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This paper discusses the GReTL reference solution of the TTC 2011 Reengineering case [5]. Given
a Java syntax graph, a simple state machine model has to be extracted. The submitted solution covers
both the core task and the two extension tasks.

1 Introduction

GReTL (Graph Repository Transformation Language, [6]) is the operational transformation language of
the TGraph technological space [2]. Models are represented as typed, directed, ordered, and attributed
graphs. GReTL uses GReQL (Graph Repository Query Language, [1]) for its querying part.

In contrast to most other transformation languages, GReTL transformations usually construct the
target metamodel (schema) on their own, thereby specifying one graph conforming to this new schema
as target graph of the transformation. For this purpose, GReTL provides a slim set of four transfor-
mation operations, which are derived from the metametamodel of the TGraph technological space (the
GraphUML metaschema). There is an operation CreateVertexClass, which creates a new node type (Ver-
texClass) in the target schema and a set of vertices of this new type in the target graph. Likewise, there
is an operation CreateEdgeClass, which creates a new edge type (EdgeClass) in the target schema and a
set of edges of this new type in the target graph. Since schemas allow for multiple inheritance between
vertex as well as edge classes, there is an operation AddSubClass to create specialization relationships
in the target schema. Finally, there is an operation CreateAttribute, which creates a new attribute for a
vertex or edge class and which assigns values to the elements for which that new attribute is defined. The
vertices and edges that have to be created in the target graph as well as the function assigning values are
specified in terms of queries on the transformation’s source graph.

2 Task Solutions

In this section, all tasks are discussed in sequence, and the GReTL operations and GReQL queries are
explained when they come along. The solution can be run on the SHARE image [4].

2.1 The Core Task

The core task is responsible for creating States and Transitions without setting the attributes of the latter.
Because the JaMoPP metamodel [3] splits its types into various packages, we import the packages from
which elements are used, so that we can refer to these types without having to qualify them.

1 import c l a s s i f i e r s . ∗ ; import t yp e s . ∗ ; import members . ∗ ;
2 import r e f e r e n c e s . ∗ ; import s t a t emen t s . ∗ ; import mod i f i e r s . ∗ ;
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The first task is the creation of State vertices. As explained in the task description, there is an abstract
Java class named State, and all concrete subclasses can be considered states. At first, we bind abstract
State class to a variable abstractStateClass, so that we can easily refer to it in the transformation.

3 a b s t r a c t S t a t e C l a s s := theE lement ( from c : V{ C l a s s }
4 with c . name = ” Sta t e ” reportSet c end ) ;

The from-with-reportSet expression calculates the set of classes which are named “State”. The func-
tion theElement() extracts the single element of a collection consisting of only one element and throws
an exception if the collection’s size is not one. This expresses the assumption that there is exactly one
state class. Finally, this class is assigned to the variable abstractStateClass.

The first transformation operation invoked is CreateVertexClass. It creates a new vertex class State
in the target schema. The query following the arrow symbol is evaluated on the source graph and has to
result in a set. For each member of this set (archetype), a new vertex (image) of the just created type is
instantiated in the target graph. The mappings from archetypes to target graph images are automatically
saved in a function corresponding to the target metamodel vertex class (imgState).

5 C r e a t e V e r t e x C l a s s Sta t e
6 <== from c : { C l a s s } & (<>−−{ex t end s } <>−−{ c l a s s i f i e r R e f e r e n c e s } −−>{ t a r g e t })+
7 a b s t r a c t S t a t e C l a s s
8 with i sEmpty ( c <>−−{anno t a t i o n sAndMod i f i e r s } & {Abs t r a c t })
9 reportSet c end ;

The query specifies a set of Class vertices. The variable c iterates over Class vertices, for which a
path to the vertex abstractStateClass exists. The structure of this path is specified using a regular path
expression [1]. First, a containment edge with role name extends at the far end has to be traversed,
followed by another containment edge with role name classifierReferences, followed by a forward edge
with role name target. This is exactly how subclasses relate to their superclass. The + specifies a one-or-
many iteration. Thus, c is bound not only to direct subclasses of abstractStateClass, but also to indirect
ones. The with part ensures that c is not abstract, i.e., it must not reference an Abstract vertex using an
edge with containment semantics and far end role name annotationsAndModifiers. For any non-abstract
class that extends the abstract state class either directly or indirectly, a new target graph State vertex is
created. The mappings from classes to states are stored in a function img State, which can be used in
following operation calls for navigating between archetypes and images.

The next operation creates the name attribute of type String for the State vertex class, and it sets the
attribute values for the vertices created by the last operation call.

10 C r e a t e A t t r i b u t e Sta t e . name : S t r i n g
11 <== from c : keySet ( img Sta t e ) reportMap c −> c . name end ;

The query of the CreateAttribute operation has to result in a map assigning values of the attribute’s
type to archetyps. Here, the map assigns class names to State archetypes, so the state names are set to
the names of the classes they were created for.

The CreateEdgeClass operation is used to create a new edge type Transition in the target metamodel
defined between State vertices with the given role names and default multiplicities (0,*). The query has
to result in a set of triples. In each triple, the first component specifies the archetype of the new edge
to be created. The second and third component specify the archetypes of the start and end vertices. For
each archetype, a new edge of the just created type is created in the target graph, starting at the vertex
that is the image of the second component and ending at the vertex that is image of the third component.

12 CreateEdgeClass T r a n s i t i o n from Sta t e r o l e s r c to Sta t e r o l e ds t
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13 <== from c1 , c2 : keySet ( img Sta t e ) ,
14 ca l l i n gMe thod : c1 <>−−{members} & {Method } ,
15 c a l l : c a l l i n gMe thod <>−−+ & {MethodCal l }
16 with c a l l −−>{ t a r g e t } i n s tanceMethod
17 and not isEmpty ( c a l l <>−−{next } & {MethodCal l } −−>{ t a r g e t }
18 & {Method @ th i sVer tex . name = ” a c t i v a t e ”})
19 reportSet tup ( c1 , ca l l i ngMethod , c2 , in s tanceMethod ) , c1 , c2 end
20 where i n s tanceMethod := theE lement ( c2 <>−−{members}
21 & {Method @ th i sVer tex . name = ” I n s t a n c e ”} ) ;

In the query, c1 and c2 iterate over State archetypes, i.e., source graph Class vertices extending
the abstract state class. The variable callingMethod is bound to all methods of the class bound to c1
one after the other. In turn, call is bound to every MethodCall occuring somewhere in callingMethod’s
body using the regular path expression <>−−+, which calculates all method call vertices reachable
from callingMethod by traversing edges with containment semantics one or many times. The variable
instanceMethod is bound to the singleton Instance() Method of c2 using a where binding. The predi-
cates in the with part ensurne that the method call call indeed invokes the instanceMethod and that on
the object returned by the call, the activate() method is invoked. For each variable combination ful-
filling the predicates, a triple is reported. The first component, i.e., the archetype for a new Transition
edge, is a tuple containing the currently active state class c1, its method that contains the activation call
(callingMethod), the new state class c2, and its instanceMethod. The archetype of the new transition’s
start state is c1 and the transition leads to the state that is the image of c2.

This is all the core task requires. In the remainder, the extension solutions are discussed.

2.2 Extension 1: Triggers

With respect to triggers, four cases have to be distinguished: (1) If the transition occurs in a method
except for run(), then that method’s name is the trigger. (2) If it occurs in a switch statement in the
run() method, then the corresponding case’s enum constant name is the trigger. (3) If it occurs in a catch
block, then the caught exception’s type name is the trigger. (4) Else, the trigger should be set to the string
‘‘−−’’. The four situations are covered by different operation calls.

Non-run() methods and default value. The CreateAttribute operation is used to create the trigger
attribute of type String for the Transition edge class. The string ‘‘−−’’ is chosen as default value, which
handles the fourth case above.

22 C r e a t e A t t r i b u t e T r a n s i t i o n . t r i g g e r : S t r i n g = ’”−−”’
23 <== from t : keySet ( img T r a n s i t i o n )
24 with t [ 1 ] . name <> ” run ”
25 reportMap t −> t [ 1 ] . name end ;

The query returns a map that assigns to every Transition archetype whose second component’s name
is not “run” the value of its name. When looking at the CreateEdgeClass call for Transition in the core
task, the second component of Transition archetypes (t[1]) is exactly the method in which the activation
of the new state occured.

Switch statements. Because the trigger attribute has already been created by the previous Cre-
ateAttribute call, the SetAttributes operation is used, which only works on the instance level and re-
quires an existing attribute given by its qualified name (Transition.trigger).
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26 S e t A t t r i b u t e s T r a n s i t i o n . t r i g g e r
27 <== from t : keySet ( img T r a n s i t i o n ) ,
28 ca se : t [ 1 ] <>−−+ & {Switch}<>−−{c a s e s } ,
29 cond : ca s e <>−−{c o n d i t i o n } −−>{ t a r g e t } & {EnumConstant}
30 with t [ 1 ] . name = ” run ” and ca se <>−−+ & {MethodCal l } −−>{ t a r g e t } t [ 3 ]
31 reportMap t −> cond . name end ;

The query iterates over Transition archetypes (4-tuples) using the variable t. case is bound to all Case
vertices reachable by diving into the body of the activating method referenced by t[1], reaching a Switch
vertex, and selecting its Case vertices one after the other. In turn, cond is bound to the EnumConstant
that is the condition of the case. The predicates in the with part ensure that the activation of the next
state occurs inside the run() method, and that the call of the Instance() method (the fourth component
in the transition archetype tuples) indeed occurs in the body of case. The map assigns the names of the
EnumConstant used in the case of the switch statement to Transition archetypes.

Catch blocks. Again, the SetAttributes operation is used.

32 S e t A t t r i b u t e s T r a n s i t i o n . t r i g g e r
33 <== from t : keySet ( img T r a n s i t i o n ) , ca tch : t [ 1 ] <>−−+ & {CatchBlock }
34 with t [ 1 ] . name = ” run ” and ca tch <>−−+ & {MethodCal l } −−>{ t a r g e t } t [ 3 ]
35 reportMap t −> theE lement ( ca tch −−>{paramete r } −−>{t y p eRe f e r e n c e }
36 −−>{ c l a s s i f i e r R e f e r e n c e s } −−>{ t a r g e t } ) . name end ;

The query iterates over Transition archetypes using the variable t. From the method containing the
activation call (t[1]), all CatchBlock vertices contained in its body are iterated. The with part ensures
the activation is inside the run() method and the activation call occurs inside the catch block. For all
combinations of t and catch where the predicates hold, the name of the caught exception is the trigger.

2.3 Extension 2: Actions

The second extension task deals with setting the action attribute of Transition edges. The value of this
attribute is the name of the enumeration constant provided as argument to a send() method call appearing
in the same block as the activation of the next state. If there is no such call, the attribute should be set
to ‘‘−−’’. The CreateAttribute operation is used to create the new action attribute of type String for the
edge class Transition with the default value ‘‘−−’’.

37 C r e a t e A t t r i b u t e T r a n s i t i o n . a c t i o n : S t r i n g = ’”−−”’
38 <== from t : keySet ( img T r a n s i t i o n ) ,
39 c o n t a i n e r : t [ 1 ] <>−−∗ & { S t a t emen tL i s tCon t a i n e r } ,
40 s e n dCa l l : c o n t a i n e r <>−−{s t a t emen t s } <>−−{e x p r e s s i o n } & {MethodCal l }
41 with not isEmpty ( s e n dCa l l −−>{ t a r g e t } & {Method @ th i sVer tex . name = ” send ”})
42 and c o n t a i n e r <>−−{s t a t emen t s } <>−−{e x p r e s s i o n }
43 −−>{next }∗ & {MethodCal l}−−>{ t a r g e t } t [ 3 ]
44 reportMap t −> theE lement ( s e n dCa l l <>−−{arguments }
45 <>−−{next } −−>{ t a r g e t } ) . name end ;

The query iterates over the Transition archetype tuples t. The variable container is bound to all
blocks (StatementListContainer) contained in the method that contains the activation call of the next
state one after the other, i.e., first it is bound to the method body, then to blocks of if, catch, or catch
statements. The variable sendCall is in turn bound to all MethodCall vertices contained in the container.
The first predicate in the with part of the query ensures that sendCall invokes in fact a Method with
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name “send”, and the second predicate ensures that in the block container the activation of the next state
occurs. The query reports a map which assigns the name of the argument given to the send() method in
sendCall to the selected Transition archetypes.

This was the last operation of the ExtractStateMachines.gretl transformation. The complete
task could be solved with only 45 lines of transformation source code.

3 Conclusion

In this paper, the complete GReTL reference solution of the program understanding case has been dis-
cussed in details. In this conclusion, some statements about the evaluation criteria are made.

The solution covers the core as well as both extension tasks, so it is complete. The correctness of the
solution has been validated with the three provided input models. Transforming them always results in
the same target model, except for the (for this case irrelevant) order of elements in the models.

With respect to conciseness, only 45 lines of transformation source code for this non-trivial task is
very good.

The performance of the solution is also good. On SHARE [4], all three input models can be trans-
formed in less than two seconds.

With respect to understandability, one may argue that GReTL’s conception of incrementally con-
structing the target schema and graph simultaneously, its traceability concept of archetypes and images,
and the query language GReQL are not easy to grasp at first. However, they have proven being flexible
and expressive, so it might be worth the initial steep learning curve.
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Zürich, Switzerland, June 29-30 2011.

[6] Tassilo Horn & Jürgen Ebert (2011): The GReTL Transformation Language. In Jordi Cabot & Eelco Visser,
editors: Theory and Practice of Model Transformations, Fourth International Conference, ICMT 2011, Zurich,
Switzerland, June 27-28, 2011. Proceedings, Lecture Notes in Computer Science 6707, Springer, pp. 183–197,
doi:10.1007/978-3-642-21732-6 13.

http://dx.doi.org/10.1007/978-3-642-17322-6_15
http://dx.doi.org/10.1007/978-3-642-12107-4_25
http://dx.doi.org/10.1007/978-3-642-12107-4_25
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu_10.04_TTC11_gretl-cases.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu_10.04_TTC11_gretl-cases.vdi
http://dx.doi.org/10.1007/978-3-642-21732-6_13

	1 Introduction
	2 Task Solutions
	2.1 The Core Task
	2.2 Extension 1: Triggers
	2.3 Extension 2: Actions

	3 Conclusion

