause: e.g., 3 + (raise 4) - 5 raise 4. Separating the two reductions also has an educational

benefit: it clearly tells us that exception handling consists of two tasks: discarding the context and

substituting the value.

2In the actual implementation, we annotate redexes and reducts using OCaml’s attributes. Here, we write green expr1

to mean expr1[@stepper.redex], and similarly for purple. When displaying the steps, the Emacs Lisp program uses the

attributes information to appropriately highlight expressions.
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(* stepping evaluator *)

(* eval : e_t -> c_t -> e_t *)

let rec eval expr ctxt = match expr with (* add an argument for context *)

| Var (x) -> failwith ("unbound variable: " ^ x)

| Lam (x, e) -> Lam (x, e)

| App (e1, e2) ->

begin

let v2 = eval e2 (add ctxt (CAppR e1)) in (* add context info *)

let v1 = eval e1 (add ctxt (CAppL v2)) in (* add context info *)

match v1 with

| Lam (x, e) ->

let e’ = subst e x v2 in

memo (App (v1, v2)) e’ ctxt; (* output programs *)

let v = eval e’ ctxt in (* add context info *)

v

| _ -> failwith "not a function"

end

| Try (e1, x, e2) ->

begin

try

let v1 = eval e1 (add_try ctxt x e2) in (* add context info *)

memo (Try (v1, x, e2)) v1 ctxt; (* output programs *)

v1

with Error (v) ->

let e2’ = subst e2 x v in

memo (Try (Raise v, x, e2)) e2’ ctxt; (* output programs *)

eval e2’ ctxt (* add context info *)

end

| Raise (e0) ->

let v = eval e0 (add ctxt CRaise) in (* add context info *)

begin match ctxt with

| ([], _) -> ()

| (clist, tries) ->

memo (plug_in_try (Raise v) clist) (* output programs *)

(Raise v)

([], tries)

end;

raise (Error (v))

Figure 7: Stepping evaluator
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(* output programs *)

(* memo : e_t -> e_t -> c_t -> unit *)

let memo expr1 expr2 ctxt =

print_exp (plug (green expr1) ctxt);

print_exp (plug (purple expr2) ctxt)

(* start step-evaluation *)

(* start : e_t -> e_t *)

let start e =

try

eval e ([], CHole) (* initial context *)

with

Error (v) -> (Raise v)

Figure 8: memo and main functions

2.3 The Actual Stepper

In Figure 9, we show a reduction sequence produced by the actual stepping evaluator. The evaluator

supports the following syntactic constructs:

• integers, floating point numbers, booleans, characters, strings

• lists, tuples, records

• user-defined datatypes

• conditionals, let-expressions, recursive functions, pattern-matching

• exception handling operators

• printing functions and sequential execution

• the List module, user-defined modules

• references, arrays

To allow the user to adjust granularity of steps, we provide an option for skipping the evaluation

of the current function application. Let us look at Figure 10, which shows skipping of the factorial

function. By pressing the “skip” button, we can directly go from the program on the left to the one on

the right, without seeing the intermediate steps that appear during the evaluation of the function’s body.

This feature helps us focus on the steps we are interested in, allowing us to grasp the overall flow of the

execution.

The skipping feature requires some modifications to the eval function (Figure 11). The idea is to

sandwich the steps within an application between two strings: (* Application n start *) and (*

Application n end *). Here, n tells us at which step we have entered the application. These strings

are printed using the apply_start and apply_end functions, and help the Emacs Lisp program to hide

unnecessary steps. We show an example output sequence in Figure 12.
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Figure 9: Evaluating programs using the actual stepper

Figure 10: Skipping evaluation of the factorial function

let rec eval expr ctxt = match expr with

...

| App (e1, e2) ->

begin

let v2 = eval e2 (add ctxt (CAppR e1)) in

let v1 = eval e1 (add ctxt (CAppL v2)) in

match v1 with

| Lam (x, e) ->

let e’ = subst e x v2 in

let apply_num = apply_start () in (* output start mark *)

memo (App (v1, v2)) e’ ctxt;

let v = eval e’ ctxt in

apply_end apply_num; (* output end mark *)

v

| _ -> failwith "not a function"

end

| ...

Figure 11: Skipping application
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(* Step 0 *) (f 4) + 10 * 100

(* Step 1 *) (f 4) + 1000

(* Application 1 start *)

(* Step 1 *) f 4 + 1000

(* Step 2 *) (4 * 2) - 1 + 1000

(* Step 2 *) (4 * 2 - 1) + 1000

(* Step 3 *) (8 - 1) + 1000

(* Step 3 *) 8 - 1 + 1000

(* Step 4 *) 7 + 1000

(* Application 1 end *)

(* Step 4 *) 7 + 1000

(* Step 5 *) 1007

Figure 12: Stepping application

3 Stepping OCaml in the Classroom

Since 2016, we have been using (earlier versions of) our stepper in an introductory OCaml course called

“Functional Programming”, taught by the third author at Ochanomizu University.

3.1 The OCaml Course

The “Functional Programming” course teaches how to program with functions and types, covering basic

topics such as recursion, datatypes, effects, and modules. The course consists of 15, weekly lab sessions,

and each session consists of 90 minutes lab-style class per week. (Many students remain in the lab

after 90 minutes up until around 150 minutes.) Throughout the course, students build a program that

searches for the shortest path based on Dijkstra’s algorithm. The participants of the course are second-

year undergraduate students majoring in computer science (around 40 students each year). All students

enter this course after a CS 1 course in the C programming language.

The course is taught in a “flipped classroom” style. Before every meeting, students are asked to study

assigned readings and videos prepared by the instructor and answer simple quizzes. In the classroom,

they practice the newly covered topics through exercises, with assistance of the instructor as well as five

to six teaching assistants (including the first and second authors).

The exercises include simple practice problems and report problems. The former are for confirming

students’ understanding of the topics and are expected to be completed within a class. The latter problems

(for credit) are due in one week. Whenever a student executes a program, by either step execution or

standard execution, the program as well as its execution log (syntax errors, type errors, or the result of

execution) are recorded.

For most of the problems (up to the 12th week), we provide a check system where students can submit

their solutions to see whether they pass the given tests. To earn points for report problems, students are

required to have their programs pass the check system.

3.2 The Uses of the Stepper

We introduced the stepper into Functional Programming in 2016. Although the steppers used in the past

had almost the same user-interface as the one shown in Figure 2, they differ in the following ways:
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Figure 13: Frequency of standard execution (light-colored) and step execution (dark-colored) in each

week in 2017 and 2018. The stepper was not used at all toward the end of the course in 2017, but it was

used in some degree in 2018.

2016 This first version supported function definitions, conditionals, records, lists, and recursion. How-

ever, there were various operations that were not supported. As such, the usability of the stepper

was low. Moreover, when the instructor introduced the stepper to students, he only mildly encour-

aged to use it. Although we do not know how much the stepper was used in 2016 since we did not

log the execution of stepper, we expect it was used only rarely in the first few weeks of the course.

2017 Based on the lessons from the previous year, the second version supported most operations used

in the first six weeks. The instructor introduced the stepper up front at the first class and showed

how to use the stepper with various examples in the subsequent classes.

2018 The third version supported almost all the constructs needed for the course, including modules,

exception handling, sequential execution, printing, references, and arrays. It also supported skip-

ping of function application. The instructor introduced the stepper as though the stepper was the

only way to execute OCaml programs, encouraging the uses of the stepper. (Students gradually

realized that they could execute a program in the interpreter in a few weeks.)

Figure 13 shows how many times students used the stepper among all the executions including the

ones that ended up in an error. In both 2017 and 2018, the stepper was used quite often until week 5.

This is partly because we encouraged students to use the stepper when they had trouble finding bugs

and understanding recursion. After week 5, the number decreases, because students started using an

interpreter, too, as programs became larger.

In 2017, the number of stepper uses decreases toward the end of the course. In contrast, in 2018,

certain number of stepper uses is observed, thanks to the support of exception handling, modules, and

references. Figure 14 shows the number of execution of programs using these features during step-
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Figure 14: Number of times the stepper was used to evaluate a program with “try”, “module”, “print” or

“ref” in 2018.

execution in 2018. From the figure, we can see that there is a demand for step execution of advanced

constructs such as exception handling and modules.

The exact numbers of execution are available in Table 2 in the Appendix.

3.3 Effects of Stepper

It is not easy to see the effect of a tool like a stepper on the learning of students. In the case of improving

error messages of a compiler, for example, one can classify various errors and see how many of them

are covered by the improved error messages objectively. For the stepper, it is unclear how to show such

numeric data.

As an attempt to measure the effect of the stepper, we examined how long students took to submit

correct solutions to the check system. Among all the submitted correct solutions, we gathered the (wall-

clock) times of submissions recorded in the check system that are within 100 minutes from the beginning

of the class and compared the average times among 2016, 2017, and 2018.

Figure 15 shows the number of questions for which students submitted a correct answer within sig-
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Figure 15: Number of questions where students arrived at a correct answer significantly faster in 2017

and 2018 than 2016.

nificantly shorter time in 2017 and 2018 compared to 2016. The data are based on one-sided t-testing

with p-value < 0.05; we refer the reader to Table 3 of the appendix for details. Note that we did not

include week 1 because we had a special pre-test in the first lecture in 2018.

From the figure, we can see improvement of submission times after the (real) introduction of the

stepper, especially in earlier problems. However, there is an exception: for one problem in the 6th week,

correct submissions come significantly later in 2018 than in 2016. The problem simply asks students to

write a recursive function that adds 1 to each element of a given list. We do not know why it took so

long in 2018. The result of t-testing all the problems together is t(1778) = 2.819 (p=0.002) in 2017 and

t(2111) = 2.592 (p=0.005) in 2018.

We also compared the average times between 2017 and 2018. For earlier weeks (up to week 5),

submissions in 2017 were significantly earlier, while for later weeks, there were no significant difference

(except for two problems where the average times for 2018 were earlier). Putting all the problems

together, the two were not significantly different with t(1953)=0.455 (p=0.324).

Threats to validity. It is possible that the results of our experiment were affected by the enrolled

students in each year (there was no over-lapping). In all the three years, the instructor started the class

with some introductory comments that vary in length. Although the instructor made similar comments

in each year, they were not exactly the same, which could have affected.

3.4 Students’ Evaluation

At the end of the semester of 2018, we asked the students to share their thoughts on the stepper. We

received responses from 38 out of 42 students. We first asked whether the stepper was useful on the 0 to
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score # of students

Using the stepper, I could almost always understand

the behavior of programs or the cause of errors. 4 3

Using the stepper, I could often solve problems at hand. 3 8

Using the stepper, I could sometimes solve problems at hand. 2 25

I could rarely find new things using the stepper. 1 2

The stepper was useless. I did not use the stepper. 0 0

Table 1: Students’ scoring of the stepper in 2018. 38 students out of 42 answered. The average is 2.3.

4 point scale. The results, which we present in Table 1, suggest that the stepper is not a silver bullet that

is useful for all the time. However, most students could solve the problems at hand sometimes using the

stepper. We are encouraged to see some students choose “the stepper was almost always useful”.

We next asked students to write when the stepper was useful (if any), such as when they found their

misunderstanding, or when they could deepen their understanding. We summarize the answers in two

categories.

Understanding of the behavior of programs. Seven students answered they could deepen their un-

derstanding of the behavior of programs. In particular, five students among them wrote explicitly that

the stepper helped them figure out how functions consume recursive data. We imagine it was particularly

instructive to see how a recursive function definition is unfolded in nesting application.

Other students answered that they could observe the behavior of programs in general. They found

that arguments of a function are evaluated before the function call, and that the elements of a list are

evaluated one by one. Among them, one student observed the right-to-left execution employed in OCaml.

Previously, such subtle behavior was taught only in passing without much emphasis.

Debugging. Many students found the stepper useful for debugging. Sixteen students answered they

could find what was wrong when their program did not pass test cases. By observing each step of

execution, they could identify when the program behaved differently from their expectation. This is an

important step toward debugging in general. Because printing (and side effects) is handled at the end of

the course, the only debugging method for students had been unit testing: they checked whether all the

component functions worked as expected. With the stepper, they can simply observe execution of the

program and see when it goes wrong.

Three students found the stepper useful to understand why their program did not terminate. Without

printing, it is not easy for students to identify the cause of infinite loops. Using the stepper, one of the

students could not only observe the infinite loop, but also see how far her program went well and when

it went wrong.

4 Related Work

Clements et al. [1] describe the implementation of the DrRacket stepper. They point out that when

building a stepper, we have to make sure that (i) it displays every element of the reduction sequence in

the correct order; and (ii) it has access to information necessary for reconstructing the whole program,
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namely evaluation contexts. Based on this idea, they define the stepper as a composition of the following

three functions:

• A breakpoint-inserting function, which places a breakpoint to every piece of a program where

reduction takes place

• An annotating function, which decorates the user program so that it manipulates evaluation con-

texts appropriately

• A reconstructing function, which builds the whole program using the context accumulated in the

stack

As can be inferred, where they insert breakpoints exactly corresponds to where we insert the memo

function. Contexts are handled via two primitives of Racket: w-c-m (“with-continuation-mark”) and

c-c-m (“current-continuation-marks”). The former can be understood as extending the context list of

our stepper, whereas the latter collects all the context frames on the stack. The reconstructing function

plays the same role as our plug function.

PLT Redex [3] is a domain specific language for formalizing operational semantics. The language

provides facilities for defining grammars and reduction rules, and inherits the algebraic stepper from the

DrRacket environment [5]. In addition to these, Redex has the ability of generating reduction graphs of

programs. A reduction graph is essentially a graphical version of a stepper’s output, where the elements

of a reduction sequence are connected with arrows. Reduction graphs are more informative in that each

arrow is annotated with the reduction rule used in that step.

Tunnel Wilson et al. [6] investigate students’ understanding of functions and recursion via tracing

activities. Instead of adopting the traditional tracing method that uses stacks, they take a substitution-

based approach, where students rewrite programs using a set of reduction rules. The rewriting activity

can be viewed as writing down the output of a stepper by hand, although their purpose was not to assist

debugging.

5 Conclusion

In this paper, we presented an OCaml stepper that supports advanced features including exception han-

dling. The main idea is to keep track of two levels of evaluation contexts, which we use to reconstruct

pre- and post-reduction programs. We also shared students’ feedback on our stepper. Although it is not

easy to measure the effectiveness of the stepper in education, we reported that the stepper is used by

many students with positive reaction.

The “Functional Programming” course is taught every year, which means we are constantly having

new users of our stepper. As future work, we intend to find other ways to assess the stepper, and further

evaluate its impact on students. We believe that this would provide new insight into the development and

assessment of pedagogical tool in general.
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A Appendix

2017 2018

week all step. try mod. print ref all step. try mod. print ref contents

1 1293 504 0 0 0 0 1233 627 0 0 0 0 fun. def.

2 1511 235 0 0 0 0 1375 189 0 0 0 0 if

3 1618 144 0 0 0 0 1641 179 0 0 0 0 record

4 2364 169 0 0 0 0 2517 332 0 0 0 0 list

5 2556 193 0 0 0 0 3173 213 0 0 0 0 list 2

6 1596 43 0 0 0 0 1369 41 0 0 0 0 Dijkstra

7 2621 92 0 0 0 0 3570 86 0 0 0 0 map

8 1874 81 0 0 0 0 2028 75 0 0 0 0 filter

9 2184 34 0 0 0 0 3300 98 0 0 0 0 gen. rec.

10 2254 48 0 0 0 0 3298 106 3 0 0 0 tree

11 1783 20 10 0 0 0 2790 37 22 0 0 0 exception

12 1785 12 8 4 0 0 3501 37 3 26 3 0 module

13 1678 10 0 7 2 0 2943 22 0 3 16 0 seq. exec.

14 1280 11 0 0 0 1 1511 65 0 4 0 56 ref

15 517 6 0 0 0 0 1717 68 0 5 0 30 heap

Table 2: Number of uses of the stepper (step.) among all the executions (all) in 2017 and 2018. The

columns try, mod., print, and ref represent number of uses of the stepper for programs that contain

exception handling, modules, printing (and sequential execution), and references (including arrays), re-

spectively. The rightmost column shows representative topics handled in the week.
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week. 2016 to 2017 2016 to 2018

problem t p +/- t p +/- contents

2.r1 t(55)=2.098 p=0.020 dec t(60)=0.635 p=0.264 dec if

2.r2 t(56)=2.364 p=0.011 dec t(57)=1.831 p=0.036 dec

2.r3 t(54)=1.896 p=0.032 dec t(59)=0.751 p=0.228 dec

2.1 t(66)=3.006 p=0.002 dec t(74)=3.372 p=0.001 dec

2.2 t(56)=3.672 p=0.000 dec t(62)=3.036 p=0.002 dec

3.r1 t(52)=3.222 p=0.001 dec t(61)=2.936 p=0.002 dec record

3.r2 t(42)=2.339 p=0.012 dec t(56)=3.467 p=0.001 dec

3.r3 t(41)=1.373 p=0.089 dec t(51)=2.688 p=0.005 dec

3.1 t(28)=5.610 p=0.000 dec t(38)=2.753 p=0.004 dec

3.2 t(17)=1.655 p=0.058 dec t(27)=0.105 p=0.459 dec

3.3 t(16)=1.546 p=0.071 dec t(13)=0.603 p=0.279 dec

4.r1 t(47)=2.088 p=0.021 dec t(61)=2.446 p=0.009 dec list

4.r2 t(48)=1.909 p=0.031 dec t(60)=2.267 p=0.014 dec

4.1 t(51)=2.134 p=0.019 dec t(60)=2.473 p=0.008 dec

4.2 t(18)=3.033 p=0.004 dec t(20)=0.489 p=0.315 dec

5.r1 t(42)=1.037 p=0.153 dec t(55)=0.257 p=0.399 inc list 2

5.1 t(49)=1.592 p=0.059 dec t(61)=0.904 p=0.185 dec

5.2 t(55)=4.138 p=0.000 dec t(62)=1.631 p=0.054 dec

5.3 t(47)=3.305 p=0.001 dec t(50)=1.940 p=0.029 dec

6.r1 t(30)=0.322 p=0.375 inc t(51)=2.011 p=0.025 inc Dijkstra’s algorithm

6.1 t(41)=1.678 p=0.050 dec t(61)=1.155 p=0.126 dec

6.2 t(45)=1.415 p=0.082 dec t(62)=0.976 p=0.166 dec

6.3 t(34)=2.296 p=0.014 dec t(42)=0.548 p=0.293 dec

7.r1 t(42)=0.462 p=0.323 inc t(56)=0.314 p=0.377 dec map

7.r2 t(41)=0.286 p=0.388 inc t(54)=1.181 p=0.121 dec

7.r3 t(40)=0.677 p=0.251 inc t(51)=1.492 p=0.071 dec

7.1 t(21)=0.965 p=0.173 dec t(20)=0.372 p=0.357 dec

7.2 t(12)=0.380 p=0.355 inc t(7)=0.686 p=0.258 dec

8.r1 t(46)=1.162 p=0.126 inc t(58)=2.694 p=0.005 dec filter

8.1 t(16)=0.844 p=0.205 dec t(22)=0.841 p=0.205 dec

9.r1 t(44)=1.294 p=0.101 dec t(55)=0.678 p=0.250 dec general recursion

10.r1 t(48)=0.312 p=0.378 dec t(51)=1.308 p=0.098 dec tree

10.r2 t(48)=0.457 p=0.325 dec t(50)=1.760 p=0.042 dec

10.1 t(33)=0.976 p=0.168 dec t(38)=0.845 p=0.202 dec

10.2 t(19)=1.498 p=0.075 dec t(19)=0.871 p=0.197 dec

10.3 t(15)=1.538 p=0.072 dec t(12)=2.240 p=0.022 dec

11.r1 t(43)=0.272 p=0.393 dec t(53)=1.555 p=0.063 dec exception

11.r2 t(37)=0.454 p=0.326 dec t(44)=1.906 p=0.032 dec

11.r3 t(31)=0.050 p=0.480 inc t(40)=1.208 p=0.117 dec

11.1 t(34)=1.567 p=0.063 dec t(46)=1.518 p=0.068 dec

11.2 t(28)=2.204 p=0.018 dec t(36)=1.563 p=0.063 dec

11.3 t(17)=0.604 p=0.277 dec t(21)=0.384 p=0.352 dec

12.r1 t(39)=2.229 p=0.016 dec t(52)=4.009 p=0.000 dec module

all t(1778)=2.819 p=0.002 dec t(2111)=2.592 p=0.005 dec

Table 3: Result of one-sided t-test with p-values comparing the time between the beginning of the class

and the moment that students submitted a correct solution. The column +/- shows whether the average

time increased or decreased. The p-values below 0.05 are colored.
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