
Van Gorp, Mazanek and Rose (Eds.):
Fifth Transformation Tool Contest (TTC 2011)
EPTCS 74, 2011, pp. 215–222, doi:10.4204/EPTCS.74.19

Saying Hello World with GROOVE - A Solution to the TTC
2011 Instructive Case

Amir Hossein Ghamarian Maarten de Mol Arend Rensink Eduardo Zambon
Department of Computer Science

University of Twente, The Netherlands
{a.h.ghamarian, mj.demol, rensink, zambon}@ewi.utwente.nl

This report presents a solution to the Hello World case study [2] using GROOVE. We provide and
explain the grammar that we used to solve the case study. Every requested question of the case study
was solved by a single rule application.

1 GROOVE

GROOVE1 [1] is a general purpose graph transformation tool set that uses simple labelled graphs. The
core functionality of GROOVE is to recursively apply all rules from a predefined set (the graph production
system – GPS) to a given start graph, and to all graphs generated by such applications. This results in a
state space consisting of the generated graphs.

The main component of the GROOVE tool set is the Simulator, a graphical tool that integrates (among
others) the functionalities of rule and host graph editing, and of interactive or automatic state space
exploration.

1.1 Host Graphs

In GROOVE, the host graphs, i.e., the graphs to be transformed, are simple graphs with nodes and directed
labelled edges. In simple graphs, edges do not have an identity, and therefore parallel edges (i.e., edges
with same label, and source and target nodes) are not allowed. Also, for the same reason, edges may not
have attributes.

In the graphical representation, nodes are depicted as rectangles and edges as binary arrows between
two nodes. Node labels can be either node types or flags. Node types [resp. flags] are displayed in bold
[resp. italic] inside a node rectangle.

1.2 Rules

The transformation rules in GROOVE are represented by a single graph and colours and shapes are used
to distinguish different elements. Figure 1 shows a small example rule.

• Readers. The black (continuous thin) nodes and edges must be present in the host graph for the
rule to be applicable and are preserved by the rule application;

• Embargoes. The red (dashed fat) nodes and edges must be absent in the host graph for the rule to
be applicable;

1Available at http://groove.cs.utwente.nl

http://dx.doi.org/10.4204/EPTCS.74.19
http://groove.cs.utwente.nl


216 Saying Hello World with GROOVE - A Solution to the TTC 2011 Instructive Case

C

P P

A

parentparent

child

Legend:
A Ab Matched and preserved
A Ab Forbidden
A Ab Matched and deleted
A Ab Created

Figure 1: Example GROOVE rule and legend

• Erasers. The blue (dashed thin) nodes and edges must be present in the host graph for the rule to
be applicable and are deleted by the rule application;

• Creators. The green (continuous fat) nodes and edges are created by the rule application.
Embargo elements are usually called Negative Application Conditions (NACs). When a node type or
flag is used in a non-reader element but the node itself is not modified, the node type or flag is prefixed
with a character to indicate its role. The characters used are +, −, and !, for creator, eraser, and embargo
elements, respectively.

Additional notation and functionalities of the tool are presented along with the developed solution
for the case.

2 Solution

In this section we describe our solution to the case study.

2.1 Hello world!

Metamodels are modelled as type graphs in GROOVE. Each node in a type graph corresponds to a node
type; some have associated attributes. Types shown in bold italic inside dashed nodes are abstract. Edges
with open triangular arrows indicate type inheritance.

• The greeting metamodel of the case study is modelled by the type graph in Figure 2(a). The rule
which makes a node of type greeting is shown in Figure 2(b). The “text” element of the greeting
type is defined as a string attribute.

• The type graph presented in Figure 3(a) represent the metamodel given in Fig. 2 of the case
study. The “text” element of type GreetingMessage and the “name” element of type Person are
modelled using string attributes. Figure 3(b) models the rule that generates the required graph
which complies with the type graph.

• Every rule in GROOVE can have a print format property which describes the format in which the
rule writes to the standard output when it is applied. The value of attributes with parameters
can be written to the standard output by a format similar to that of the C printf. In this case
the text attribute of GreetingMessage and the name attribute of Person have parameters 0 and 1
respectively. The print format property of the helloMessage rule is “The output is %s %s %n”, in
which each “%s” refers to the value of a parameter based on its order of appearance in the print
format. The application of this rule prints “The output is Hello TTC Participants” to the standard
output.



A.H. Ghamarian, M. de Mol, A. Rensink & E. Zambon 217

Greeting
text: string

(a) Greeting type
graph

Greeting
text = ”Hello World”

(b) Make greeting node rule

Figure 2: Greeting type graph and make greeting node rule

Greeting

Person
name: string

GreetingMessage
text: string

greetingMessageperson

(a) Greeting message type graph

”Hello”

GreetingMessage Person

Greeting

”TTC Participants”

greetingMessage

nametext

person

(b) Make greeting message rule

Figure 3: Greeting message type graph and rule

2.2 Counting questions

All questions in this section are to compute the number of occurrences of different subgraphs in the
context graph. GROOVE allows the use of nested universal and existential quantification in the rule
description. All occurrences of subgraph can be captured by a universal quantifier. Each universal
quantifier can report the number of found matches in an “int” attribute which is connected to the quantifier
by a special edge with the label “count”. Similar to the previous section, by adding a parameter to the
attribute, we can print the number of matches to the standard output.

#nodes As represented in Figure 4(a), the number of nodes of type Node can be found by a universally
quantified node of type Node.

#looping edges Similarly, for finding the loop edges, we only need to universally quantify a looping
edge (see Figure 4(b)).

#isolated nodes An isolated node is described by a node of type Node with two NACs for both src and
trg (shown in Figure 4(c)). A universal quantifier finds and counts all occurrences.

#cycles of three Figure 4(d) shows the rule for counting the number of cycles with three nodes. A cycle
with three nodes is trivially described by three connected nodes. The edge with the label “!=”
(injectivity constraint) ensures that the nodes are pairwise different, and the edges with label “-
src.trg ” are abbreviations for paths with two edges, with labels src and trg, respectively. The first
edge with label src must have a reverse direction. The number of occurrences can be counted by
universally quantifying this cycle.

#dangling edges This rule is very similar to the isolated nodes case. Dangling edges are nodes with type
Edge of which at least one of its outgoing edges (src or trg) is missing, however, isolated nodes
are nodes of type Node with both incoming src and trg edges missing. Therefore, for specifying
dangling edges we need to specify a disjunctive relation between the two NACs for the absence



218 Saying Hello World with GROOVE - A Solution to the TTC 2011 Instructive Case

Node

int∀ count

at

(a) #nodes

int

Edge

∀

Node

count

src

trg

atat

(b) #looping edges

∀ Node

Edge

Edge

int

at

at trg

src

count

at

(c) #isolated nodes

int

Node

∀

Node

Node at
count

−src.trg

−src.trg

!=

at at!=

!=

−src.trg

(d) #cycles of three

∀

Edge

NodeNode

int

at at

+

count

at

src trg

(e) #dangling edges

Figure 4: Counting rules



A.H. Ghamarian, M. de Mol, A. Rensink & E. Zambon 219

EdgeNodeEdge

∀

Node

∀

atat src at

src trg

at trg

Figure 5: Reverse edges rule

Edge

Graph

Node

GraphComponent
text: string

gcs

src

trg

(a) Type graph with graph components

Node

Edge

Graph Graph
Graph

∀
Node

Graph

∀∀

Edge
+ text = ””

∀string

text

at

at

at

at

edges

name

nodes

nodes

at

edgesgcsgcs

(b) Migration rule

Figure 6: Type graph with the GraphComponent and its migration rule

of src and trg. This disjunctive relation between NACs is specified by an edge with label “+” in
Figure 4(e).

2.3 Reverse edges

This rule has two parts, the first part shown on the left-hand side of Figure 5 replaces all edges with label
src with edges with label trg. The second part, shown in the right-hand side of Figure 5 replaces all edges
with label trg by edges with label src. Note that this rule also complies with dangling edges as the rule
does not require an edge to have both src and trg. Moreover, because of the universal quantifier the rule
is applied at once, and all edges are reversed by one rule application. Performing this task without the
use of a universal quantifier would need an extra control mechanism to avoid applying the rule forever.

2.4 Simple migrations

GROOVE allows multiple type graphs to be used. In the migration case we enable both the source and the
target type graphs.



220 Saying Hello World with GROOVE - A Solution to the TTC 2011 Instructive Case

Graph

Node
text: string

nodes

linksTo

(a) Type graph with Edge
nodes removed

∀

Node

Node Edge

Edge

Node

Edge Node

∀

∀

at

linksTo

src

atat

src

at

at
at

trg

trg

at

(b) Migration rule

Figure 7: Type graph and the migration rule for removing the nodified edges

Node
name = ”n1”

(a) Delete node with
name “n1”

∀

Node
name = ”n1”

Edge

Edge

∀

at

src

trg

at

(b) Delete node with name “n1” and its inci-
dent edges

Figure 8: Type graph and the migration rule

Graph component migration The target type graph in GROOVE shown in Figure 6(a) is notationally
very similar to the one given in the case study description. The migration rule shown in Figure 6(b)
consists of four parts, the first two parts in the left rename the labels nodes and edges to gcs, the
third part renames the “name” attribute of nodes of type Node to “text”, and finally the fourth part
of the rule adds an attribute “text” to nodes of type Edge and initializes it with an empty string. All
parts of the rule are universally quantified.

Topology changing migration The type graph for the topology-changing migration case is shown in
Figure 7(a). The migration rule is depicted in Figure 7(b). This rule has also three parts, the first
part adds a new edge with the label linksTo between any two nodes of type Node and removes
the node Edge. The other two parts of the rule are to remove the dangling edges. Similar to the
previous migration, all parts of the rule are universally quantified.

2.5 Delete node with specific name

Node deletion Deleting a node with a specific name can be easily done in GROOVE. In this case, we
only need to have an eraser node with attribute name “n1”. Connected edges with labels src and
trg are automatically deleted as GROOVE uses single push-out rewriting (The rule is shown in
Figure 8(a)).



A.H. Ghamarian, M. de Mol, A. Rensink & E. Zambon 221

Edge

Node

∀

Node

Edge

at

trg

at at
src

−src.trg.−src.trg

at

src

trg

Figure 9: Transitive closure rule

Node and incident edges deletion In this case, nodes of type Edge which are connected to the node
with name “n1” must be explicitly deleted. Such nodes can be deleted using two separate universal
quantifiers, one for the edge nodes connected with an edge src and one for edge nodes connected
with an edge trg (see Figure 8(b)).

2.6 Insert transitive edges

The rule for inserting transitive edges is shown in Figure 9. The rule checks for the existence of a path
with length two (two edge nodes) and the lack of a path of length one (one edge node). The path with
length two is specified using the regular expression “-src.trg.-src.trg ”, as the identity of the intermediate
edge nodes is not important. Please note that this is just an abbreviation, we can instead specify a path
by explicitly specifying the edge nodes. The absence of a path of length one is specified by a NAC. The
insertion of a new edge is shown by a creator edge node and two edges. Again all elements must be
universally quantified as we want to insert transitive edges for the whole graph.

3 Conclusion

In this report we presented a GROOVE solution to the Hello World case. We showed that all requested
operations including the optional ones can be solved easily. Each task is solved using only one rule
application of a single rule. All rules look very simple and contain few nodes only. No control language
or any other control mechanism was used and all solutions solely use graph transformation mechanisms
of GROOVE. The grammar for the solution can be found in the SHARE image [3].

References

[1] A. Ghamarian, M. de Mol, A. Rensink, E. Zambon & M. Zimakova (2011): Modelling and analysis using
GROOVE . International Journal on Software Tools for Technology Transfer (STTT). doi:10.1007/s10009-
011-0186-x.

[2] Steffen Mazanek (2011): Hello World! An Instructive Case for the Transformation Tool Contest. In Pieter
Van Gorp, Steffen Mazanek & Louis Rose, editors: TTC 2011: Fifth Transformation Tool Contest, Zürich,
Switzerland, June 29-30 2011, EPTCS.

http://dx.doi.org/10.1007/s10009-011-0186-x
http://dx.doi.org/10.1007/s10009-011-0186-x


222 Saying Hello World with GROOVE - A Solution to the TTC 2011 Instructive Case

[3] SHARE demo related to the paper: Saying Hello World with GROOVE - A Solution to the TTC 2011 Instructive
Case. http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_

TTC11_groove-helloworld.vdi.

http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC11_groove-helloworld.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC11_groove-helloworld.vdi

	1 GROOVE
	1.1 Host Graphs
	1.2 Rules

	2 Solution
	2.1 Hello world!
	2.2 Counting questions
	2.3 Reverse edges
	2.4 Simple migrations
	2.5 Delete node with specific name
	2.6 Insert transitive edges

	3 Conclusion

