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Vector programming is an important topic in many Introduction to Computer Science courses. De-
spite the importance of vectors, learning vector programming is a source of frustration for many
students. Much of the frustration is rooted in discovering the source of bugs that are manifested as
out-of-bounds indexing. The problem is that such bugs are, sometimes, rooted in incorrectly com-
puting an index. Other times, however, these errors are rooted in mistaken reasoning about how to
correctly process a vector. Unfortunately, either way, all too often beginners are left adrift to resolve
indexing errors on their own. This article extends the work done on vector programming using vec-
tor intervals and structural recursion to using generative recursion. As for problems solved using
structural recursion, vector intervals provide beginners with a useful framework for designing code
that properly indexes vectors. This article presents the methodology and concrete examples that oth-
ers may use to build their own CS1 modules involving vector programming using any programming
language.

1 Introduction

Undoubtedly, many readers of this article remember enduring endless hours debugging programs that
manipulate vectors. Many of those hours were probably spent trying to determine why an index into
a vector was out of range. The same readers probably also remember how irritating it was to discover
that the bug was trivial or that most of the time was spent searching for the root of the bug in the
wrong function. Surprisingly, this scenario still occurs all too often among beginners. At the heart of
the problem is that beginners are not provided with a framework that they can use to design and debug
vector-processing (a.k.a. array-processing) functions.

The vector-programming frustration beginners endure, of course, affects the quality of their design
and of their code. This makes it difficult for others to understand how they solved a problem–a funda-
mental pillar of programming [6]. Furthermore, they develop the bad habit to patch their code instead of
properly designing their code. Given the importance of vectors in Computer Science this is worrisome.
Vectors allow us to efficiently implement algorithms for applications in a myriad of fields. Vectors, for
example, allow us to efficiently implement various data structures such as binary trees [7], stacks [8], and
process queues [17]. They also allow us to reduce the complexity of algorithms such as, for example,
finding a path in a directed graph [4] and matrix multiplication [2]. Vectors are also useful in the reduc-
tion of memory allocation by, for example, allowing us to sort, say, files or numbers in place [9]. Given
the importance and versatility of vectors it is in our interest as a community to make an introduction to
vector programming for beginners as frustrationless as possible and to provide an environment in which
students learn solid design techniques to write code. This can be achieved by providing beginners with a
structured model they can use to reason about processing vectors.

This article builds on the type-driven work developed at Seton Hall University (SHU) to introduce
students to vector programming using vector intervals and structural recursion [15]. In a type-driven ap-
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proach, the type of data being processed guides the design of a solution. At the heart of the approach pre-
sented in this article is providing students with data definitions that help them design vector-processing
functions to solve problems. In a program, vectors are declared with an arbitrary fixed size. Therefore,
these data definitions must be recursive data definitions. Such data definitions can be directly exploited
using structural recursion to develop programs. As this article demonstrates, the same framework is used
to design and develop vector-processing programs using generative recursion. The framework taught
to beginning students is based on the concept of a vector interval that may only contain valid indices
into a vector. At the heart of the approach is to have students demonstrate that an index into a vector is
contained in a valid vector interval and that any new vector interval generated (e.g., for a recursive call)
is valid for a given vector. The article is organized as follows. Section 2 discusses related work. Section
3 discusses the programming background of the students with whom this approach is used. Section 4
describes and illustrates the use of vector intervals using structural recursion. Section 5 discusses vector
processing issues that arise when using generative recursion by presenting the in-class development of
three extended vector-programming examples. These example are focused around sorting a vector in-
place using algorithms that some may believe are too difficult for beginners. Finally, Section 6 presents
concluding remarks and directions for future work.

2 Related Work

Many textbooks introduce vectors as lacking a recursive structure that can be exploited to solve problems.
Readers are then introduced to programming with vectors using snippets of code that emphasize that an
index into the vector must be within its bounds. For example, a vector is described as a collection of
variables of the same type with each element having an index [8] or as a finite sequential list of elements
of the same datatype identifying the first element, the second element, the third element, and so forth
[7]. Such data definitions are inadequate, because they hide the recursive nature of the interval of valid
indices into the vector and focus exclusively on the syntax to declare, create, index, and mutate vectors.
They fail to provide the proper model to help beginners design vector-processing functions/methods that
avoid, for example, illegal indexes into the vector. The second data definition may even be considered
misleading by describing a vector as a list that has a well-known recursive structure. Vectors do not have
a decomposable structure like lists. Furthermore, describing vector elements as the first, the second, the
third, and so forth does not assist in any way the design of vector-processing functions. We can not
program “and so forth.” Even some modern approaches to make programming popular among the young
address vectors in a very similar manner (e.g., [3]). In contrast, the work presented in this article aims to
provide students with a recursive decomposable data definition that they can use to reason about vector
processing when using generative recursion. This data definition is that of a vector interval [15]. A vector
interval only contains valid indices into a given vector and, thus, is a useful abstraction to determine that
a vector is properly indexed.

The problem of only using legal indices into a vector is traditionally and summarily left to the stu-
dent with no clear indication of how to accomplish this task (e.g., [16]). Some may convincingly argue
that this is relatively easy when you need to process an entire vector. However, the matter is not clear
when you need to process only part of a vector. It is even less clear when vectors are processed using
generative recursion. Consider sorting a vector using quicksort which requires partitioning and indepen-
dently sorting different parts of the vector. It is difficult for a beginner to determine or to be confident
that she is always correctly indexing the vector. Even worse, it is more difficult to pin down bugs when
indexing errors occur if a model that helps the student reason about indexes is not provided to them.
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Vector intervals provide students such a model. If the vector interval is empty then students know that
the vector should not be indexed. If the vector interval is not empty, students know that they must only
use an index that they can demonstrate is in the given vector interval. Therefore, out-of-bounds errors
must be the result of giving a function an improper/invalid vector interval to process. This is one of the
most powerful features of designing vector-processing functions using vector intervals.

Some efforts have gone beyond syntax. The textbook How to Design Programs (HtDP), for exam-
ple, describes a vector as a well-defined mathematical class of data with some basic constructors and
observers [4]. HtDP further states that we can think of vectors as functions on a small finite range of
natural numbers. This begins to provide some context for vector-processing, but surprisingly falls short
of identifying the recursive structure of this range of natural numbers as it does so well for other types of
data. It is unlikely that future editions of HtDP are to develop this given that the second edition has elim-
inated its introduction to vector programming [5]. In contrast, the work presented in this article tackles
the recursive nature of this finite range of natural numbers and describes it as an interval. Furthermore,
the fact that this range is finite is carried to its logical conclusion to obtain two data definitions for a vec-
tor interval. One data definition leads to a function template that is used to design functions to process
vectors from right to left (i.e., from the largest index down to the lowest index in the vector interval) and
the other is used to design functions that process vectors from left to right (i.e., from the lowest index to
the largest index in the vector interval). It is, of course, possible to design other access patterns into a
vector and these make excellent exercises for students to practice their design skills.

Related to the material discussed in this article, although not directly, are ubiquitous efforts to hide
low-level vector manipulation from programmers. For example, an Iterator generates a sequence of el-
ements from a collection, one at a time [18]. This allows programmers to examine every element of a
vector without worrying about properly indexing the vector. The details of properly indexing the vector
are hidden by the Iterator. Similarly in functional programming, for example in Racket, programmers
have access to functions like vector-map and vector-filter that iterate through a vector and that hide the
details of properly indexing the vector. Clearly, iterators and higher-order vector-processing functions
process the entire interval of valid indices into a vector, but are not useful when a proper subinterval must
be processed. For example, processing proper subintervals are common in divide-and-conquer sorting
and searching algorithms (e.g., quick and heap sorting and binary search). In contrast, programming
using vector intervals allows programmers to reason about and write programs that process proper subin-
tervals of all valid indices. In fact, the entire interval of valid indices into a vector is an instance of a
vector interval. Thus, vector intervals can be used as the foundation to program the abstractions provided
by iterators and higher-order vector-processing functions.

Vector intervals were first defined to design vector processing functions using structural recursion
[15]. They are defined in terms of the size, N, of a vector. The idea is that a valid interval of indices
into a vector must be in [0..N-1]. This notion is similar to that found in dependently-typed programming
languages such as Dependent ML [19] and Idris [1]. Vector intervals as used in this article (in the context
of the HtDP student languages) do not enforce type invariants as done by a type-based compiler, but do
plant in a student’s mind that data definitions can depend on run-time properties of the data processed
and force students to engage in type-oriented design.

3 Student Background

At SHU, the Introduction to Computer Science spans two semesters and focuses on problem solving
using a computer [10, 11]. The languages of instruction are the successively richer subsets of Racket
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; f-on-vector: (vector X) → . . .
; Purpose: . . .
(define (f-on-vector V)

(local [; f-on-VINTV: VINTV(wholenum wholenum) → . . .
; Purpose: For the given VINTV, . . .
(define (f-on-VINTV low high)

(cond [(empty-VINTV? low high) . . .]
[else . . . (vector-ref V high) . . .

. . . (f-on-VINTV low (sub1 high))]))

; f-on-VINTV2: VINTV2(wholenum wholenum) → . . .
; Purpose: For the given VINTV2, . . .
(define (f-on-VINTV2 low high)

(cond [(empty-VINTV2? low high) . . .]
[else . . . (vector-ref V low) . . .

. . . (f-on-VINTV2 (add1 low) high)]))]

. . .))

Figure 1: The Template for Functions on Vectors.

known as the student languages which are tightly-coupled with HtDP [4, 5]. No prior programming
experience is assumed. Before introducing students to vector programming, the first course familiarizes
students with primitive data (e.g., numbers, strings, booleans, symbols, and images), primitive functions,
and library functions to manipulate images (i.e., the image teachpack). During this introduction, students
are taught about variables, defining their own functions, and the importance of writing contracts and
purpose statements. The next step of the course introduces students to data analysis and programming
with compound data of finite size (i.e., structures). At this point, students are introduced to the first
design recipe. Students gain experience in developing data definitions, examples for data definitions,
function templates, and tests for all the functions they write. A great deal of emphasis is placed on all of
these steps as part of the problem-solving design process. Building on this experience, students develop
expertise on processing compound data of arbitrary size such as lists, natural numbers, and trees. In this
part of the course, students learn to design functions using structural recursion. After structural recursion,
students are introduced to functional abstraction and the use of higher-order functions such and map and
filter. The first course ends with a module on distributed programming [12, 14].

In the second course students are exposed to generative recursion, accumulative recursion, and mu-
tation [11, 13]. The course starts with generative recursion. At the end of this module, students get
their first exposure to vector programming. Students are taught the syntax needed for vectors and are
introduced to the design of vector-processing functions using vector intervals and structural recursion.
After this, the course exposes students to accumulative recursion and iteration. The course ends with two
modules on mutation that include their second exposure to vector programming. In this second exposure,
students design vector mutators using vector intervals and both generative and accumulative recursion.

The topics covered follow much of the structure of HtDP [5]. There are two 75-minute lectures every
week and the typical classroom has between 20 to 25 students. In addition to the lectures, the instructor is
available to students during office hours (at least 3 hours/week) and there are tutors available 20-30 hours
each week. Students voluntarily visit the tutors as much as they need. The tutoring hours are conducted
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; avg-vector: (vectorof number) → number

; Purpose: To compute the average of the given vector

; Assumption: The vector is not empty.

(define (avg-vector V)

(local [; sum-elems: VINTV(wholenum wholenum) → natnum

; Purpose: For the given interval, sum the vector elements

(define (sum-elems low high)

(cond [(empty-VINTV? low high) 0]

[else (+ (vector-ref V high)

(sum-elems low (sub1 high)))]))]

(/ (sum-elems 0 (sub1 (vector-length V))) (vector-length V))))

(check-within (avg-vector (vector 6 7 8 9)) 7.5 0.01)

(check-within (avg-vector (vector 1 2 3)) 2 0.01)

Figure 2: A Function to Compute the Average of a Vector of Numbers.

by undergraduate students handpicked and trained by the author. These tutors focus on making sure
students develop answers for each step of the design recipe (from writing contracts to running tests).
Students must attempt to follow the steps of the design recipe prior to attending tutoring. Based on a
student’s work, the tutors provide guidance but do not solve problems. Students are still responsible for
successfully completing all steps of the design recipe. In addition, tutors attend lectures to assist students
when they get stuck with, for example, syntax errors. This type of team-teaching with undergraduate
tutors has proven to be extremely well-received by students and to be an effective means to enhance the
learning experience.

4 Vector Processing Using Structural Recursion

For a given vector V of size N, we may want to process the entire vector (indices in [0..(sub1 N)] or we
may want to process only part of the vector (indices in [a..b]). Clearly, the vector indices that must be
processed define an interval. We must design functions, however, in a manner that avoids accessing a
vector with an index outside the given interval. This requires developing a data definition for a vector
interval. A vector interval is an interval that places restrictions on what values the indices low and high
of the vector interval may take. In general, a valid index into a vector, V, of size N is between 0 and
(sub1 N). Thus, we can define a vector interval as follows:

For a vector of size N, a vector interval, VINTV(low..high), is two

whole numbers, low ≥ 0 and -1 ≤ high ≤ N-1, such that it is either:

1. empty (i.e., low > high)

2. VINTV(low..high-1)..high

This is a recursive structural data definition. It states that a vector interval, VINTV(low high), may be
empty (base case) or it can be non-empty (recursive case). In the non-empty case, we have the high
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element and the sub-vector-interval, VINTV(low..high-1), that contains all elements but high. Observe
that there is no need to specify an upper bound for low, like low < N, because if low ever failed to satisfy
this condition the vector interval would be empty.

Using this data definition, to process some vector V, means that in the body of a function to process
the VINTV, V must be referenced. Any index into V must be a member of the VINTV1. Furthermore,
it means that the vector interval is processed from right to left. A similar development takes place for a
data definition, VINTV2, to process vector elements from left to right (i.e. from low to high) [15].

The above observations allow for the in-class development of the function template to process a
vector displayed in Figure 1. The contract states that any function that processes a vector must take as
input at least a vector of any type (X is a type variable). The body of the function is a local-expression
that may be used to define one or more local functions and values. Students are told that problem analysis
will reveal the type of expression that is needed in the body of the local-expression. If a single value is
needed from the given vector, then the expression will be one that processes a vector interval. Otherwise,
the expression will be one that uses different values obtained from processing the same vector. The local
definition section contains two templates: one for each direction that a vector interval can be processed
in. At least one of the templates is to be used to process vector elements.

To make the use of the function template concrete, consider computing the average of a vector of
numbers. Problem analysis reveals that the vector cannot be empty given that division by 0 is undefined.
Now, the template for functions on a vector from Figure 1 is specialized. The contract indicates that the
input is a vector of numbers, V, and that the function returns a number. The body of the local-expression
must be an expression that divides the sum of the vector elements by the length of the vector. This means
that we must write a function to compute the sum of vector elements. Given our problem analysis, either
of the templates to process a vector interval can be used. It does not matter in which direction the vector
interval is processed as addition is a commutative operation. Without loss of generality, we can choose to
process from right to left (i.e., the template for VINTV) in the auxiliary function sum-elems. This means
that when the vector interval is empty the answer is 0 and that when it is not empty we add (vector-
ref V high) to the result of recursively processing the rest of the VINT (i.e., VINTV(low..high-1)).
The resulting function is displayed in Figure 2. Observe that by using the template based on structural
recursion it is impossible to have indexing errors if a valid vector interval is provided as the initial input
to sum-elems. Thus, simplifying the job of designing vector processing functions for beginners. The
initial vector interval, of course, needs to be the entire interval of valid indexes as shown in the body of
the local in Figure 2.

5 Vector Processing Using Generative Recursion

Many efficient solutions to problems are not based on structural recursion. Instead, they are based on
generating new instances of the problem (which are, hopefully, easier to solve). This adds complexity to
vector programming as follows:

1. Students must make sure that any new vector interval generated is valid.

2. Students must make sure that any index into a vector is a member of a valid vector interval.

In this context, indexing errors may arise by either providing an invalid initial vector interval, generating
an invalid vector interval, or by incorrectly indexing the vector with a value outside a valid vector interval.
The second and third concerns are, of course, new to students as they can never arise when correctly

1It may also be a member of a containing valid vector interval when using generative recursion.
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; qs-in-place!: (vectorof number) → (void)

; Purpose: To sort the array in non-decreasing order.

; Effect: The elements of the array are rearranged in place.

(define (qs-in-place! V)

(local [; partition!: VINTV2(wholenum wholenum) natnum --> number

; Purpose: For the given VINTV, partition E and place pivot in

; final position.

; Effect: Mutate V so that all elements before the pivot are

; <= pivot and all elements after the pivot are > pivot.

; Assumption: The given VINTV is not empty

(define (partition! low high pp) ...)

; qs-aux!: VINTV2(wholenum wholenum) → (void)

; Purpose: For the given VINTV, sort V in non-decreasing order.

; Effect: The elements in the given interval are rearranged in

; place.

(define (qs-aux! low high)

(cond [(empty-VINTV2? low high) (void)]

[else (local [(define pp (partition! low high low))]

(begin (qs-aux! low (sub1 pp))

(qs-aux! (add1 pp) high)))]))]))

(qs-aux! 0 (sub1 (vector-length V)))))

Figure 3: The Beginning Template Specialization for Quicksort.

using structural recursion. The key to success, therefore, is to prove that any vector interval (initial or
generated) is valid for a given vector and to prove that an index into the vector is in the interval [low to
high].

Designing vector-processing functions using the concept of a vector interval, however, proves useful
in avoiding indexing errors when using generative recursion. To illustrate how this is done in class, three
extended examples to sort a vector in-place are presented: quicksort, heapsort, and radixsort.

5.1 Quicksort

Students have been previously exposed to mutation-free quicksort using lists. Sorting a vector in place
requires careful problem analysis in class. After some discussion, the algorithm to quicksort a vector of
numbers in-place is summarized as follows:

Pick a pivot (say, V[low])

Partition the vector

VINTV(low..i) contains the elements ≤ pivot

VINTV(i+1..high) contains the elements > vector

Swap V[low] and V[i]

Recursively sort VINTV(low..i-1) and VINTV(i+1..high)

The beginning of the template specialization for quicksort is displayed in Figure 3. Students realize
that there is only one task that needs to be done with the vector and, therefore, the body of the local only
calls a function, qs-aux!, that processes the entire vector. It is provided with the valid vector interval
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(define (partition! low high pivot-pos)

(local

[(define (swap i j) ...)

(define (small-index low high pivot) ...)

(define (large-index low high pivot) ...)

; separate!: VINTV(wholenum wholenum) number → natnum

; Purpose: For the given VINTV, separate smaller and larger elements

; Effect: Mutate V so that all elements before the pivot are

; <= pivot and all elements after the pivot are > pivot.

; Assumption: The given VINTV is not empty

(define (separate! low high pp)

(local [(define s-index (small-index low high (vector-ref V pp)))

(define l-index (large-index low high (vector-ref V pp)))]

(cond [(<= s-index l-index) s-index]

[else (begin (swap s-index l-index)

(separate! l-index s-index pp))])))

(begin

(local [(define pp (separate! low high pivot-pos))]

(begin (swap pivot-pos pp) pp)))))

Figure 4: The outline for partition!.

[0..(sub1 (vector-length V))]. Given their experience with vector intervals using structural recursion,
students know that if the vector interval is empty then the vector should not be indexed and the process
is done returning (void) as required by the contract. If the vector interval is not empty, then it must be
partitioned and two new vector intervals to be sorted must be generated. Partitioning is determined to
be a different problem from sorting and, therefore, students quickly realize that it requires an auxiliary
function which is separately designed. The remaining design question that must be resolved for qs-
aux! is which new vector intervals to generate. Given our previous problem analysis, students quickly
converge on [low..(sub1 pp)] and [(add1 pp)..high], where pp is the position of the pivot in the sorted
vector and is returned by the partitioning function. They are now asked if these intervals are valid.
Students conclude that if partition! returns an index in the given vector interval, then the two generated
vector intervals are valid. Therefore, an indexing error cannot occur and these vector intervals can safely
be recursively processed. It is noteworthy to highlight that students are now confident that if indexing
errors arise it must be related to the yet undesigned partition! mutator. That is, students know where
they must look for the resolution of a bug. The reader can contrast this with other approaches that leave
students adrift trying to determine where an indexing bug needs to be resolved.

Problem analysis reveals that partition! must take as input a non-empty vector interval that must be
partitioned and the position of the pivot. It is clear to students that the given vector interval must be a
sub-interval, low and high, within the vector interval provided to qs-aux!. In addition, partition! must
also take as input the position of the pivot which is arbitrarily chosen to be low. This design is reflected
in Figure 3. The beginning outline for the function partition! is displayed in Figure 4. After some class
discussion, students conclude that they need a mutator, separate!, that places in V the elements less than
or equal to the pivot before the elements greater than the pivot and that returns the largest index, pp, that
has an element less than or equal to the pivot. This index is the correct position of the pivot in the sorted
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; heap-sort!: (vectorof number) → (void)

; Purpose: To sort in non-decreasing order the given

; vector in place using heap sort

; Effect: Vector elements reorganized to be sorted

(define (heap-sort! V)

(local [. . .]
(begin

(heapify! . . . . . .)
(sort! 0 (sub1 (vector-length V))))))

Figure 5: The outline for heapsort.

array. The body of partition!, therefore, must only swap the pp and the pivot-position elements in V.
Observe that if separate! returns an element of the vector interval given to partition!, then an indexing
error can not occur. That is, both indexes provided to swap are valid.

The mutator separate! takes as input the vector interval provided to partition! and the index to
the pivot. Observe that the vector interval provided is valid and not empty. In-class problem analysis
reveals that smaller vector subintervals, within the given vector interval, need to be processed until the
subinterval has a length less than 2. To achieve this the vector interval provided needs to be processed
twice at each step: once from the right and once from the left. From the right we are searching for, if
it exists, the largest index to a value less than or equal to the pivot. If such an index does not exist then
the searching function returns low. From the left we are searching, if it exists, for the smallest index to a
value greater than the pivot. If it does not exist, the searching function returns high. Respectively, these
task are done by the auxiliary functions small-index and large-index that take as input the given vector
interval and the value of the pivot. Observe, that both functions receive a valid vector interval as input.
They are designed using structural recursion and, therefore, indexing errors can not occur. In the interest
of brevity the development of these functions is not presented. Finally, the value of s-index is tested to
see if it is less than or equal to the value of l-index to determine if the size of the vector subinterval they
define is less than 2. If so, the vector elements are separated and the position of the pivot in the sorted
vector is returned to partition!. Observe, that this value is an element of the given vector interval. If the
value returned by small-index is greater than the value returned by large-index, then the values indexed
by the two returned values are swapped and the process of separation continues with the vector interval
defined by the two returned values. Observe that these returned values form a valid interval into the
vector and, therefore, it is safe to recursively process this new vector interval.

There are two primary lessons for an educator to walk away with from this example. The first is
that vector intervals are not only useful to eliminate vector indexing errors. They also provide the ability
to demonstrate that the “pieces of the puzzle” are correctly put together. That is, they provide a means
that is understandable to beginners to establish that functions are correctly called with arguments (e.g.,
vector intervals) that clearly communicate the design ideas. The second is that vector intervals allow us
to naturally design a mutator (i.e., quicksort in place) without peppering the code with mutations. In fact,
mutation is only needed for swap. The reader can compare this development of quicksort with the typical
development that appears in any textbook using an imperative language, where mutations are distributed
throughout the code they present.
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; sort!: VINTV(wholenum wholenum) → (void)

; Purpose: For the given VINTV, sort the vector elements

; Effect: V’s elements in the VINTV are rearranged in non-decreasing order

; Assumption: V is a heap and given VINTV is valid for V

(define (sort! low high)

(cond [(empty-VINTV? low high) (void)]

[else (begin

(swap low high)

(trickle-down! low (sub1 high))

(sort! low (sub1 high)))]))

Figure 6: The sort! mutator for heapsort.

5.2 Heapsort

After developing quicksort, students are shown that when the input vector is sorted the abstract running
time is O(n2). That is, it is no better than insertion sorting. Students are then asked if we can do better.
Rarely, does a student suggest an answer and the class is introduced to heaps. The heap data definition
is:

A heap is either:

1. empty

2. a number (the root) and two heaps (left and right), where the number is

greater than the roots, if any, of the two subheaps

Students are then shown that heaps are easily mapped to vectors. A heap whose root is at index i has, if
they exist, the root of its left subheap at index 2i+1 and the root of its right subheap at index 2i+2.

The discussion then focuses on how a vector of numbers can be sorted in place using heaps. Clearly,
the first step is to mutate the vector into a heap. The details of how this is done and the initial vector
interval for it are postponed until the design of the heapifying function is tackled. Once the vector is
a heap, students immediately determine that the entire vector must be sorted and, therefore, the correct
initial vector interval for the sorting function is [0..(sub1 (vector-length V))]. This design developed by
students in class is captured in Figure 5.

The design of the sorting mutator starts with the assumptions that the given vector interval is valid
for V and that the elements in the given vector interval form a heap. The need to process the entire
vector interval suggests using structural recursion. After looking at some examples of sorting using
heaps, students realize that if the given vector interval is empty, then V is sorted and the sorting process
may stop. On the other hand, students realize that if the given vector interval is not empty then the
largest number is the root of the heap. That is, the largest number is the low element of the given vector
interval. Therefore, in the sorted vector this number must be indexed by the high element of the vector
interval being processed. To achieve this, at every step the root of the heap must be swapped with the
high element. Once a swap occurs, V[low..high-1] may no longer be a heap. This requires making it
into a heap. Some students correctly observe that heapify! can be used to achieve this. However, this
would require traversing the entire vector interval [low..high-1]–a linear operation which would make the
algorithm O(n2) and no better than insertionsort or quicksort. After some class discussion of examples,
students realize that all that is needed is to “trickle down” within [low..high-1] the new element in the root
position to its correct position processing at most a number of elements equal to the height of the heap–a
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; trickle-down!: VINTV(wholenum wholenum) → (void)

; Purpose: For the given VINTV, re-establish a heap rooted at low

; Effect: Vector elements are moved to have a heap rooted at low

; Assumption: The given VINTV is valid for V

(define (trickle-down! low high)

(local [(define rc-index (+ (* 2 low) 2))

(define lc-index (add1 (* 2 low)))]

(cond [(> lc-index high) (void)] ; root has no children

[(> rc-index high) ; root only has a left child

(cond [(<= (vector-ref V lc-index) (vector-ref V low)) (void)]

[else (begin

(swap low lc-index)

(trickle-down! lc-index high))])]

[else ; root has two children

(local [(define mc-index (max-child-index lc-index rc-index))]

(cond [(>= (vector-ref V low) (vector-ref V mc-index))

(void)]

[else (begin

(swap low mc-index)

(trickle-down! mc-index high))]))])))]

Figure 7: The trickle-down! mutator.

lgn operation making the algorithm O(n lgn). This trickling down is a new task and, thus, requires an
auxiliary function. Once a heap is re-established, sorting continues by processing the rest of the vector
interval using structural recursion. This design for sorting is captured in Figure 6. Observe that reasoning
about vector intervals has allowed for students to clearly understand and design the sorting function for
heapsort.

The mutator, trickle-down!, to reheapify after a swap receives as input a valid vector interval and is
designed around the number of children2 the root, V[low], has. Class discussion reveals how to detect
the number of children the root has:

No children The index of the left child is greater than high and, therefore, not in the given interval.

One child The index of the right child is greater than high and, therefore, not in the given interval.

Two children The index of both children are in the given vector interval

The design recipe in HtDP for functions that must detect different conditions states that an answer must
be formulated for each condition starting with the non-recursive cases. This is something that students
now know very well and it is natural to proceed in this fashion. The simplest case is when the root has
no children. In this case, the root is part of a heap and the process stops returning (void). If there is only
one child it must be the left child. If this left child is less than or equal to the root, then there is a heap
and, once again, the process stops returning (void). Otherwise, the root and the left child are swapped.
This operation cannot cause an indexing error, because both indices are known to be members of the
given vector-interval. The swapping is followed by recursively trickling down the vector interval formed

2These are the numbers of the roots of the subheaps.
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; heapify!: VINT(wholenum wholenum) → (void)

; Purpose: For the given VINTV, make the given vector a heap

; Effect: Reorganizes the vector elements to form a heap rooted at low

; Assumption: The given VINTV is valid for V and low > 0

(define (heapify! low high)

(cond [(empty-VINTV? low high) (void)]

[else

(local [(define parent-index (parent high))]

(cond [(> (vector-ref V parent-index) (vector-ref V high))

(heapify! low (sub1 high))]

[else (begin

(swap parent-index high)

(trickle-down! high (sub1 (vector-length V)))

(heapify! low (sub1 high)))]))]))

Figure 8: The Mutator that Transforms a Vector Into a Heap.

by the index of the left child (just swapped) and high. Students observe that [lc-index..high] is contained
in [low..high] and, thus, is a valid vector interval that can safely be recursively processed. If the root has
two children, the index of the maximum child is computed. The root is compared with it. If the root is
greater than or equal, as before, there is a heap and the mutator stops returning (void). Otherwise, the
root is swapped with the max child and the vector interval formed by the index of the max child and high,
[mc-index..high], is recursively processed. Once again, observe that the swapped indices are members
of the given vector interval and, therefore, it is safe to recursively process this new vector interval. This
design is captured in Figure 7.

The mutator trickle-down! does not process the given vector interval using structural recursion. It is
clearly generative recursion by generating a new vector interval with each recursive call. This means that
a termination argument must be provided according to the design recipe in HtDP. Thanks to the design
using vector intervals this task is not onerous. Students observe that with each recursive call the vector
interval is getting smaller and that high remains unchanged. This means that the index of the root, low, of
what needs to be reheapified is getting larger. Eventually, it will become large enough that it cannot have
children within the given vector interval. That is, the indexes of any potential children will be greater
than high and the process stops.

The only interesting tasks left are to write a mutator that converts an arbitrary vector into a heap and
to decide what the initial input vector interval to this function ought to be. The code developed in class is
displayed in Figure 8. It is developed using structural recursion processing the given vector interval from
right to left. If the vector interval is empty, the process stops as there is nothing to heapify and returns
(void). If it is not empty, the index of the parent of the high element of the vector interval is computed.
If the parent is larger than the V[high], then the parent and the child do not violate the invariant in the
data definition of a heap and the rest of the interval is recursively made into a heap. Otherwise, V[high]
and its parent are swapped to make the heap invariant hold. This swap may destroy the heap that existed
in V[high..(sub1 (vector-length V))] and must be reheapified. This is accomplished by calling trickle-
down that was designed above. Once V[high..(sub1 (vector-length V))] is a heap, the rest of the vector
interval is recursively processed.

Students commonly want to heapify the vector, V, using the vector interval [0..(sub1 (vector-length
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V))]. It is natural for students to gravitate to this choice given that they want to heapify the entire vector.
Correcting this requires that they think carefully about their design and about vector intervals. The design
of the mutator heapify! revolves around the index of the parent of the high element being in the vector
interval. This means that 0 is not part of the vector interval that must be heapified given that it does
not have a parent index in [0..(sub1 (vector-length V))]. All other indices have a parent in this vector
interval. Therefore, the correct vector interval that must be provided to the initial call to heapify! in
Figure 5 is [1..(sub1 (vector-length V))].

The important lesson for educators to take away from this example is that an algorithm that many
advanced students consider complex is simplified when one reasons about vector intervals. Vector inter-
vals allow beginning programmers to focus on problem solving and reason about vector indexes in their
code. They are not left adrift to figure out how to avoid indexing errors when designing using generative
recursion. Observe that the focus is not on the required mutations that, once again, are only needed for
swap. Equally important, this example demonstrates the usefulness of vector intervals when designing
functions, like trickle-down! in Figure 7, that do not process all the elements of a given vector interval.

5.3 Radixsort

After implementing heapsort, students are asked if sorting can be done in linear time. This is a difficult
question for them. Some students propose that it can not be done, because any given number in a vector
must be compared with at least some other numbers in the vector. They are explained that this line of
thought is correct for comparison-based sorting, but that there is another way. Students, to date, can not
fantom what this means, but most are intrigued. They are told that instead of comparing numbers with
each other, we can process the digits of all numbers from least significant to most significant without
comparing them to each other.

To do so, however, it is useful to first design and implement an interface for a data structure that
we call a bucket. A bucket has a (vectorof X) and an index for the next available position in the vector
(which is equal to the number of elements in the bucket). It is an interface that offers the following
services:

(make-bucket k) Creates a bucket that can hold k elements. Initially, all k elements are (void) and the
number of elements in the bucket is zero.

(bucket-add! n) Puts n in the next spot available in the bucket’s vector and increases the number of
elements by 1.

(bucket-dump! D i) Empties the bucket and puts all its elements in vector D starting at index i. Emp-
tying the bucket returns all vector elements to (void) and the number of elements to 0.

(bucket-size) Returns the number of elements in the bucket.

(bucket-elems) Returns the bucket’s vector of elements.

The bucket interface is relatively simple for students to implement. The hardest service to implement is
bucket-dump! which is implemented using structural recursion on a vector interval.

Armed with buckets, students are ready to learn about radixsort. To simplify the presentation, stu-
dents are told to assume the vector contains only nonnegative numbers. The algorithm is outlined as
follows:

1. Create 10 buckets (one for each possible digit).

2. Process all the digits of the vector numbers starting with the least significant digits and ending with
the most significant digits.
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(define (radix-sortin-place! V)

(local [ . . .
(define (make-buckets)

(build-vector 10 (lambda (i) (make-bucket (vector-length V)))))

(define buckets (make-buckets (vector-length V)))

(define (sort!) (helper! 0))

(define (helper! i)

(cond [(= i sz) (void)]

[else (begin

(bucketize! 0 (sub1 (vector-length V)) i)

(dump-buckets! 0 0)

(helper! (add1 i)))]))

(define (bucketize! low high i)

(cond [(empty-VINTV2? low high) (void)]

[else

(local [(define num (vector-ref V low))

(define bucketnum (compute-bucket-number num i))]

(begin

(bucket-add! (vector-ref buckets bucketnum) num)

(bucketize! (add1 low) high i)))]))

(define (dump-buckets! bnum index)

(cond [(= bnum 10) (void)]

[else

(local [(define bucket (vector-ref buckets bnum))

(define newindex (+ index (bucket-size bucket)))]

(begin

(bucket-dump! bucket V index)

(dump-buckets! (add1 bnum) newindex)))]))]

(sort!)))

Figure 9: The outline for Radixsort.

3. Based on the digit being processed place the number in the corresponding bucket.

4. After all numbers have been placed in a bucket, dump all the buckets back into the vector starting
with bucket 0.

5. Recursively process the next most significant digits.

6. When all digits are processed, stop. The vector is sorted.

To further simplify the task, students are told to treat all numbers as having the same number of digits.
If a number is not long enough to have a digit, then the digit is 0. For example, the hundreds digit for 9
is 0 (i.e., 009 = 9).

The basic outline developed in class for radixsort is displayed in Figure 9. Contracts, purpose state-
ments, and effect statements from Figure 9 are omitted to reduce its size. A vector of 10 buckets is
created to process the digits. Each bucket can hold, if necessary, all the elements of the vector being
sorted. The body of the local calls an auxiliary function, sort!, to sort the vector. In turn, this function
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calls another auxiliary mutator, helper!, that takes as input the power of 10, i, indicating the position of
the digit being processed. At the beginning, this power is 0 for the ones position of all numbers. The
mutator helper! is designed using generative recursion on natural numbers. If the given power for 10 is
equal to, sz, the length of the largest number, then the process stops returning (void). Otherwise all the
numbers are placed in the buckets, dumped back into the vector, and recursively the next power of 10 is
processed. The function will terminate, because with each recursive call its input, i, gets one closer to
the length of the largest number in the vector. Eventually, these will be equal and the function halts.

The mutator, bucketize!, puts all the numbers in the vector into the buckets. It takes as input a vector
interval for all the numbers to put in buckets and the position of the bigit by which to place numbers
in buckets. Initially, the given vector interval spans the entire vector. The function is designed using
structural recursion on the given vector interval (from left to right to preserve the relative ordering of the
numbers in the vector). If the interval is empty, the function terminates and returns (void) as all vector
elements have been placed in a bucket. Otherwise, the number indexed by low is retrieved from the
vector, the bucket to place it in is computed, the number is placed in the correct bucket, and the rest of
the interval is recursively processed.

Finally, the function, dump-buckets!, to place all the numbers back in the vector takes as input a
bucket number and an index into the vector where to start placing back the numbers. The function is
designed using generative recursion with natural numbers. If all buckets have been processed, (void)
is returned and the mutator halts. Otherwise, it dumps the current bucket into the vector starting at the
current position (i.e., index). It then recursively process the next bucket starting at the first index after the
last number dumped into the vector. The mutator is guaranteed to terminate, because the process starts
with bucket 0 and at each step the bucket number is increased by 1. Eventually, all buckets are dumped
and the process stops when the bucket number reaches 10.

The important lesson that educators should walk away from this example is that computations in-
volving vectors that are not structurally recursive, like radixsort, may use structural recursion on vector
intervals. Whenever possible structural recursion ought to be used (with beginners), because it is the
simplest, it guarantees no indexing errors, and it commonly suffices in terms of efficiency. Generative
recursion should be used when significant gains in performance can be achieved. This usually requires
profound insights into the problem that is being solved. Vector intervals, nonetheless, have proven to be
a useful concept to reason about and design around when using generative recursion with vectors. It is
also noteworthy, once again, that the emphasis is on design around vector intervals and not on mutations.
All mutations in this case are inside the interface for a bucket. Thus, liberating students to think about
the process of radix sorting.

6 Concluding Remarks

This article presents a type-driven design-oriented methodology to assist beginners with the development
of vector-processing functions using generative recursion. The methodology is based on the concept of
a vector interval that has a recursive structure. The examples presented suggest that vector intervals are
a useful abstraction when designing vector-processing programs based on generative recursion. They
help to determine if functions are (recursively) called with a valid vector interval for a given vector.
Calling a function with an invalid vector interval is likely to cause vector indexing errors. As such,
vector intervals reduce debugging time and frustration for beginners. They also help in determining if a
specific index into a vector is valid. To be valid, an index must be a member of the vector interval that is
being processed. Another useful benefit of vector intervals is that termination arguments may be easier
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to formulate.
Vector intervals have also proven an invaluable tool in exposing students to algorithms that are tradi-

tionally considered too advanced for beginners. As far as the author can tell, the overwhelming majority
of universities in the world do not expose first-year Computer Science students to heap and radix sort-
ing. In fact, students traditionally struggle with these algorithms in an Algorithms course. Thanks to the
development of vector intervals, such algorithms are part of the traditional cannon for our Introduction
to Computer Science sequence at Seton Hall University. Vector intervals allow the student and the in-
structor to focus on the design of solutions to problems and spend much less time on debugging vector
indexing errors and on using mutations. The latter is a rather important characteristic, because the focus
remains on developing code that others can understand and maintain.

Future work includes formulating accumulative recursion as well as multidimensional-vector pro-
cessing examples that further demonstrate the usefulness of reasoning about vector intervals to design
vector-processing functions. Additionally, students assessments will be pursued to quantify how stu-
dents feel about the usefulness of designing vector-processing functions using vector intervals. Finally,
the work is also being extended to demonstrate the usefulness of vector intervals in a course that focuses
on object-oriented design. Vector intervals are a syntax-free notion and as such they are an abstraction
that is useful in any programming language that provides support for vector programming.
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