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Introducing inner-city high school students to program design presents unique challenges. The typi-
cal assumptions of an introductory programming course, like students understand what variables and
functions are, may not be safe. Therefore, asking students to define functions as part of the program
design process may be an overwhelming task. Many students do not understand that a function is an
abstraction over similar expressions and that parameters represent the differences among these ex-
pressions. This articles presents a novel approach to teaching program design to high school students
while simultaneously reinforcing high school algebra. The approach is based on a design recipe to
help students develop the abstractions that lead to functions. Using a bottom-up approach, students
are taught how to abstract over similar expressions. They are then taught how to use high school
algebra concepts, like compound functions and function composition, to also design functions. In
addition, the article also presents empirical data collected from students to measure their reaction
to the course. For the students in the course, the empirical data suggests that high school algebra
concepts are successfully reinforced and that students feel they become better problem solvers, find
programming intellectually stimulating, and walk away with an interest in programming.

1 Introduction

In a programming course for beginners, picking a starting point may seem obvious. Many textbooks
start by explaining some primitive types, some basic syntax, and some control structures (e.g., [7, 23]).
Others, more appropriately, start with expressions (e.g., [1, 9, 10]). Invariably, however, most textbooks
then move to defining functions/methods. The assumption is that functions come naturally to students
especially if they have taken a course in high school algebra (or higher). It would seem to be a natural and
safe assumption that such students know what variables/parameters and functions represent. After all,
high school algebra students are drilled with exercises that required them to plug-in values to a function.
That is, students learn to substitute the references to the independent variable with a value. Consider the
following typical quadratic equation found in any high school algebra book:

y = x2 + 3x - 10

Students are commonly asked, for example, to find the value of y when x is 10. Most students then
proceed to substitute x with 10 on the righthand side of the equation to obtain 102 + 3 ∗ 10− 10. This
correctly leads students to the conclusion that the value of y is 120. Does this mean that students under-
stand functions?

It turns out that many beginning students do not understand what a function is. Put differently, they do
not understand what a function represents. To functional programmers and to mathematicians, a function
is an abstraction that captures a common computation pattern. To a programming beginner, it is no such
thing. Instead, a function is something (no clear definition) in which you substitute a variable for a value.
Therefore, it is not shocking that beginning students stumble when asked to write their own functions.
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We are asking them to develop something that has always been provided to them. More importantly,
we are asking them to define something that they do not comprehend. The bottom line is that beginning
students usually do not understand abstraction over expressions when they first walk into the classroom.

Given a room of eager beginning programming students that learned high school algebra by rote,
how do you explain to them how to write a function? This is a dilemma the author faced with a group of
11th graders taking their first-ever programming course in the summer of 2019. This group of students
did not understand abstraction at any level, having difficulty to express that a variable represents a value,
never mind that it represents a difference between similar expressions. In fact, students insisted in always
using and thinking in terms of concrete values instead of in terms of variables. The solution the author
converged on is to first teach students about expressions using concrete values and then teach them
how to abstract over similar expressions to create functions. Instead of using a top-down approach
to teach them how to design solutions to problems (i.e., functions), a bottom-up approach is adopted.
Auxiliary functions are developed first because it is usually easier to write sample expressions using
concrete values–something the students crave. Once auxiliary functions have been developed, students
feel more comfortable developing the functions that make use of them. The results were nothing short of
encouraging. By the end of the course, not only did students understand what a function is, but also built
on that knowledge to create a functional video game.

The article is organized as follows. Section 2 presents related work. Section 3 briefly discusses
the student background. Section 4 presents a brief overview of the course. Section 5 outlines how
expressions are discussed and abstracted over in class. Section 6 presents the video game developed
with students building on the new knowledge they have acquired. Section 7 presents student feedback.
Finally, Section 8 presents concluding remarks and directions for future work.

2 Related Work

It is not uncommon for a high school student’s only exposure to functions to have been in a Mathematics
course. Typically in the United States, the common denominator for all students is high school algebra.
Some high school algebra textbooks (e.g., [24]) start with so-called four fundamental operations: addi-
tion, subtraction, multiplication, and division. These operations are never identified as functions. From
here, algebraic expressions are introduced as a combination of ordinary numbers and letters. At the be-
ginning, these “letters” are not called variables. A great deal of work is done with expressions before
introducing functions. Functions are introduced as relations that associate an element of the domain with
exactly one element of the range, but are never associated with abstracting over expressions. Similarly,
the work presented in this article builds on first developing expressions and then introducing functions.
In contrast, however, functions are explicitly introduced as an abstraction over expressions and as enti-
ties that compute values. The writing of unit tests is used to drive home the idea that functions compute
values. More specifically, functions compute the same values that are obtained from sample expressions.

Efforts to get high school students engaged in programming introduce them to the development
of functions. Bootstrap [3, 20], for example, integrates introductory programming and high school
algebra. In the Bootstrap curriculum, function definitions are introduced after observing that a program
may have expressions that are not identical, but are very similar. Functions are described as taking
inputs and producing output. Students are then told that programmers may want functions that are not
provided by the programming language to abbreviate expressions that are very similar. Their examples
tell students what the input and output are and then proceed to write examples to identify and give the
observed differences (i.e., the inputs to the function being developed) variable names. At this point
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students can define a function by copying the similarities and using the variable names in place of the
differences. Similarly, the work described in this article closely couples programming and high school
algebra. The approach described first has students identify differences between similar expressions and
use variables to abstract them away. In contrast, however, the work presented in this article does not
prescribe the inputs and output of a function beforehand. Instead, students are asked to first write sample
expressions that demonstrate how to compute a value. These expressions are used by students to discover
the input variables (i.e., parameters) a function needs–one for each difference identified. Students use
these to write a signature, purpose statement, and function header. Before defining the body of a function,
students write unit tests using their sample expressions. After this step, students proceed to define the
function’s body keeping the similarities in their sample expressions and using the function’s parameters
in place of the terms that vary. The difference between Bootstrap and the approach described in this
article may appear subtle to some readers, but in practice it allows students to be active participants in
discovering the inputs to a function. In this manner, students are able to understand that a function is an
abstraction that captures a computation pattern born out of similar expressions that use concrete values.

The textbook, How to Design Programs (HtDP) [9], also integrates high school algebra with program-
ming. Functions are introduced as the result of completing values in a table for, say x, the independent
variable and, say y, the dependent variable. Once a table is populated with values, students are asked to
find an “expression” that determines any element, y, for a given value of x. For example, for a given ta-
ble, students may determine that y = x2+10x+5. HtDP correctly claims that this notation is misleading,
given that it does not properly emphasize the fact that this is a function definition that may be used to
compute any desired y value in the table. It then uses this observation to motivate the need for students
to learn more syntax to define functions. The assumption is that students arrive in the classroom with the
necessary skills to extract functions from sample tables. This assumption is not always safe, and students
need to be guided through a series of steps that allows them to create the abstraction (i.e., the function).
The work presented in this article builds on HtDP to help students create the abstraction. In essence,
it expands the first step, problem analysis, of any design recipe found in HtDP. Students write sample
expressions using concrete values to compute a desired result as part of the first step of development.
This is tantamount to creating a table, but a key difference is that it forces students to first think about
how a value is computed instead of simply filling in values in a table. Students use the expressions they
write to discover the inputs needed for a function and the expression needed in the function’s body. That
is, they develop the abstraction from sample expressions, not sample values. Furthermore, the values of
the sample expressions are used to simplify the development of unit tests.

Another effort that integrates high school algebra with programming for beginners is CodeWorld [4].
CodeWorld presents a programming environment, built on Haskell, in which you can create drawings,
animations, and video games. Students are taught using high school algebra concepts such as expres-
sions, variables, functions, domain, range, and function composition. In addition, students are introduced
to types to describe expressions and functions. An expression is described as code to describe a value.
A function is described as a relationship that associates input values with a specific result. Variables
are introduced as a mechanism of abstraction motivated by the Don’t Repeat Yourself principle. Instead
of repeating the same expression within an enclosing expression, students are encouraged to define a
variable to represent the expression. In contrast to variables that represent a single value, functions are
introduced as capturing a general idea that arises from differences in similar expressions. If expressions
are similar, the CodeWorld methodology suggests naming variables for the differences, using these vari-
ables to write a new function, and rewriting the original expressions using the new function. Similarly,
the work described in this article starts students with expressions and motivates functions as abstractions
over expressions. In contrast, the work described in this article presents students with a complete set of
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steps to design functions1. For example, unlike the CodeWorld methodology, students are encouraged to
define variables for the value of expressions, to write a signature (i.e., domain and range) and a purpose
statement for a new function, and to write unit tests using the defined variables for the value of sample
expressions and the new function.

Efforts under the mantle of computational thinking have also tackled the problem of teaching be-
ginners. Michaelson, for example, argues that problem solving should be driven by abstraction from
concrete instances of a specific problem [16, 17]. By identifying the underlying regularities in differ-
ences among concrete calculations, students can determine the types and variables needed to develop
a generalized expression. These efforts are decoupled from the syntax of any programming language.
Likewise, the work described in this article has students identify variables and their types from expres-
sions using concrete values. In contrast, the expressions are written using the syntax of a programming
language. The goal is to facilitate the transition from problem analysis to coding. Furthermore, the con-
crete expressions developed are used in unit tests which facilitates communicating to others (e.g., fellow
students or an instructor) how a value is computed–a fundamental goal of programming [11].

3 Student Background

All students are participants in the Upward Bound Program (UBP) [26] implemented at Seton Hall Uni-
versity. The UBP is funded under the auspices of the Federal TRIO Program (TRIO) [25]. TRIO is com-
prised of outreach and student services programs for individuals from disadvantaged backgrounds (e.g.,
low-income individuals, first-generation college students, and individuals with disabilities). The goal is
to help these individuals to progress academically from middle school to post-baccalaureate programs.

UBP provides support to individuals in their preparation for college entrance in an effort to increase
the rate at which participants complete secondary education and enroll in and graduate from institutions
of postsecondary education. All UBPs must provide instruction in math, laboratory science, composition,
literature, and a foreign language. Programming is offered in addition to these topics at Seton Hall Uni-
versity. Students must have completed the 8th grade, be 13–19 years old, and have a need for academic
support in order to pursue a program of postsecondary education. The program requires that two-thirds
of the students in a project be both low-income and potential first-generation students. The remaining
one-third may also include students who have a high risk for academic failure.

All 15 students in Seton Hall’s 2019 programming course are 11th graders from inner-city high
schools in New Jersey (e.g., from East Orange, Newark, and Irvington). The average age of the students
is 16.13 (x̃=16 and Mo=16) and the age range is [15..18]. The majority of the students, 67%, are females
and 33% are males. Ethnically, the students are 87% African Americans (with 1 student identifying
as Haitian and 1 student identifying as Jamaican). Virtually all students, 93%, stated having a desktop
or a laptop computer at home. The majority, 60%, stated having no programming experience at the
beginning of the course. The 40% identifying themselves as having programming experience stated that
this experience is in Java or Scratch. All of the students have successfully completed a high school
Algebra II (or higher) Mathematics course.

1The design sections of the CodeWorld guide remain to be written.
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4 Course Overview

The initial goal was to deliver a course that uses video game development to motivate students to learn the
basics of programming by design [9, 10]. The course aimed to be a subset of a similar course developed
for first-year undergraduates [18] that includes:

• Primitive types (i.e., numbers, strings, Booleans, and images)

• Definitions

• Conditionals

• Compound data of finite size

• The Design Recipe

• Compound data of arbitrary size (i.e., lists and natural numbers)

• Functional abstraction

The course started well, and students were excited about creating and manipulating images (similar to
the approach taken by others [2, 4]). Although defining constants did not present a challenge, the course
quickly ran into trouble when students were asked to define functions.

Students felt unable to write functions on their own. They expressed not understanding what they
are being asked to do. This was rather surprising because, as indicated above, 100% of the students have
already successfully taken an Algebra II course. That is, students have been exposed to the following
concepts: variables, functions, domain, range, plugging-in values, problem-solving, the Cartesian coor-
dinate system, graphing, compound functions, and function composition. Despite this exposure, students
had the following questions and comments:

• Where do functions come from?

• Why are you not giving us the functions?

• I can’t write something I don’t understand.

• What does it mean that a function computes a value?

• What do you mean by the input to the function?

These stumbling blocks arose even with problems that most instructors would consider fairly straight-
forward, such as finding the area of a rectangle.

Given these challenges, it was clear that the course needed to be redesigned. The course now directly
reinforces concepts studied in high school Algebra and shows the students how Algebra is used in prob-
lem solving and computer programming. In addition, the course still aims to keep students enthusiastic
and engaged by developing a video game. The topics covered by the course now are:

• Primitive types (i.e., numbers, strings, Booleans, and images)

• Expressions

• Abstraction over expressions, function definitions, domain, and range

• Compound functions and conditionals

• The Design Recipe

• Compound data of finite size
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Figure 1: The Rocket Game

A rendition of the video game developed in class is presented in Figure 1. It consists of a rocket that
may consume good (green square) or bad (red circle) fuel and a fuel level (purple box). The player can
change the direction the rocket travels in by using the arrow keys. Every time the clock ticks, the rocket
moves in its current direction by a constant amount and the fuel level decreases by a constant amount.
If the rocket consumes good fuel, the fuel level goes up by some constant amount without surpassing a
maximum limit (say, 10), and the good fuel moves to a random location within the scene. If the rocket
consumes bad fuel, the fuel level goes down by some constant amount without decreasing beyond empty
(say, 0), and the bad fuel moves to a random location within the scene. The game ends when the fuel
level is empty.

The programming language used is Racket’s Beginning Student Language (BSL) [9, 10]. BSL was
chosen as the language of instruction because it is pure (i.e., does not support assignment) and has
error messages tailor-made for beginners. The video game is developed using the universe library [8].
Development proceeds using a bottom-up approach. That is, the simplest and, perhaps, most obviously
needed functions are developed first. These functions are then used to create more complex functions.
For example, first, functions to move the rocket in every direction are developed, and then these functions
are used to develop a function to move the rocket when a key is pressed. This bottom-up approach was
chosen to simplify the introduction of function definitions and to satisfy the student’s need to use concrete
values.

5 The Nature of Functions

To answer student concerns about where functions come from, they are first carefully introduced to
expressions. Students, in essence, are asked to write examples of how to compute different instances of
the same abstract value (e.g., an area or a circumference). One important goal is to have students grow
tired of repetitive typing. That is, students are given the opportunity to come to the realization that there
must be a better way to write expressions that, in essence, compute the same (abstract) value. This better
way, of course, is to write a function.

To achieve this, an abstraction step is needed. Students are taught to identify the differences be-
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tween two or more similar expressions. These differences are what may vary from one expression to the
next, and students are asked what is something that varies called. After some class discussion, students
converge on the term variable. Students are taught that functions, therefore, need variables to represent
the differences between similar expressions. These variables are the input to the function and are called
parameters.

With this realization in mind students are given the following design recipe to develop a function:

1. Define variables to store the value of sample expressions.

2. Identify the differences among the sample expressions.

3. Give each difference a parameter name.

4. Identify the type of each parameter and the return type for the function’s signature.

5. Identify the purpose of the function.

6. Write a function header.

7. Write tests illustrating how the function ought to work.

8. Write the body of the function.

9. Run the tests and redesign if necessary.

Observe that each step has a specific outcome. This means that both students and instructors can verify
whether or not a step has been properly completed. Thus, instructors can provide a student with concrete
feedback when a step is not properly completed. Furthermore, students are instructed that a primary goal
of programming is to explain to others how a problem is solved [11]. To foster this goal, they ought to
correctly complete each step of this design recipe.

The first 3 steps outline for students part of what is called “problem analysis” in HtDP. Step 1 has stu-
dents define variables to store the values of sample expressions to be used for testing. These expressions
must demonstrate how a value is computed. This requires that students plan how to compute a value. It
is important to guide students to write expressions in a consistent manner. For example, for the area of
a rectangle all expressions must be written as width x height or as height x width, but not both.
As a result of this step, students realize that the different expressions they develop have a lot in common
and, therefore, the similarities ought to be captured in a function. Step 2 has students explicitly identify
the subexpressions that are different from one expression to the next. These subexpressions need to be
represented by variables that will be parameters. Step 3 has students develop a parameter name for each
difference. Students are strongly encouraged to select descriptive names and avoid simplistic names such
as k or x.

Steps 4 and 5 have students write the signature and purpose statement of the function. This introduces
students to type-oriented programming. At this level, two things are very important. The first is that
students not face cryptic type-error messages. Cryptic error messages tend to discourage beginners and
this is why Racket’s student languages and others have a tailored-made error-messaging system for
beginners [6, 9, 14, 19, 22]. The second is for students to become familiar with writing down types
without being inhibited from quickly building prototypes even if their code is ill-typed. In the context of
this course, the types are needed to properly design the function and are not seen as a hurdle that must be
overcome to get programs to run. Furthermore, the signature of a function is associated with the concepts
of the domain and range of the function that students have studied in high school algebra.

Step 6 has students write the header of the function. This requires naming the function and using
the parameter names developed in Step 3. After writing the header of the function, Step 7 has students
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; Sample Expressions

(define AREA1 (* 10 5)) ; for length of 10 and width of 5

(define AREA2 (* 50 2)) ; for length of 50 and width of 2

(define AREA3 (* 4 25)) ; for length of 4 and width of 25

; Tests

(check-expect (rect-area 10 5) AREA1)

(check-expect (rect-area 50 2) AREA2)

(check-expect (rect-area 4 25) AREA3)

(check-expect (rect-area 2 7) 14)

(check-expect (rect-area 50 5) 250)

; R≥0 R≥0 → R≥0
; Purpose: To compute the are of a rectangle from the given length and width

(define (rect-area length width)

(* length width))

Figure 2: The Function to Compute the Area of a Rectangle.

write examples of how the function ought to work. These are written in the form of unit tests using
Racket’s test engine (specifically, check-expect, check-random, and check-within) [13]. If there
is variety in the data, for example, students must include at least one test for each variety. The tests
must use the function being developed, and there must be a test using each of the variables defined in
Step 1. It is emphasized to students that function arguments must be provided in the order expected by
the function header. Students, of course, may have to write more than one test per variety to achieve a
thorough coverage of possible inputs. It is important to highlight to students that the use of the function
is much shorter (and more elegant) than using the expressions written to define the variables in Step 1. In
addition, students must also write tests using concrete values that differ from those found in the sample
expression used in Step 1. This is necessary to drive home the point that the function works for more
than just the values used in the sample expressions.

For Step 8, students write the expression for the body of the function. This expression must struc-
turally look the same as the sample expressions written for Step 1. The differences identified in Step 2,
however, are replaced with the corresponding parameter names developed for Step 3. It is highlighted to
students how substituting each concrete value provided to the function in the tests results in the expres-
sions developed in Step 1.

Step 9 has students run their tests. Students must make sure that their tests are thorough and have
every bit of code covered. If there is code not tested, students must add tests. In DrRacket, this step is
simplified given that untested code is automatically highlighted.

To illustrate how students are first introduced to the development of functions, consider starting with
a simple computation that ought to be familiar to all students that have taken high school algebra. For
example, students are asked to consider how to compute the area of a rectangle. Most students are able
to state that the area of a rectangle is given by the product of its length and its width.

For Step 1 of the design recipe, students develop several variable definitions representing different
areas. A representative sample is displayed in Figure 2. Observe that students write all the sample ex-
pressions in the same manner: (* length-number width-number). In this manner, students easily
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observe that the three expressions share many common elements: (, *, and ). Therefore, these expres-
sions suggest the development of a function to capture the similarities in a single location.

In step 2, the students identify that the values for length (i.e., 10, 50, and 4) and for width (i.e., 5, 2,
25) may vary from one expression to the next. Having identified the differences, students may name the
parameters length and width in Step 3.

To develop step 4, students are asked to identify the data type of each parameter. Commonly, students
will first answer a number. They are then asked if the width can be -32.1 or if the length can be -9. Most
students are quick to answer no, and it is pointed out to them that it does not suffice to simply state that
length and width are numbers. After some class discussion, students arrive at the conclusion that these
variables must represent non-negative real numbers, denoted by R≥0. Attention is now turned to the
range of the function or, equivalently, the type of the returned value. It does not take long for students
to realize that the returned type is also R≥0. Step 5 is fairly straightforward for students in this case, and
they state that an area of a rectangle is computed from its length and width. These observations lead to
the signature and purpose statement displayed in Figure 2.

For step 6, students must write the function header using a descriptive name. It is common for
students to suggest naming the function area. Although the suggested name is descriptive, it may not be
the most adequate. Students are asked if the function can be used to compute the area of a circle. This
leads them to realize that it is a good idea to make the name more descriptive by somehow specifying the
geometric shape. To reduce the amount of typing, a compromise is reached to use rect-area instead
of rectangle-area. This is not an unreasonable compromise, and high school students are pleased to
have to type less (even though we are just speaking of a few characters).

The tests written for step 7 require students to use the proposed function giving it as input the concrete
values used in the expressions developed for Step 1 and to use the defined variables from Step 1 as the
expected result. In Figure 2, the first three tests are of this type. In addition, students write tests using
concrete values that differ from those used in Step 1 to demonstrate that the function works for arbitrary
values. In Figure 2, the last two tests are of this type.

The body of the function is written in Step 8 by using the expressions for the variables of Step 1.
Instead of using specific values for the differences (like 10, 50, and 4 for the length and 5, 2, 25 for the
width), the variables length and width from Step 3 are used. Finally, to satisfy Step 9, students run
their tests. If students have no syntax errors, all code is tested, and none of the tests fail, then students can
be relatively confident that they successfully designed the function to compute the area of a rectangle.
Otherwise, they must correct their design and rerun. To achieve this, students are advised to review each
of their answers for the steps of the define recipe. For example, if a student wrote this test:

(check-expect (rect-area 10 100) AREA1).

The test fails and the student must either revise their answer to Step 1 by changing the value used for the
width to 100 or revise their answer to Step 7 and revise the above test to:

(check-expect (rect-area 10 5) AREA1).

6 Video Game Development

A new design recipe that teaches high school students that a function is an abstraction over similar
expressions does not suffice. These students need further motivation. The domain chosen to get students
personally engaged is the development of a video game. The instructor’s real goal, of course, is not the
development of a video game. Instead, the real goal is to develop problem solving and critical thinking
skills along with the reinforcement of lessons from a high school Algebra course.
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This section outlines how the design recipe from the previous section is used to reinforce high school
Algebra lessons in a problem solving scenario. Specifically, it outlines how students are taught the
relevance of relational functions, compound functions, and function composition. To get students started
with a video game they are introduced to structures to glue together values that are related. For example,
a coordinate in the (two dimensional) Cartesian plane has an x and a y value. These two values are glued
together in a structure called posn. For instance, (make-posn 1 2) is a coordinate with x = 1 and
y = 2. Students are now encouraged to think about structures as a single value. That is, students are
encouraged to think of a defined structure as a new type of data.

The presented examples assume the following data definition for the video game’s world:

A world is a structure, (make-world rocket dir flevel gfuel bfuel), where

rocket is a posn

dir is either "right," "left,", "up," or "down"

flevel ∈ R≥0
gfuel is a posn

bfuel is a posn

The rocket, the good fuel, gfuel, and the bad fuel, bfuel, are coordinate structures inside the video
game’s scene of dimensions WIDTH and HEIGHT. The flevel represents the rocket’s fuel level. Finally,
dir represents the direction the rocket is moving in.

For a seasoned programmer or a student with some programming experience, the exercises presented
in this section may seem simplistic. Clearly, students well-versed in high school algebra can solve
more complex problems. It is important, however, to keep in mind the audience this course targets. As
outlined in Section 3, the target audience is inner-city high school students who have a high risk for
academic failure and mostly have no programming experience. In addition, it is also important to recall
the difficulties, as described in Section 4, that students expressed. Overall, the students are not well-
versed in high school algebra and need to be motivated to learn high school algebra and programming.
Hence, the course needs to start with very basic examples. This is not to suggest that these students
lack talent or are incapable of developing enthusiasm for academic endeavors. On the contrary, through
the presented exercises many of these students were able for the first time to see high school algebra in
practice, develop enthusiasm for the material, and learn about programming.

6.1 Relational Functions

A relational function maps its input to a Boolean. That is, it determines if a condition holds for a given in-
put. High school students are commonly familiar with <,≤, >, and≥ when used with specific numbers.
They are less comfortable with such functions when variables are involved. The task of determining if a
given rocket has consumed a given fuel provides the opportunity to reinforce the importance of relational
functions.

Students are asked how do they know that a rocket has consumed fuel. Most answer that fuel is
consumed when the rocket is over the fuel. When pressed on what “over” means, they state that the
image of the rocket is over the image of the fuel. They are unable, however, to state how this can be
determined by other than visual inspection (which our computers can’t do). At this point, the image
displayed in Figure 3 is piecemeal-built for them. Students are first encouraged to think abstractly of the
data definition of a piece of fuel and the image that represents a piece of fuel. The fuel is represented
by its center point, (x,y). The image of a piece of fuel defines a bounding rectangle around the center
point. On this image, the center points of a few rockets are drawn (e.g., (xr1,yr1), (xr2,yr2), (xr3,yr3),
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W/2 W/2

H/2

H/2

(x,y)

(xr1 ,yr1 )

(xr2 ,yr2 )(xr2 ,yr2 )

(xr3 ,yr3 )

(xr4 ,yr4 )

Figure 3: Illustration of using distance to determine fuel consumption.

(xr4,yr4)). Student easily observe fuel is consumed when a rocket is inside the fuel’s bounding rectangle
(e.g, (xr1,yr1) and (xr2,yr2)). Fuel is not consumed when the rocket is outside the fuel’s bounding
rectangle (e.g., (xr3,yr3) and (xr4,yr4)). With this new knowledge, students are once again asked how
fuel consumption can be detected. Most, if not all, are still unable to provide any insight on how to solve
the problem. After some class discussion, students come to the conclusion that the rocket can be at most
half the fuel’s image width (i.e., W/2) away on the x-axis and half the fuel’s image height (i.e., H/2) away
on the y-axis.

At this point, students realize the relation that must exist between a rocket and a fuel to conclude that
the fuel is consumed by the rocket: the x-distance between the rocket and the fuel must be less than or
equal to half the fuel image’s width and the y-distance must be less than or equal to half the fuel image’s
height.

Following a bottom-up approach, the students first develop functions to determine the distance be-
tween a rocket and a fuel on the x-axis and the y-axis using the design recipe outlined in Section 5.
Focus then turns to using the design recipe to determine if a rocket has consumed a fuel. First, students
are asked to pick a couple of sample rockets (say, (make-posn 100 340) and (make-posn 25 10))
and a couple of sample fuels (say, (make-posn 105 335) and (make-posn 500 450)) to write sam-
ple expressions. With these, students write the sample expressions in Figure 4 to complete the first step
of the design recipe. In this case, students are made to realize that they need at least two tests: one
for each possible outcome (i.e., eaten or not eaten). The reader may observe that the students are using
function composition, but they are unaware of this fact. Students are also encouraged to define a constant
instead of computing half the fuel’s image width and height twice.

After some class discussion, for Step 2 students conclude that there are 2 differences among the
sample expressions: the rocket and the fuel. Class discussion is required, because some students think
there are 4 differences: the x and y for the rocket and the fuel. That is, students need to be guided to think
of a posn as a single value. In this manner, all students are able to realize that the sample expressions
are manipulating a rocket and a fuel and not 4 different values. After this realization, for Step 3, students
name these differences a-rocket and a-fuel.

Steps 4 and 5 yield the signature and purpose statement displayed in Figure 4. These tend, at this
point, to be fairly easy for students to develop. Step 6 is usually more controversial because students take
to heart the importance of choosing a function name that helps communicate the purpose of the function.
Proposed names include: eaten?, consumed?, fuel-consumed?, has-rocket-absorbed-fuel?.
For the sake of brevity, Figure 3 uses consumed?.
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(define HALF-FUEL-IMG-WIDTH (/ (image-width FUEL-IMG) 2))

(define HALF-FUEL-IMG-HEIGHT (/ (image-height FUEL-IMG) 2))

; Sample Expressions

(define EATEN

(and (<= (distance-on-x (make-posn 100 340) (make-posn 105 335))

HALF-FUEL-IMG-WIDTH)

(<= (distance-on-y (make-posn 100 340) (make-posn 105 335))

HALF-FUEL-IMG-HEIGHT)))

(define NOTEATEN

(and (<= (distance-on-x (make-posn 25 10) (make-posn 500 450))

HALF-FUEL-IMG-WIDTH)

(<= (distance-on-y (make-posn 25 10) (make-posn 500 450))

HALF-FUEL-IMG-HEIGHT)))

; Tests

(check-expect (eaten? (make-posn 100 340) (make-posn 105 335)) EATEN)

(check-expect (eaten? (make-posn 25 10) (make-posn 500 450)) NOTEATEN)

(check-expect (eaten? (make-posn 5 20) (make-posn 4 20)) #true)

(check-expect (eaten? (make-posn 25 10) (make-posn 320 450)) #false)

; rocket fuel --> Boolean

; Purpose: To determine if the given rocket has consumed the given fuel

(define (consumed? a-rocket a-fuel)

(and (<= (distance-on-x a-rocket a-fuel) HALF-FUEL-IMG-WIDTH)

(<= (distance-on-y a-rocket a-fuel) HALF-FUEL-IMG-HEIGHT)))

Figure 4: Detecting if a given rocket has consumed a given fuel.

Step 7 is greatly simplified for students, given that they have already chosen sample rockets and fuels
and have written sample expressions in Step 1. Students only need to use these, in a consistent manner,
to write the first two tests displayed in Figure 4. The second two tests use values not found in the sample
expressions. Step 8 has students write the body of the function based on the sample expressions using
parameters for the differences.

It is noteworthy that students are usually pleased with how much “simpler” the body of the function is
when compared to the sample expressions. This is a definite win for abstraction. Students also comment
that they see why Boolean values and relational functions are important. In addition, students add that
they had never thought of, for example, ≤ or >, as functions. This is an important lesson that students
take away from the course.
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6.2 Compound Functions

Beginning students, overall, are very apprehensive about compound functions. That is, they are uncom-
fortable with functions that have multiple expressions. This is also true for the high school students in
this course. All the students can tell you, for example, what the absolute value of a given number is, but
are unable to write it as a function:

absval(x)=

{
x if x≥ 0

-x otherwise

Although most students are able to digest the meaning of the notation above, they feel lost when the
function is only slightly more complex. For example, consider the following function:

f(x)=


x if x≤ 0

x2 if 0< x≤ 5

x+20 otherwise

Students are perplexed by it. Most students are unable to determine, for example, the value of f(5). This
occurs despite the fact that all students can recall studying such functions in their high school Algebra
class.

To reinforce understanding of compound functions, students are introduced, for example, to the
problem of moving a rocket. To make sure everything is concrete in student minds, a bottom-up approach
is used again. That is, first functions to move a given rocket up, down, left, and right are developed in
the same manner as outlined in Section 5. Once students have developed these functions, focus is moved
onto moving the game’s rocket.

Students are taught that compound functions naturally arise when variety in the data being processed
is made explicit. For example, for the absolute value function there are two varieties of numbers: negative
or nonnegative. Students understand that a rocket’s movement depends on the direction value stored in
the world. It is explicitly pointed out to students that there is variety in the direction data definition: up,
down, left, and right. Therefore, a compound function is needed that first decides how the rocket
needs to be moved and then proceeds to move the rocket. At this point, students are introduced to
conditional expressions. It is emphasized that conditional expressions are needed to make a decision
when processing data whose definition specifies variety.

After several practicing examples writing conditionals to get students familiar with the new syntax,
focus returns to writing a function to move a rocket using the design recipe. For Step 1, students must
develop at least one example for each direction a rocket can move in. These expressions must decide
in what direction to move a rocket to demonstrate how the new rocket is computed. Therefore, students
understand that a conditional is needed. Figure 5 displays a sample of such expressions. For Step 2,
students observe that the differences are the direction and the rocket. For Step 3, students typically, fol-
lowing course convention, name these differences, respectively, a-rocket and a-dir. It is noteworthy
that there may be students that use the same rocket in all their sample expressions and, thus, fail to iden-
tify the rocket as a difference. A useful technique to address this problem is to have students repeat Steps
2 and 3 using a fellow student’s sample expressions.

Steps 4, 5, and 6 become straightforward for students. They easily realize that the inputs to the
function are a rocket and a direction and that the output is a rocket. Students are also able to articulate
that the purpose is to move a given rocket in a given direction. The development of the function header
also presents no challenges. The results of these steps are displayed in Figure 6.
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(define MV-UP (cond [(string=? "up" "up")

(move-rocket-up (make-posn 230 315))]

[(string=? "up" "down")

(move-rocket-down (make-posn 230 315))]

[(string=? "up" "left")

(move-rocket-left (make-posn 230 315))]

[else (move-rocket-right (make-posn 230 315))]))

(define MV-DOWN (cond [(string=? "down" "up")

(move-rocket-up (make-posn 50 20))]

[(string=? "down" "down")

(move-rocket-down (make-posn 50 20))]

[(string=? "down" "left")

(move-rocket-left (make-posn 50 20))]

[else (move-rocket-right a-rocket)]))

(define MV-LEFT (cond [(string=? "left" "up")

(move-rocket-up (make-posn 98 98))]

[(string=? "left" "down")

(move-rocket-down (make-posn 98 98))]

[(string=? "left" "left")

(move-rocket-left (make-posn 98 98))]

[else (move-rocket-right a-rocket)]))

(define MV-RIGHT (cond [(string=? "right" "up")

(move-rocket-up (make-posn 420 250))]

[(string=? "right" "down")

(move-rocket-down (make-posn 420 250))]

[(string=? "right" "left")

(move-rocket-left (make-posn 420 250))]

[else (move-rocket-right a-rocket)]))

Figure 5: The sample expressions for rocket moving.

For Step 7, as displayed in Figure 6, students write tests using their proposed function. The tests
employ the variables defined in Step 1 and employ concrete values not used in Step 1. It is at this
point that students realize the value of developing functions on two fronts. First, they realize that using
move-rocket is easier than explicitly writing a conditional using concrete values. Second, students
begin to appreciate the elegance obtained by defining a function. It is not uncommon for students to
comment that it is easier to understand the expressions in the tests that use move-rocket than the con-
ditional in the sample expressions. That is, students appreciate that the development of move-rocket
makes their solution to moving a rocket more understandable to others (and to themselves). This is
another win for abstraction.

For step 8, students write the body of the function based on their sample expressions and the parame-
ters from Step 3. The result of this step is also displayed in Figure 6. The substitution of differences with
parameters is straightforward for most students, but instructors would be well-advised to realize that not
all students complete the substitution in a timely fashion. This may require coaching some students, but
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(check-expect (move-rocket (make-posn 230 315) "up") MV-UP)

(check-expect (move-rocket (make-posn 50 20) "down") MV-DOWN)

(check-expect (move-rocket (make-posn 98 98) "left") MV-LEFT)

(check-expect (move-rocket (make-posn 420 250) "right") MV-RIGHT)

(check-expect (move-rocket (make-posn 5 15) "up") (make-posn 5 10))

(check-expect (move-rocket (make-posn 100 80) "down") (make-posn 100 75))

(check-expect (move-rocket (make-posn 32 51) "left") (make-posn 27 51))

(check-expect (move-rocket (make-posn 45 18) "right") (make-posn 50 18))

; rocket direction → rocket

; Purpose: To move the given rocket in the given direction

(define (move-rocket a-rocket a-dir)

(cond [(string=? a-dir "up") (move-rocket-up a-rocket)]

[(string=? a-dir "down") (move-rocket-down a-rocket)]

[(string=? a-dir "left") (move-rocket-left a-rocket)]

[else (move-rocket-right a-rocket)]))

Figure 6: The function to move a rocket.

the effort is worthwhile so that no student falls behind. Undergraduate teaching assistants in class have
proven invaluable to achieve this. It is also valuable to point out to students that the results of their design
suggests that processing different kinds of data requires different kinds of functions. The move-rocket
function processes a direction. The move-rocket-{up,down,left-right} functions process a rocket.

After successfully running their tests as required by Step 9, it is useful to display for students the
move-rocket function using the syntax found in most Mathematics textbooks as2:

move-rocket(r, d)=


move-rocket-up(r) if d = "up"

move-rocket-down(r) if d = "down"

move-rocket-left(r) if d = "left"

move-rocket-right(r) otherwise

Almost invariably, students begin to understand the syntax used in their high school textbooks and are
less intimidated by compound functions. Many students state that they finally understand what functions
with a “big curly bracket” mean.

6.3 Function Composition

Many problems are solved using function composition. That is, the output of one function is input to
another function. Although junior and senior high school students have studied function composition,
an instructor cannot assume that they understand it. This becomes evident when students are unable to
explain the following typical notation from high school Algebra textbooks:

(f ◦ g)(x) = f(g(x))

2Due to spacing limitations, a-rocket and a-dir are, respectively, renamed r and d.
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Some students have stated that f, g, and x are being multiplied. Others have stated that it does not make
sense for a function, g, to be input to another function.

In this course, students are focused on the righthand side of the equality. They are asked what g(x)
represents. After some discussion, their answer migrates from a number to a value (i.e., students are
guided to remember that the range is not restricted to solely a set of numbers). During class discussion,
this value is given a name (e.g., g(x) = a). Therefore, the righthand side of the above equation can be
rewritten as f(a). This now looks familiar to students, and they understand that f is applied to a or,
equivalently, a is plugged into f. In this manner, students are led to realize that the output of g, a, is
given as input to f.

In order to make this new knowledge relevant, students are told that g computes a specialized value
needed by f. If functions are designed using this concept, then their purpose is easier to understand.
Instead of computing multiple values within a function, the idea is to identify a specialized value that
needs to be computed and use a function to compute said value. This leads to functions that are shorter,
easier to design, and easier to understand.

To make this concrete, students are asked to consider writing a function to create an image for a given
world. After a short class discussion, students conclude that they need to draw the rocket, the fuel level,
the good fuel, and the bad fuel. Adding each of these to a given image can be thought of as computing
a specialized value and, therefore, a function is designed for each. Observe that this is, once again, a
bottom-up approach that allows students to immediately test a function after it is written.

With the functions for specialized values written, focus turns to designing the function to draw the
world. It is not difficult for students to understand that all the elements are drawn over a background
image, and they are asked to define variables for the values of sample expressions as required by Step 1
of the design recipe. These are written using sample worlds defined by the students and the specialized
drawing functions for the bad fuel, the good fuel, the fuel level, and the rocket. The output of a specialized
function is used as input to another specialized function. That is, students are using function composition.
These definitions are displayed at the top of Figure 7.

Students identify the only difference in the sample expressions is the world drawn and name this
difference a-world to satisfy Steps 2 and 3 of the design recipe. The signature developed for Step 4 is
a fairly straightforward step for students. The development of the purpose statement for Step 5 usually
requires some care. Students typically state that the purpose is to draw the given world. This is correct,
but incomplete. The purpose statement needs to specify that the world is drawn in the background image.
The function header for Step 6 is also fairly straightforward for students. As students develop experience,
the tests for Step 7 become easier to develop, and the instructor ought to be able to observe that the steps
of the design recipe have been absorbed. The concrete results for each of these steps are displayed in
Figure 7. Finally, the development of the function’s body for Step 8 now only presents a small challenge
for students, and most students only discover typing errors when they run the tests for Step 9.

7 Student Feedback

This section presents the empirical data gathered from students. All the students volunteered to take a
survey to measure their impressions. The survey included both ordinal and open ended questions. All
students answered all questions. On the last day of class, the results of the survey were shared with the
students and they were given a chance to comment. In the interest of absolute clarity, it is important to
note that due to the small sample size (i.e., 15 students) no general conclusions can be extrapolated for
the student population the participants come from.
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(define W1-IMG

(draw-bfuel (world-bfuel (world-bfuel W1))

(draw-gfuel (world-gfuel W1)

(draw-flevel (world-flevel W1)

(draw-rocket W1 BACK-IMG)))))

(define W2-IMG

(draw-bfuel (world-bfuel (world-bfuel W2))

(draw-gfuel (world-gfuel W2)

(draw-flevel (world-flevel W2)

(draw-rocket W2 BACK-IMG)))))

(check-expect (draw-world W1) W1-IMG)

(check-expect (draw-world W2) W2-IMG)

(check-expect (draw-world (make-world (make-posn 10 10) "right" 8

(make-posn 110 120)

(make-posn 340 170)))

(draw-bfuel (make-posn 340 170)

(draw-gfuel (make-posn 110 120)

(draw-flevel

8

(draw-rocket (make-posn 10 10)

BACK-IMG)))))

; world → image

; Purpose: To draw the given world in the background image

(define (draw-world a-world)

(draw-bfuel (world-bfuel (world-bfuel a-world))

(draw-gfuel (world-gfuel a-world)

(draw-flevel (world-flevel a-world)

(draw-rocket a-world BACK-IMG)))))

Figure 7: The function to draw the world.

A primary goal of the course is for students to walk away with a better understanding of functions.
Students were asked “Do you feel you have a better understanding about what functions are now?” on a
scale from 1 (not at all) to 5 (very much so). The distribution of responses is displayed in Figure 8a. The
overwhelming majority of students, 60%, feel strongly that they understand functions better (responses
3–5). This suggests that the course has had a positive impact on students. A minority of students, 20%,
indicated that they do not have a better understanding of functions (response 1). Invariably, these students
expressed that the course should not be required and that they did not wish to be in the course. These
feelings are shared by students that responded 2.

Another primary goal of the course is to make students better problem solvers. Students were asked
“Do you feel you are a better problem solver by knowing how to design and implement programs?” on
a scale from 1 (not at all) to 5 (very much so). The distribution of responses, displayed in Figure 8b,
suggest that the course has been successful on this front. An overwhelming majority of students, 65%,
strongly feel that they are better problem solvers (responses 3–5). Only 7% of students felt that they
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Figure 8: Proportions for better understanding of functions and better problem solver.

were not better problem solvers (response 1). This is a much lower proportion of students than those that
expressed they did not have a better understanding of functions. This suggests that even students that did
not wish to be in the course and/or students that did not feel they understood functions better absorbed
some problem-solving lessons. It suggests that almost all students, regardless of interest, benefit from
exposure to programming.

A third primary goal of the course is to spark interest in programming. To measure the effectiveness
of the course on this dimension, students were asked “What is your level of interest now in program-
ming?” on a scale from 1 (not at all interested) to 5 (very interested). The distribution of responses in
displayed in Figure 9a. Observe that an overwhelming majority of students, 73%, express that they are
now interested in programming (responses 3–5). This level of interest is a welcomed surprise given that
the course started with many obstacles to overcome. There is no doubt that one of the reasons program-
ming became interesting to students is that their education was made relevant. That is, student interest,
in part, stems from making programming familiar by using it as a tool to reinforce lessons from high
school algebra. This further corroborates the idea that programming ought to be made relevant by using
it to teach high school mathematics [12, 21].

Associating programming with high school algebra sparks interest in programming among students.
To further elucidate what exactly is occurring, students were asked “How intellectually stimulating is
programming?” on a scale from 1 (not at all stimulating) to 5 (very stimulating). The distribution of
responses is displayed in Figure 9b. An overwhelming majority of students, 87%, expressed that pro-
gramming is intellectually stimulating (responses 3–5). This strongly suggests that associating program-
ming and high school algebra is a recipe for success. Students expressed that the course made them think
and showed them why algebra is important. They felt the problems being solved were more interesting
(unlike “figuring out when two trains will meet” or “what are the angles of a triangle”).

The open-ended questions asked students what they disliked and liked most about the course and
their overall feelings about the course. The most frequent comments about what was disliked are:

• Too much typing

• Too much work
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Figure 9: Proportions for interest in programming and intellectually stimulating.

A full third of the students felt that there was too much typing. This is rather surprising because the
developed video game is less than 300 lines (including code, tests, and comments). In open discussion,
students in general recognized that this is significantly less than most essays they need to write. Nonethe-
less, up to one third of the survey answers indicated there was too much typing. A few students felt that
overall, the course was too much work. They expressed that they never imagined that writing a video
game is so much work. It is important to elucidate why a minority of students felt that 300 lines of code
is too much typing and too much work. During open discussion, the majority of students disagreed with
the assertion that there was too much typing. In general, the students that felt there was too much typing
were the students that had no interest in programming. For example, one student stated that I want to
become a beautician and have no interest in all this typing. These same students, in general, also felt
it was too much work. Students interested in programming or that became interest in programming did
not feel the course was too much work or involved too much typing. In fact, they felt that the course was
good. Many of these students also expressed wishing that more time were dedicated to this course (in-
stead of other courses they are required to take). They did say that writing sample expressions was a lot
of typing at times but appreciated how that led them to the need to define their own functions–precisely
the instructor’s desired effect. It is also important to note that rarely, if ever, students will comment that a
programming course was not too much typing or that the course was not too much work. Simply stated,
these are not pressing concerns in the mind of students that have enjoyed the course and have interest
in the material. In other words, most students that did not complain about the amount of typing or the
amount of work were not even thinking along these lines.

The most frequent comments about what was most liked about the course related to writing the video
game, being creative, and having to think. Sample responses from different students include:

• Designing rockets and being creative

• I liked creating the game because it was fun and it made me think

• I liked that we were problem solving

• Everything
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These comments further corroborate that students enjoy the personal creative outlet afforded by being
able to personalize their games [5, 18]. One caveat for instructors is that this enthusiasm must sometimes
be reigned in. Many students, given the opportunity, will spend too much time on designing their graphics
to the detriment of learning principles of program design.

Finally, different students offered the following comments about their overall feelings about the
course:

• I feel it was great. I learned a lot. It is something I might pursue as a major in college

• It was a very interesting course and I like coding in general

• I did not like the course because I am not interested in programming at all

• A lot of typing, but very successful

The above comments confirm the observations reached using the ordinal data. They confirm that the
course sparked interest among many. For some, this interest may be strong enough to further pursue
learning about programming. There are, of course, students that are simply not interested in program-
ming. It seems, however, that disliking typing did not prevent students from feeling that the course was
a success.

8 Conclusions and Future Work

This article presents a novel approach to introduce high school students to program design and problem
solving. The approach is based on high school algebra concepts using a bottom-up approach that allows
students to first develop simple functions by abstracting over similar expressions. After students are
familiar with abstraction over expressions, they are introduced to developing expressions and functions
using high school algebra concepts such as compound functions and function composition. The students
are motivated throughout with the development of a functional video game. The empirical data suggests
that the course has been successful. Students walk away feeling, for example, that they have a better
understanding of functions, that they are better problem solvers, and that they have an interest in pro-
gramming. This is truly encouraging given that the overwhelming number of students were female, thus,
suggesting that it may be an effective approach in closing the Computer Science gender gap.

Future work includes adapting the material for a college-level Computer Science introduction to
program design course. The hope is that this approach may be the linchpin needed to make beginning
Computer Science students with less than average math skills successful in an introduction to program-
ming course. The approach is also planned to be introduced into a programming course designed for
students not studying Computer Science as a major.

Finally, in cooperation with Greg Michaelson [15, 17], we wish to determine if having high school
students abstract over expressions that are not formulated using the syntax of a programming language
affects how well students can bridge the syntax gap when asked to write code. Our hypothesis is that
students that learn how to abstract over expressions first are better equipped to learn how to design
and implement programs. This will require a long-term study across several high schools and possibly
countries correlating how well learning how to abstract over expressions leads to success in program
development.



98 Motivate Program Design Among Inner-City High School Students...

9 Acknowledgements

The author thanks Marva M. Cole-Friday and Abena A. Douglas for administering the UBP program at
Seton Hall University and for their unequivocal support during the programming course. The author also
thanks Sachin Mahashabde and Jeremy Y. Suero for their invaluable role as teaching assistants.

References

[1] Harold Abelson, Gerald Jay Sussman & with Julie Sussman (1996): Structure and Interpretation of Computer
Programs, 2nd editon edition. MIT Press/McGraw-Hill, Cambridge.

[2] Stephen Bloch (2010): Picturing Programs: An Introduction to Computer Programming. College Publica-
tions.

[3] Bootstrap (2019): Bootstrap: Equity, Scale, Rigor. https://www.bootstrapworld.org/index.shtml. Accessed
2019-11-1.

[4] CodeWorld (2020): CodeWorld Guide. https://code.world/. Accessed 2020-6-1.

[5] Antony Courtney, Henrik Nilsson & John Peterson (2003): The Yampa Arcade. In: Proceedings of the 2003
ACM SIGPLAN workshop on Haskell, ACM, pp. 7–18, doi:10.1145/871895.871897.

[6] Marcus Crestani & Michael Sperber (2010): Experience Report: Growing Programming Languages for
Beginning Students. In: Proceedings of the 15th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’10, ACM, New York, NY, USA, pp. 229–234, doi:10.1145/1863543.1863576.

[7] David J. Eck (2009): Programming: Introduction to Programming Using JAVA. CreateSpace, Paramount,
CA.

[8] Matthias Felleisen: Worlds and the Universe: “universe.rkt”. https://docs.racket-
lang.org/teachpack/2htdpuniverse.html. Accessed 2019-11-1.

[9] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt & Shriram Krishnamurthi (2001): How to Design
Programs: An Introduction to Programming and Computing, First edition. MIT Press, Cambridge, MA,
USA.

[10] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt & Shriram Krishnamurthi (2018): How to Design
Programs: An Introduction to Programming and Computing, Second edition. MIT Press, Cambridge, MA,
USA.

[11] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barsilay, Jay McCarthy
& Sam Tobin-Hochstadt (2018): A Programmable Programming Language. Commun. ACM 61(13), pp.
62–71, doi:10.1145/3127223.

[12] Matthias Felleisen & Shriram Krishnamurthi (2009): Viewpoint: Why Computer Science Doesn’T Matter.
Commun. ACM 52(7), pp. 37–40, doi:10.1145/1538788.1538803.

[13] Kathryn Gray: Test Support. https://docs.racket-lang.org/test-engine/index.html. Accessed 2019-11-1.

[14] James I. Hsia, Elspeth Simpson, Daniel Smith & Robert Cartwright (2005): Taming Java for the Classroom.
In: Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’05,
ACM, New York, NY, USA, pp. 327–331, doi:10.1145/1047344.1047459.

[15] Greg Michaelson (2015): Teaching Programming with Computational and Informational Thinking. Journal
of Pedagogic Development 5(1).

[16] Greg Michaelson (2018): Microworlds, Objects First, Computational Thinking and Programming. In Myint
Khine, editor: Computational Thinking in the STEM Disciplines, Springer, pp. 31–48, doi:10.1007/978-3-
319-93566-9 3.

[17] Greg Michaelson (2020): Programming Paradigms, Turing Completeness and Computational Thinking. The
Art, Science, and Engineering of Programming, doi:10.22152/programming-journal.org/2020/4/4.

http://dx.doi.org/10.1145/871895.871897
http://dx.doi.org/10.1145/1863543.1863576
http://dx.doi.org/10.1145/3127223
http://dx.doi.org/10.1145/1538788.1538803
http://dx.doi.org/10.1145/1047344.1047459
http://dx.doi.org/10.1007/978-3-319-93566-9_3
http://dx.doi.org/10.1007/978-3-319-93566-9_3
http://dx.doi.org/10.22152/programming-journal.org/2020/4/4


M. T. Morazán 99

[18] Marco T. Morazán (2011): Functional Video Games in the CS1 Classroom. In Rex Page, Zoltán Horváth
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