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This paper gives an overview of the Edapt solution to the hello world case [7] of the Transformation
Tool Contest 2011.

1 Edapt in a Nutshell

Edapt1 is a transformation tool tailored for the migration of models in response to metamodel adaptation.
Edapt is an official Eclipse tool derived from the research prototype COPE.

Modeling the Coupled Evolution. As depicted by Figure 1, Edapt specifies the metamodel adaptation
as a sequence of operations in an explicit history model. The operations can be enriched with instruc-
tions for model migration to form so-called coupled operations. Edapt provides two kinds of coupled
operations according to the automatability of the model migration [4]: reusable and custom coupled
operations.
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Figure 1: Overview of Edapt

Reuse of recurring migration specifications allows to reduce the effort associated with building a
model migration [2]. Edapt thus provides reusable coupled operations which make metamodel adap-
tation and model migration independent of the specific metamodel through parameters and constraints
restricting the applicability of the operation. An example for a reusable coupled operation is Enumeration
to Sub Classes which replaces an enumeration attribute with subclasses for each literal of the enumer-
ation. Currently, Edapt comes with a library of over 60 reusable coupled operations [6]. By means of

1http://www.eclipse.org/edapt
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Figure 2: User interface of Edapt

studying real-life metamodel histories, we have shown that, in practice, most of the coupled evolution
can be covered by reusable coupled operations [2, 5].

Migration specifications can become so specific to a certain metamodel that reuse does not make sen-
se [2]. To express these complex migrations, Edapt allows the user to define a custom coupled operation
by manually encoding a model migration for a metamodel adaptation in a Turing-complete language [3].
By softening the conformance of the model to the metamodel within a coupled operation, both meta-
model adaptation and model migration can be specified as in-place transformations, requiring only to
specify the difference. A transaction mechanism ensures conformance at the boundaries of the coupled
operation.

Recording the Coupled Evolution. To not lose the intention behind the metamodel adaptation, Edapt
is intended to be used already when adapting the metamodel. Therefore, Edapt’s user interface, which is
depicted in Figure 2, is directly integrated into the existing EMF metamodel editor. The user interface
provides access to the history model in which Edapt records the sequence of coupled operations. An
initial history can be created for an existing metamodel by invoking Create History in the operation
browser which also allows the user to Release the metamodel.

The user can adapt the metamodel by applying reusable coupled operations through the operation
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Figure 3: History model with a custom migration

browser. The operation browser allows to set the parameters of a reusable coupled operation, and gives
feedback on the operation’s applicability based on the constraints. When a reusable coupled operation
is executed, its application is automatically recorded in the history model. Figure 2 shows the operation
Sub Classes to Enumeration being selected in the operation browser and recorded to the history model.

The user needs to perform a custom coupled operation only, in case no reusable coupled operation
is available for the change at hand. First, the metamodel is directly adapted in the metamodel editor,
in response to which the changes are automatically recorded in the history. A migration can later be
attached to the sequence of metamodel changes. Figure 2 shows the migration editor to encode the
custom migration in Java.

2 Hello World Case

Since Edapt is tailored for model migration, the migration tasks could be solved using only reusable
coupled operations. For all other tasks, custom coupled operations are required, as Edapt is not tailored
for these cases.

Figure 3 shows how the history model looks like for all tasks of this case that are solved using custom
coupled operations. In this case, the custom coupled operation always consists of a custom migration
which is attached to an empty metamodel adaptation. The custom migration is implemented as a Java
class that inherits from a special super class.

The complete solutions are available in the appendix, through a SHARE demo [1] and in the reposi-
tory of the Eclipse Edapt project2. In the following, we explain the main characteristics of the solutions
for the different tasks.

2.1 Hello World! Figure 3 shows how the constant transformation is implemented using the migration
language provided by Edapt. Since Edapt is a migration tool, the transformation is always performed in-
place. To store the result at another location, we use helper methods that are provided by the superclass

2http://dev.eclipse.org/svnroot/modeling/org.eclipse.emft.edapt/trunk/examples/ttc_helloworld

http://dev.eclipse.org/svnroot/modeling/org.eclipse.emft.edapt/trunk/examples/ttc_helloworld
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Figure 4: History model for the simple migration

HelloWorldCustomMigration. The task to perform the extended constant transformation is solved in a
similar way. For the model-to-text-transformation, we also have to include the result metamodel in the
history and provide helper methods to store instances of the classes defined by this metamodel.

2.2 Count Matches with certain Properties. All the count tasks require the result metamodel to be
part of the history and a helper method to store the integer result which is provided by the superclass
HelloWorldCustomMigration. The solutions of the tasks to count the number of nodes, looping edges,
isolated nodes and dangling edges are straightforward. For the solution of the task to count the number
of circles, we implemented the helper method getReachable to get the nodes reachable from a node
through directed edges. For this helper method, we used the function getInverse to navigate the inverse
of an association.

2.3 Reverse Edges. The solution to this task is straightforward, since we only have to exchange src and
trg of each Edge.

2.4 Simple Migration. Figure 4 shows the history model for the simple migration which can be solved
completely using already available reusable coupled operations. Note that the custom coupled operation
is only necessary to store the result of a transformation in a different file. First, the common super class
GraphComponent is created for classes Node and Edge. Then, the associations nodes and edges are
united into the association gcs. Finally, the attribute name is pulled up from class Node to GraphCom-
ponent and renamed to text.

Figure 5 shows the history model for the topology-changing migration which can also be solved using
reusable coupled operations. The operation ClassToAssociation is applied to replace the class Edge by
the association linksTo. Finally, also a Rename of an attribute is required to complete the migration.

2.5 Delete Node with Specific Name and its Incident Edges. This task can also be implemented quite
easily, since Edapt provides a method to delete instances of classes. To also delete all incident edges, we
can again use the method getInverse to navigate to the edges which have the node as source or target.

2.6 Insert Transitive Edges. The solution to this task is a little bit more involved. To not let the newly
created edges influence the result, we first determine the pairs of nodes for which edges need to be
created. Here, we can again rely on our helper method getReachable to obtain the nodes reachable from
a node. Finally, we create the edges for these nodes.
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Figure 5: History model for the topology-changing migration

3 Conclusion

As Edapt is a transformation tool targeted at model migration, it clearly shows its strengths in the migra-
tion tasks. The migration tasks can be solved by applying only reusable coupled operations. Thereby,
not a single line of custom migration code needs to be written.

Although a degenerated case, the other tasks can be solved by attaching custom migrations to an
empty metamodel adaptation. The custom migrations are implemented in Java based on the API pro-
vided by Edapt to navigate and modify models. Even though the Java solutions are quite concise and
clear, a specialized DSL could further improve conciseness and clarity. However, we can rely on Java’s
abstraction mechanisms to organize the implementation, and on the strong Java tooling to implement,
refactor and debug the solution.
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A Solution

2.1-2.6 Base Class for Custom Migrations for the Hello World Case

1 import org.eclipse.emf.common.util.URI;
2 import org.eclipse.emf.edapt.migration.CustomMigration;
3 import org.eclipse.emf.edapt.migration.Instance;
4 import org.eclipse.emf.edapt.migration.Model;
5 import org.eclipse.emf.edapt.migration.ModelResource;
6

7 public abstract class HelloWorldCustomMigration extends CustomMigration {
8

9 /∗∗ Create the resource in which to store the result of the transformation. ∗/
10 protected ModelResource createResultResource(Model model) {
11 URI resultUri = getResultURI(model);
12 return model.newResource(resultUri);
13 }
14

15 /∗∗ Change the location in which the model is stored to the result location. ∗/
16 protected void moveResult(Model model) {
17 model.getResources().get(0).setUri(getResultURI(model));
18 }
19

20 /∗∗ Get the location in which the result should be stored. ∗/
21 private URI getResultURI(Model model) {
22 URI uri = model.getResources().get(0).getUri();
23 URI resultUri = uri
24 .trimSegments(1)
25 .appendSegment(uri.trimFileExtension().lastSegment() + "result")
26 .appendFileExtension(uri.fileExtension());
27 return resultUri;
28 }
29

30 /∗∗ Create the result resource and save a result of type integer in it. ∗/
31 protected void saveResult(Model model, int i) {
32 ModelResource resource = createResultResource(model);
33 Instance instance = model.newInstance("result.IntResult");
34 instance.set("result", i);
35 resource.getRootInstances().add(instance);
36 }
37

38 /∗∗ Save a result of type String in a resource. ∗/
39 protected void saveResult(ModelResource resource, String s) {
40 Instance instance = resource.getModel().newInstance(
41 "result.StringResult");
42 instance.set("result", s);
43 resource.getRootInstances().add(instance);
44 }
45 }

2.1 Constant Transformation

1 import org.eclipse.emf.edapt.migration.Instance;
2 import org.eclipse.emf.edapt.migration.Metamodel;
3 import org.eclipse.emf.edapt.migration.Model;
4 import org.eclipse.emf.edapt.migration.ModelResource;
5

6 public class ConstantTransformation extends HelloWorldCustomMigration {
7

8 @Override
9 public void migrateAfter(Model model, Metamodel metamodel) {

10 ModelResource resource = createResultResource(model);
11
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12 Instance greeting = model.newInstance("helloworld.Greeting");
13 greeting.set("text", "Hello World");
14

15 resource.getRootInstances().add(greeting);
16 }
17 }

2.1 Constant Transformation to create Model with References

1 import org.eclipse.emf.edapt.migration.Instance;
2 import org.eclipse.emf.edapt.migration.Metamodel;
3 import org.eclipse.emf.edapt.migration.Model;
4 import org.eclipse.emf.edapt.migration.ModelResource;
5

6 public class ConstantTransformationReferences extends HelloWorldCustomMigration {
7

8 @Override
9 public void migrateAfter(Model model, Metamodel metamodel) {

10 ModelResource resource = createResultResource(model);
11

12 metamodel.setDefaultPackage("helloworldext");
13

14 Instance greeting = model.newInstance("Greeting");
15

16 Instance message = model.newInstance("GreetingMessage");
17 message.set("text", "Hello");
18 greeting.set("greetingMessage", message);
19

20 Instance person = model.newInstance("Person");
21 greeting.set("person", person);
22 person.set("name", "TTC Participants");
23

24 resource.getRootInstances().add(greeting);
25 }
26 }

2.1 Model-to-Text-Transformation

1 import org.eclipse.emf.edapt.migration.Instance;
2 import org.eclipse.emf.edapt.migration.Metamodel;
3 import org.eclipse.emf.edapt.migration.Model;
4 import org.eclipse.emf.edapt.migration.ModelResource;
5

6 public class ModelToTextTransformation extends HelloWorldCustomMigration {
7

8 @Override
9 public void migrateBefore(Model model, Metamodel metamodel) {

10 ModelResource resource = createResultResource(model);
11 metamodel.setDefaultPackage("helloworldext");
12 for (Instance greeting : model.getAllInstances("Greeting")) {
13 String greetingText = greeting.getLink("greetingMessage").get(
14 "text");
15 Object personName = greeting.getLink("person").get("name");
16 String text = greetingText + " " + personName + "!";
17 saveResult(resource, text);
18 }
19 }
20 }

2.2 Base Class for Custom Migrations for the Graph1 Metamodel
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1 import java.util.ArrayList;
2 import java.util.List;
3

4 import org.eclipse.emf.edapt.migration.Instance;
5

6 public abstract class Graph1CustomMigration extends HelloWorldCustomMigration {
7

8 /∗∗ Get the nodes reachable from a nodes through directed edges. ∗/
9 protected List<Instance> getReachable(Instance node) {

10 List<Instance> reachable = new ArrayList<Instance>();
11 for (Instance edge : node.getInverse("graph1.Edge.src")) {
12 reachable.add(edge.getLink("trg"));
13 }
14 return reachable;
15 }
16 }

2.2 Count the Number of Nodes

1 import org.eclipse.emf.edapt.migration.Metamodel;
2 import org.eclipse.emf.edapt.migration.Model;
3

4 public class CountNodes extends HelloWorldCustomMigration {
5

6 @Override
7 public void migrateBefore(Model model, Metamodel metamodel) {
8 int nodes = model.getAllInstances("graph1.Node").size();
9 saveResult(model, nodes);

10 }
11 }

2.2 Count the number of looping Edges

1 import org.eclipse.emf.edapt.migration.Instance;
2 import org.eclipse.emf.edapt.migration.Metamodel;
3 import org.eclipse.emf.edapt.migration.Model;
4

5 public class CountLoopingEdges extends HelloWorldCustomMigration {
6

7 @Override
8 public void migrateAfter(Model model, Metamodel metamodel) {
9 int loops = 0;

10 for (Instance edge : model.getAllInstances("graph1.Edge")) {
11 if (edge.get("src") == edge.get("trg")) {
12 loops++;
13 }
14 }
15 saveResult(model, loops);
16 }
17 }

2.2 Count the number of isolated Nodes

1 import org.eclipse.emf.edapt.migration.Instance;
2 import org.eclipse.emf.edapt.migration.Metamodel;
3 import org.eclipse.emf.edapt.migration.Model;
4

5 public class CountIsolatedNodes extends HelloWorldCustomMigration {
6

7 @Override
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8 public void migrateBefore(Model model, Metamodel metamodel) {
9 metamodel.setDefaultPackage("graph1");

10 int isolated = 0;
11 for (Instance node : model.getAllInstances("Node")) {
12 if (node.getInverse("Edge.src").isEmpty()
13 && node.getInverse("Edge.trg").isEmpty()) {
14 isolated++;
15 }
16 }
17 saveResult(model, isolated);
18 }
19 }

2.2 Count the Number of Circles consisting of three Nodes

1 import org.eclipse.emf.edapt.migration.Instance;
2 import org.eclipse.emf.edapt.migration.Metamodel;
3 import org.eclipse.emf.edapt.migration.Model;
4

5 public class CountCircles extends Graph1CustomMigration {
6

7 @Override
8 public void migrateBefore(Model model, Metamodel metamodel) {
9 metamodel.setDefaultPackage("graph1");

10 int circles = 0;
11 for (Instance n1 : model.getAllInstances("Node")) {
12 for (Instance n2 : getReachable(n1)) {
13 if (n1 != n2) {
14 for (Instance n3 : getReachable(n2)) {
15 if (n2 != n3 && n1 != n3) {
16 if (getReachable(n3).contains(n1)) {
17 circles++;
18 }
19 }
20 }
21 }
22 }
23 }
24 saveResult(model, circles);
25 }
26 }

2.2 Count the Number of dangling Edges

1 import org.eclipse.emf.edapt.migration.Instance;
2 import org.eclipse.emf.edapt.migration.Metamodel;
3 import org.eclipse.emf.edapt.migration.Model;
4

5 public class CountDanglingEdges extends HelloWorldCustomMigration {
6

7 @Override
8 public void migrateBefore(Model model, Metamodel metamodel) {
9 int dangling = 0;

10 for (Instance edge : model.getAllInstances("graph1.Edge")) {
11 if (edge.get("src") == null | | edge.get("trg") == null) {
12 dangling++;
13 }
14 }
15 saveResult(model, dangling);
16 }
17 }
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2.3 Reverse Edges

1 import org.eclipse.emf.edapt.migration.Instance;
2 import org.eclipse.emf.edapt.migration.Metamodel;
3 import org.eclipse.emf.edapt.migration.Model;
4

5 public class ReverseEdges extends HelloWorldCustomMigration {
6

7 @Override
8 public void migrateBefore(Model model, Metamodel metamodel) {
9 moveResult(model);

10

11 for (Instance edge : model.getAllInstances("graph1.Edge")) {
12 Instance src = edge.get("src");
13 Instance trg = edge.get("trg");
14 edge.set("src", trg);
15 edge.set("trg", src);
16 }
17 }
18 }

2.4 Custom Migration to Move the Result

1 import org.eclipse.emf.edapt.migration.Metamodel;
2 import org.eclipse.emf.edapt.migration.MigrationException;
3 import org.eclipse.emf.edapt.migration.Model;
4

5

6 public class MoveResult extends HelloWorldCustomMigration {
7

8 @Override
9 public void migrateBefore(Model model, Metamodel metamodel)

10 throws MigrationException {
11 moveResult(model);
12 }
13 }

2.4 Simple Migration

see Figure 4

2.4 Topology-Changing Migration

see Figure 5

2.5 Delete Node with name and incident Edges

1 import org.eclipse.emf.edapt.migration.Instance;
2 import org.eclipse.emf.edapt.migration.Metamodel;
3 import org.eclipse.emf.edapt.migration.MigrationException;
4 import org.eclipse.emf.edapt.migration.Model;
5

6 public class DeleteNodeWithName extends HelloWorldCustomMigration {
7

8 @Override
9 public void migrateBefore(Model model, Metamodel metamodel)

10 throws MigrationException {
11 moveResult(model);
12
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13 metamodel.setDefaultPackage("graph1");
14 for (Instance node : model.getAllInstances("Node")) {
15 if ("n1".equals(node.get("name"))) {
16 for (Instance edge : node.getInverse("Edge.src")) {
17 model.delete(edge);
18 }
19 for (Instance edge : node.getInverse("Edge.trg")) {
20 model.delete(edge);
21 }
22 model.delete(node);
23 }
24 }
25 }
26 }

2.6 Insert Transitive Edges

1 import java.util.ArrayList;
2 import java.util.Arrays;
3 import java.util.List;
4

5 import org.eclipse.emf.edapt.migration.Instance;
6 import org.eclipse.emf.edapt.migration.Metamodel;
7 import org.eclipse.emf.edapt.migration.Model;
8

9 public class InsertTransitiveEdges extends Graph1CustomMigration {
10

11 @Override
12 public void migrateBefore(Model model, Metamodel metamodel) {
13 moveResult(model);
14

15 metamodel.setDefaultPackage("graph1");
16 List<List<Instance>> pairs = new ArrayList<List<Instance>>();
17 for (Instance n1 : model.getAllInstances("Node")) {
18 for (Instance n2 : getReachable(n1)) {
19 for (Instance n3 : getReachable(n2)) {
20 pairs.add(Arrays.asList(n1, n3));
21 }
22 }
23 }
24 Instance graph = model.getAllInstances("Graph").get(0);
25 for (List<Instance> pair : pairs) {
26 Instance n1 = pair.get(0);
27 Instance n3 = pair.get(1);
28 if (!getReachable(n1).contains(n3)) {
29 Instance edge = model.newInstance("Edge");
30 edge.set("src", n1);
31 edge.set("trg", n3);
32 graph.add("edges", edge);
33 }
34 }
35 }
36 }
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