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An inductive theorem proving method for constrained term rewriting systems, which is based on
rewriting induction, needs a decision procedure for reduction-completeness of constrained terms.
In addition, the sufficient complete property of constrained term rewriting systems enables us to
relax the side conditions of some inference rules in the proving method. These two properties can
be reduced to intersection emptiness problems related to sets of ground instances for constrained
terms. This paper proposes a method to construct deterministic, complete, and constraint-complete
constrained tree automata recognizing ground instances of constrained terms.

1 Introduction

The constrained rewriting in this paper is a computation model that rewrites a term by applying a
constrained rewriting rule if the term satisfies the constraint on interpretable domains attached to the
rule [5, 1, 10, 9, 2]. Proposed a rewriting induction method on the constrained rewriting [10, 7], a
decision procedure of reduction-completeness of terms must be extended for constrained terms, terms
admitting constraints attached, in order to apply the method to mechanical inductive theorem proving,
where a term is said to be reduction-complete [4] if any ground instance of the term is a redex. If a con-
strained term rewriting system is terminating and all terms are reduction-complete, the rewrite system
is said to be sufficient complete, which is useful to relax the application conditions of inference rules
in the above method [10]. These properties are proved by using tree automata with constraints, whose
rules contain constraints on interpretable subterms. More precisely, the properties are reducible to the
intersection emptiness problem of ground instances of terms satisfying constraints attached to the terms.

This paper proposes a construction method of constrained tree automata that accept ground instances
of constrained term (in Section 3). Moreover the obtained tree automata have nice properties: the
constraint-completeness [8], completeness and determinacy, where the first property is necessary for
proving correctness of the constructed tree automata, and the next two properties contribute avoiding
size explosion at the construction of product automata.
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2 Preliminaries

In this section, we briefly recall the basic notions of terms [3], constraints over predicate logic [6], and
constrained tree automata [8].

Throughout the paper, we use V as a countably infinite set of variables. For a signature F (a finite
set of function symbols with fixed arities), the set of terms over F and X ⊆ V is denoted by T (F ,X).
The notation f/n represents the function symbol f with the arity n. The set T (F , /0) of ground terms is
abbreviated to T (F ). The set of variables appearing in term t is denoted by V ar(t). A term is called
linear if any variable appears in the term at most once. The set of positions for term t is denoted by
Pos(t):

• Pos(x) = {ε} for x ∈ V , and

• Pos( f (t1, . . . , tn)) = {ε}∪{i.π | 1≤ i≤ n, π ∈Pos(ti)} for f/n ∈F .

For terms t,u and a position π of t, the notation t[u]π denotes the term obtained from t by replacing the
subterm t|π of t at π with u. For a substitution θ , we denote the range of θ by Ran(θ).

Let G be a signature and P be a set of predicate symbols with fixed arities. The notation p/n
represents the predicate symbol p with the arity n. First-order (quantifier-free) formulas φ over G , P ,
and V are defined in BNF as follows:1

φ ::= p(t1, . . . , tn) | > | ⊥ | (¬φ) | (φ ∨φ) | (φ ∧φ)

where p/n ∈P and t1, . . . , tn ∈ T (G ,V ). We may omit brackets “(”, “)” from formulas as usual. The
set of first-order formulas over G , P , and X ⊆ V is denoted by Fol(G ,P,X). For a formula φ , the
notation V ar(φ) represents the set of variables in φ . A variable-free formula is called closed. A structure
for G and P is a tuple S = (A,IG ,IP) such that the universe A is a non-empty set of concrete values,
IG and IP with types G →{ f | f is an n-ary function on A} and P → 2A×···×A are interpretations for
G and P , resp.:

• IG (g)(a1, . . . ,an) ∈ A for g/n ∈ G , and

• IP(p) ⊆ An for p/n ∈P .

The interpretation of formulas φ w.r.t. S , denoted by S |= φ , is defined as usual. We say that a formula
φ holds w.r.t. S if S |= φ . Formulas in Fol(G ,P,V ) interpreted by S are called constraints (w.r.t.
S ).

In the following, we use F and G for signatures, P for a set of predicate symbols, and S =
(A,IG ,IP) for a structure for G and P , without notice. Before formalizing constrained tree automata,
we generalize the interpretation of constraints under terms. For a sequence π of natural numbers, the
notation 〈π〉 denotes the special variable related to π . We denote the set of such variables by 〈N∗〉: 〈N∗〉
= {〈π〉 | π ∈ N∗} ⊆ V . A formula φ in Fol(G ,P,〈N∗〉) holds w.r.t. a ground term t ∈ T (F ∪G ) if
S , t |= φ , where |= is inductively defined as follows:

• S , t |=>,

• S , t 6|=⊥,

• S , t |= p(t1, . . . , tn) if π ∈ Pos(t) and t|π ∈ T (G ) for all variables 〈π〉 ∈
⋃n

i=1 V ar(ti), and
(IG (t1θ), . . . ,IG (tnθ)) ∈ IP(p), where p/n ∈P and θ is the substitution {〈π〉 7→ t|π | 〈π〉 ∈⋃n

i=1 V ar(ti)},
1 It is possible to allow to introduce quantifiers. To be more precise, introduction of quantifiers to our setting does not affect

the results. Though, for the sake of readability, we do not introduce them here.
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• otherwise, S , t 6|= p(t1, . . . , tn), and

• the relation |= is defined as usual for any Boolean connective.

We may omit S from “S , t |= φ” if it is clear in context. Note that t |= ¬φ does not coincide with t 6|=
φ for every ground term t and constraint φ (see [8]).

By generalizing AWEDCs [3], constrained tree automata are defined as follows [8] — note that
AWEDCs [3] are CTAs.

Definition 1 A constrained tree automata (CTA) over F , G , P , and S is a tuple A = (Q,Q f ,∆) such
that

• Q is a finite set of states (unary symbols),

• Q f is a finite set of final states (i.e., Q f ⊆ Q), and

• ∆ is a finite set of constrained transition rules 2 of the form f (q1(x1), . . . ,qn(xn))
φ−→ q( f (x1, . . . ,xn))

∈ ∆ where f/n ∈F ∪G , q1, . . . ,qn,q ∈ Q and φ ∈Fol(G ,P,〈N∗〉).
We often omit the arguments of states by writing q instead of q(t), and then transition rules are written

in the form f (q1, . . . ,qn)
φ−→ q. We also may omit > from f (q1, . . . ,qn)

>−→ q.
The move relation →A is defined as follows: t →A u iff t has no nest of state symbols, t|π =

f (q1(t1), . . . ,qn(tn)), f/n ∈F ∪G , t1, . . . , tn ∈ T (F ∪G ), f (q1, . . . ,qn)
φ−→ q ∈ ∆, f (t1, . . . , tn) |= φ , and

u = t[q( f (t1, . . . , tn))]π .

The terminologies of CTAs are defined analogously to those of tree automata, except for determinism
and completeness — A is called

• deterministic if for every ground term t, there is at most one state q ∈ Q such that t →∗A q, and

• complete if for every ground term t, there is at least one state q ∈ Q such that t →∗A q.

Note that the above definition of determinism and completeness for CTAs is the same as the definition of
the properties for AWEDCs (see [3]).

Example 2 Let F = {f/2}, Gint = {s/1,p/1,0/0}, P = {=, 6=,≤,<}, and Sint be the structure
(Z,IGint ,IPint) for Gint and Pint such that IGint(s)(x) = x+ 1, IGint(p)(x) = x− 1, IGint(0) = 0, and
=, 6=,≤,< are interpreted over integers as usual. Consider a CTA Aint = ({q1,q2},{q2},∆) over F , Gint,
Pint, and Sint where

∆ = { 0→ q1, s(q1)→ q1, p(q1)→ q1, f(q1,q1)
〈1.1〉≤p(〈2〉)−−−−−−−→ q2, f(q1,q1)→ q1 }

The term f(s(0),s(0)) is accepted by Aint — we have that f(q1(s(0)),q1(s(0))) →Aint q2 since both
f(s(0),s(0))→∗Aint

f(q1(s(0)),q1(s(0))) and f(s(0),s(0)) |= 〈1.1〉 ≤ p(〈2〉) hold. The term f(s(0),s(0))
also transitions into q1, and thus, Aint is not deterministic. On the other hand, the term f(0,s(0))
is not accepted by Aint since f(0,s(0)) 6|= 〈1.1〉 ≤ p(〈2〉). Note that Aint recognizes the set of in-
stances of the constrained terms f(s(x),y)[x≤p(y)], f(p(x),y)[x≤p(y)], and f(f(x,z),y)[x≤p(y)], i.e., L(Aint)
= {f(s(t1), t2), f(p(t1), t2), f(f(t1, t), t2) | t ∈T (F ∪Gint), t1, t2 ∈T (Gint), IGint(t1)≤IGint(p(t2))} (see
Definition 3).

2 We consider transition rules l
φ−→ r and l

ψ−→ r to be equivalent if V ar(φ) = V ar(ψ) and φ is semantically equivalent to ψ

(i.e., φ ↔ ψ is valid w.r.t. S ).
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Consider the CTA A ′
int = ({q1,q2},{q2},∆′) obtained from Aint by replacing 〈1.1〉 ≤ p(〈2〉) with

¬(p(〈2〉)< 〈1.1〉):

∆
′ = { 0→ q1, s(q1)→ q1, p(q1)→ q1, f(q1,q1)

¬(p(〈2〉)<〈1.1〉)−−−−−−−−−→ q2, f(q1,q1)→ q1 }

The constraints x≤ p(y) and ¬(p(y)< x) are semantically equivalent, i.e., for all terms t1, t2 ∈ T (Gint),
Sint |= t1 ≤ p(t2) iff Sint |= ¬(p(t2)< t1). However, this is not the case for similar constraints over fixed
terms, e.g., f(0,s(0)) |= 〈1.1〉 ≤ p(〈2〉) does not hold, but f(0,s(0)) |= ¬(p(〈2〉) < 〈1.1〉) holds. Thus,
f(0,s(0)) is accepted by A ′

int, and hence L(Aint) 6= L(A ′
int).

A CTA A = (Q,Q f ,∆) is called constraint-complete [8] if for every ground term t ∈ T (F ∪G )

and all transition rules f (q1, . . . ,qn)
φ−→ q ∈ ∆ with t = f (t1, . . . , tn) →∗A f (q1, . . . ,qn), we have that π

∈Pos(t) and t|π ∈ T (G ) for all variables 〈π〉 in φ . Note that every CTA can be transformed into an
equivalent, deterministic, complete, and constraint-complete CTA [8]. Note also that completeness and
constraint-completeness are different notions.

3 Recognizing Ground Instances of Constrained Terms

This section defines constrained terms and their instances, and then proposes a method for constructing
a CTA recognizing the set of ground instances for a given set of constrained terms. The method is based
on the construction of a tree automaton recognizing the set of ground instances for unconstrained terms,
which is complete and deterministic [3, Exercise 1.9]. Accessibility of states is in general undecidable,
and thus, it is difficult to get rid of inaccessible states which affect the intersection emptiness problem.
In this sense, it is worth developing a construction method that introduces inaccessible states as little as
possible.

Definition 3 A constrained term is a pair (t,φ), written as t[φ ], of a linear term t ∈ T (F ∪G ,V ) and
a formula φ ∈ Fol(G ,P,V ar(t)). The set of ground instances of a constrained term t[φ ], denoted by
G(t[φ ]), is defined as follows: G(t[φ ]) = {tθ ∈ T (F ∪G ) | Ran(θ |FV(φ)) ⊆ T (G ), S |= φθ}. The
argument of G is naturally extended to sets G(T ) =

⋃
t[φ ]∈T G(t[φ ]).

To deal with constrained terms, we consider constrained patterns. We introduce wildcard symbols
� and � to denote arbitrary interpretable and un-interpretable terms resp. In the following, we denote
T (F ∪G ∪{�,�}) (the set of patterns) by T�,�, T (G ∪{�}) (the set of interpretable patterns) by
T�, and T (F ∪G ∪{�,�})\T (G ∪{�}) (the set of un-interpretable patterns) by T�.

Definition 4 A pair of a ground term u ∈ T�,� and a formula φ ∈Fol(G ,P,〈N+〉) is called a con-
strained pattern if π ∈Pos(t) and t|π ∈ T� for each variable 〈π〉 that occurs in φ .

For a constrained term t[φ ], (t[φ ])|�� denotes the set of constrained terms tθ [φσ ] where

• θ = {x 7→� | x ∈ V ar(t)∩FV(φ)}∪
⋃

y∈V ar(t)\FV(φ){y 7→ v | v is either � or �}, and

• σ = {x 7→ 〈π〉 | x ∈ V ar(t)∩FV(φ), t|π = x}.3

We extend the domain of (·)|�� to sets of constrained terms: T |��=
⋃

t[φ ]∈T (t[φ ])|��.

3 π is unique since t is linear.
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Roughly speaking, a constrained pattern u[φ ] represents a set of terms obtained by replacing� and� in u
by interpretable and un-interpretable terms, resp., such that the constraint obtained by the corresponding
replacement holds.

Example 5 Let F = {g/2}, G = {0/0,s/1}, and P = {≤,≥}. Let symbols 0, s, ≤, and ≥ be inter-
preted by S as zero function and successor function, less-or-equal relation, and greater-or-equal relation,
resp. For T = {g(x,y)[x≤0],g(s(x),y)[x≥0]},

T |�� = { g(�,�)[〈1〉≤0], g(�,�)[〈1〉≤0], g(s(�),�)[〈1.1〉≥0], g(s(�),�)[〈1.1〉≥0] }

Next, we define a function to augment their subterms to constrained patterns.

Definition 6 For a set U of constrained patterns, the set PatternsC(U) of proper subterms for con-
strained patterns in U is defined as follows:

PatternsC(U) = {u|π | u[φ ] ∈U, π ∈Pos(u)\{ε}, u|π 6∈ {�,�}}

Example 7 For T in Example 5, PatternsC(T |��) = {s(�)}.

We define a quasi-order over constrained patterns that represents an approximation relation.

Definition 8 A quasi-order v over terms in T�,� is inductively defined as follows:

• � v u for u ∈ T�,

• � v u for u ∈ T�, and

• f (u1, . . . ,un) v f (u′1, . . . ,u
′
n) if ui v u′i for all 1 ≤ i ≤ n.

Abusing notations, we also define a quasi-order v over formulas in Fol(G ,P,X) as follows: φ v
φ ′ iff FV(φ) ⊆ FV(φ ′) and φ ′⇒ φ is valid w.r.t. S .

A quasi-order v over constrained patterns is defined as follows: u[φ ] v u′[φ ′] iff u v u′ and φ v φ ′.
For constrained patterns u[φ ] and u′[φ ′], we say that u[φ ] is more general than u′[φ ′] (u′[φ ′] is less general
than u[φ ]) if u[φ ] v u′[φ ′].

We use l for equality part of v, and @ for strict part of v.

Next, to compute more concrete patterns, we define an operation u for constrained patterns.

Definition 9 We define a binary operator u over T�,� inductively as follows:

• � u u = u u � = u for u ∈ T�,

• � u u = u u � = u for u ∈ T�, and

• f (u1, . . . ,un) u f (u′1, . . . ,u
′
n) = f (u1uu′1, . . . ,unuu′n).

In the following, we define the set of constrained patterns used for labels of states.

Definition 10 For a set U of constrained patterns, LessGeneralized(U) is the smallest set satisfying the
following:

• {�[>],�[>]}∪{u[>] | u ∈ PatternsC(U)} ⊆ LessGeneralized(U),

• {u[φ ′] | u[φ ] ∈U, φ ′ ∈ {φ ,¬φ}, φ ′ is satisfiable w.r.t. S } ⊆ LessGeneralized(U), and
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• (uuu′)[φ∧φ ′] if u[φ ], u′[φ ′] ∈ LessGeneralized(U) and φ ∧φ ′ is satisfiable w.r.t. S .
Note that we do not distinguish terms that enjoy l, and that LessGeneralized(U) is finite up to l.

Example 11 Consider (F ,G ,P,S ) and T in Example 5. The set LessGeneralized(T |��) contains the
following in addition to T |��:

�[>], �[>], s(�)[>],
g(�,�)[¬(〈1〉≤0)], g(�,�)[¬(〈1〉≤0)],
g(s(�),�)[¬(〈1.1〉≥0)], g(s(�),�)[¬(〈1.1〉≥0)],
g(s(�),�)[〈1〉≤0∧〈1.1〉≥0], g(s(�),�)[〈1〉≤0∧¬(〈1.1〉≥0)],
g(s(�),�)[¬(〈1〉≤0)∧〈1.1〉≥0], g(s(�),�)[¬(〈1〉≤0)∧¬(〈1.1〉≥0)],
g(s(�),�)[〈1〉≤0∧〈1.1〉≥0], g(s(�),�)[〈1〉≤0∧¬(〈1.1〉≥0)],
g(s(�),�)[¬(〈1〉≤0)∧〈1.1〉≥0], g(s(�),�)[¬(〈1〉≤0)∧¬(〈1.1〉≥0)]


The relation between the constrained patterns in LessGeneralized(T |��) w.r.t. v is illustrated as follows:

�[>] oo s(�)[>]

��

g(�,�)[¬(〈1〉≤0)] oo

��

g(s(�),�)[¬(〈1〉≤0)∧¬(〈1.1〉≥0)]

��

g(�,�)[〈1〉≤0]

ii

uu

g(s(�),�)[¬(〈1〉≤0)∧〈1.1〉≥0]

{{

g(s(�),�)[〈1.1〉≥0]

ii

oo g(s(�),�)[〈1〉≤0∧〈1.1〉≥0]

uu

g(s(�),�)[¬(〈1.1〉≥0)]

bb

oo g(s(�),�)[〈1〉≤0∧¬(〈1.1〉≥0)]

�[>] ii

g(�,�)[¬(〈1〉≤0)]

��

oo g(s(�),�)[¬(〈1〉≤0)∧¬(〈1.1〉≥0)]

cc

g(�,�)[〈1〉≤0]

ii

uu

g(s(�),�)[¬(〈1〉≤0)∧〈1.1〉≥0]

]]

g(s(�),�)[〈1.1〉≥0]

ii

oo g(s(�),�)[〈1〉≤0∧〈1.1〉≥0]

YY

g(s(�),�)[¬(〈1.1〉≥0)]

bb

oo g(s(�),�)[〈1〉≤0∧¬(〈1.1〉≥0)]

where←− denotes @.

Finally, we show a construction of a CTA recognizing G(T ). We prepare two kinds of states qu and q̃u

for each pattern to distinguish whether the term with the state satisfies the constraint in the corresponding
constrained term. In the following, we use q̇ to denote q or q̃, and, given an unconstrained pattern u and
a set U of constrained patterns, we denote the set of least general constrained patterns in U which are
more general than u by Leastvu(U):

Leastvu(U) = {u′[φ ′] ∈U | u′ v u, (@u′′[φ ′′] ∈U. u′′ v u ∧ u′[φ ′] @ u′′[φ ′′])}

Now we give an intuitive outline of the construction.
Final states For a pattern u capturing an instance of t[φ ] in T , we add the state q̃u to Q f if u also captures

an instance of a non-variable proper subterm of t ′[φ ′] in T ; otherwise, we add q̃� and q̃� where u
is in T� and T�, resp.
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States In addition to Q f , for a pattern u capturing an instance of a non-variable proper subterm of t ′[φ ′]
in T , we add qu to Q; for arbitrary terms in T� and T�, we add q� and q� to Q, resp.

Transition rules f (q̇u1 , . . . , q̇un) transitions to a state by considering the following properties of the least
general pattern u which is more general than f (u1, . . . ,un):

(a) whether the pattern u also matches a non-variable proper subterm of some initial constrained
term t[φ ] ∈ T ,

(b) whether the pattern u also matches an instance of t ′[φ ′] in T , and

(c) whether u is in T�.

The state f (q̇u1 , . . . , q̇un) transitions to is decided as follows:

state (a) (b) (c) the transition rule is in
qu yes no — ∆pat

q̃u yes yes — ∆̃pat

q� no no yes ∆�

q̃� no yes yes ∆̃�

q� no no no ∆�

q̃� no yes no ∆̃�

This approach to the construction is formalized as follows.

Definition 12 For a finite set T of constrained terms, we prepare the set Labels(T ) of constrained pat-
terns whose term parts are used as labels for states:

Labels(T ) = LessGeneralized(T |��)

The subset L̃abels(T ) of constrained patterns that match elements of T is defined as follows:

L̃abels(T ) = {u[φ ] ∈ Labels(T ) | ∃u′[φ ′] ∈ T |��. u′[φ ′] v u[φ ]}

We prepare the set Q0 of candidates for states as follows:

Q0 = {qu | ∃φ . u[φ ] ∈ Labels(T ) ∧ (∃u′ ∈ PatternsC(T |��). u′ v u)}

Then, we define a CTA A = (Q,Q f ,∆) such that

Q f = {q̃u | qu ∈ Q0, ∃φ . u[φ ] ∈ L̃abels(T )}
∪{q̃� | ∃u[φ ] ∈ T |��. u ∈T� ∧ qu 6∈ Q0}∪{q̃� | ∃u[φ ] ∈ T |��. u ∈T� ∧ qu 6∈ Q0}

Q = Q f ∪{qu ∈ Q0 | q̃u 6∈ Q f }∪{q�,q�}
∆ = ∆pat∪ ∆̃pat∪∆�∪ ∆̃�∪∆�∪ ∆̃�
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where

∆pat :=
(a)︷ ︸︸ ︷ (b)︷ ︸︸ ︷ (c)︷ ︸︸ ︷

{ f (q̇u1 , . . . , q̇un)
φ−→ qu | f ∈F ∪G , q̇u1 , . . . , q̇un ∈ Q, qu ∈ Q,

u[φ ] ∈ Leastv f (u1,...,un)(Labels(T )), u[φ ] 6∈ L̃abels(T ) }
∆̃pat =

{ f (q̇u1 , . . . , q̇un)
φ−→ q̃u | f ∈F ∪G , q̇u1 , . . . , q̇un ∈ Q, q̃u ∈ Q,

u[φ ] ∈ Leastv f (u1,...,un)(Labels(T )), u[φ ] ∈ L̃abels(T ) }
∆� =

{ f (q̇u1 , . . . , q̇un)
φ−→ q� | f ∈F ∪G , q̇u1 , . . . , q̇un ∈ Q, q� ∈ Q,

(∃ u[φ ] ∈ Leastv f (u1,...,un)(Labels(T )). qu 6∈ Q0 ∧ u[φ ] 6∈ L̃abels(T ) ∧ u ∈T�)}
∆̃� =

{ f (q̇u1 , . . . , q̇un)
φ−→ q̃� | f ∈F ∪G , q̇u1 , . . . , q̇un ∈ Q, q̃� ∈ Q,

(∃ u[φ ] ∈ Leastv f (u1,...,un)(Labels(T )). qu 6∈ Q0 ∧ u[φ ] ∈ L̃abels(T ) ∧ u ∈T�)}
∆� =

{ f (q̇u1 , . . . , q̇un)
φ−→ q� | f ∈F ∪G , q̇u1 , . . . , q̇un ∈ Q, q� ∈ Q,

(∃ u[φ ] ∈ Leastv f (u1,...,un)(Labels(T )). qu 6∈ Q0 ∧ u[φ ] 6∈ L̃abels(T ) ∧ u ∈T�)}
∆̃� =

{ f (q̇u1 , . . . , q̇un)
φ−→ q̃� | f ∈F ∪G , q̇u1 , . . . , q̇un ∈ Q, q̃� ∈ Q,

(∃ u[φ ] ∈ Leastv f (u1,...,un)(Labels(T )). qu 6∈ Q0 ∧ u[φ ] ∈ L̃abels(T ) ∧ u ∈T�)}

Note that for any pattern u 6∈ {�,�}, qu ∈ Q0 iff qu ∈ Q or q̃u ∈ Q f , and thus, qu ∈ Q0 which makes (a)
true implicitly holds in the conditions of ∆pat and ∆̃pat. Note also that the constructed transition rules are
not always optimized via the construction in Definition 12.4

Theorem 13 The CTA A constructed in Definition 12 is a deterministic, complete, and constraint-
complete CTA such that L(A ) = G(T ).

Proof. Due to the construction of constrained patterns used for states, for u[φ ] ∈ Labels(T ), all of the
following hold:

• π ∈Pos(u) and u|π ∈ T� for any variable 〈π〉 ∈ FV(φ),

•
∨

u[ψ]∈Labels(T ) ψ is valid w.r.t. S , and

• if u[φ ] is a least general in Labels(T ), then φ ∧ψ is not satisfiable w.r.t. S for any least general
constrained pattern u[ψ] in Labels(T ) such that φ 6l ψ .

It follows from both the first property above and the construction of transition rules that A is constraint-
complete. It follows from the second and third properties above that A is complete and deterministic.
From these properties, every given term transitions to a unique state that keeps the structure of the given
term as much as possible in the sense of the patterns to be considered. In constructing transition rules,
we add constraints to transition rules so as to transition to a final state if a given initial ground term is an
instance of a constrained term in T . For these reasons, it is clear that L(A ) = G(T ). �

4 As in the case of unconstrained tree automata [3], a state q is not accessible if there is no transition rule of the form l
φ−→ q.

Thus, such a state q and all the transition rules having q can be removed from A .
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Example 14 Consider G , P and S in Example 5, F = {f/1}, and T = {f(x)[x≤0], f(s(x))[x≥0]}. Then,
we have that

T |�� = {f(�)[〈1〉≤0], f(s(�))[〈1.1〉≥0]}
PatternsC(T |��) = {s(�)}
LessGeneralized(T |��) = T |��∪{�[>],s(�)[>]}

∪

{
�[>], f(�)[¬(〈1〉≤0)], f(s(�))[¬(〈1.1〉≥0)], f(s(�))[〈1〉≤0∧〈1.1〉≥0],
f(s(�))[¬(〈1〉≤0)∧〈1.1〉≥0], f(s(�))[〈1〉≤0∧¬(〈1.1〉≥0)], f(s(�))[¬(〈1〉≤0)∧¬(〈1.1〉≥0)]

}
L̃abels(T ) = T |��∪{f(s(�))[〈1〉≤0∧〈1.1〉≥0], f(s(�))[〈1〉≤0∧¬(〈1.1〉≥0)], f(s(�))[¬(〈1〉≤0)∧〈1.1〉≥0]}

The CTA A = ({q�,q�,qs(�), q̃�},{q̃�},∆) is constructed by Definition 12 with the following transition
rules:

∆ =


0→ q�, s(q�)→ qs(�), f(q�)

〈1〉≤0−−−→ q̃�, f(qs(�))
〈1〉≤0∧〈1.1〉≥0−−−−−−−−→ q̃�,

s(q�)→ q�, f(q�)
¬(〈1〉≤0)−−−−−→ q�, f(qs(�))

〈1〉≤0∧¬(〈1.1〉≥0)−−−−−−−−−−→ q̃�,

s(qs(�))→ qs(�), f(q�)→ q�, f(qs(�))
¬(〈1〉≤0)∧〈1.1〉≥0−−−−−−−−−−→ q̃�,

s(q̃�)→ q�, f(q̃�)→ q�, f(qs(�))
¬(〈1〉≤0)∧¬(〈1.1〉≥0)−−−−−−−−−−−−→ q�


4 Conclusion

In this paper, we proposed a construction method of deterministic, complete, and constraint-complete
CTAs recognizing ground instances of constrained terms. For the lack of space, we did not describe
how to apply it to the verification of reduction-completeness and sufficient completeness, while we have
already worked for some examples.

Unlike the case of tree automata, for a state, it is in general undecidable whether there exists a term
reachable to the state, and thus, the intersection emptiness problem of CTAs is undecidable in general
(see the case of AWEDC [3, Theorem 4.2.10]). For this reason, we will use a trivial sufficient condition
that the set of final states of product automata is empty. Surprisingly, this is sometimes useful for product
automata. To make this approach more powerful, we need to develop a method to find states that are not
reachable from any ground term, e.g., there is a possibility to detect a transition rule that is never used:

for f(qs(�))
¬(〈1〉≤0)∧¬(〈1.1〉≥0)−−−−−−−−−−−−→ q� in Example 14, we know that in applying this rule, the first argument

of f is always an interpretable term of the form s(t), and thus, 〈1〉 in the constraint can be replaced by
s(〈1.1〉); then we can notice that the constraint is unsatisfiable, and thus, this transition rule is never used.
Formalizing this observation is one of our future work.
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